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QUADRAFREE FACTORISATIO NUMERORUM

KEVIN BROUGHAN

ABSTRACT. We derive expressions for the number of
factorization of positive integers into squarefree factors with
order not counting and for the asymptotic average of these
factorizations.

1. Introduction. We study the multiplicative decomposition of
natural numbers into squarefree factors, n = n1n2 · · ·nm, n1 ≤ n2 ≤
· · · ≤ nm, where each ni is squarefree. Let f2(n) be the number of
such factorizations, where the order of the factors does not count. For
example, 24 = 2× 2× 6 = 2× 2× 2× 3 so f2(24) = 2.

The number of all possible factorizations of n with order not count-
ing, denoted f(n), has been well studied, and a great deal is known
about its behavior [3, 14]. However, other than in the case of square-
free or prime power values of n, there is no explicit formula for its
evaluation, so one has normally to be content with generating the en-
tire factorization tree and counting the nodes (the greedy algorithm or
its equivalent), or asymptotic results.

This is in contrast to squarefree factorizations where a range of direct
formulas and recursive expressions are presented in this paper, with
sufficient structure to enable them, potentially, to be extended.

Note that Warlimount [17] develops a range of generalizations of
f(n) to different types of factorization, including one called “square-
free.” However, this term refers to the single nature of the occurrence
of a given factor, rather than the factors themselves. For example,
12 = 4 × 3 would be a squarefree factorization for Warlimount but
would not contribute to f2(n).

Since f2(n) = f(n) = Bø(n) for all squarefree n, it follows that
f2(n) ̸= O(nα) for any α with 0 < α < 1 and, since f2(n) ≤ f(n) for
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all n ∈ N, f2(n) ≤ n/ log n for all n [5, Theorem 3.1, Proposition 4.1].
The normal order of f2(n) remains to be investigated.

The set of values of f2(n) is completely different from the f(n) case
[2, 13]; since f2((2 · 3)a) = 1 + a for all a ≥ 1 (Example 4 below) and
f2(2) = 1, we have |{f2(n) : f2(n) ≤ x}| = ⌊x⌋.

The summary of the paper content is as follows. We begin with some
explicit formulas for f2(n), when n is a prime power, is squarefree,
or is a product of at most three prime powers. Then we derive a
combinatorial polynomial equality, based on a given multiset using
a method of Rota. This method was first used to obtain partition
identities for sets. This enables a recursive formula to be derived for
integers which are a power of 2 times an odd squarefree number, a
square of a squarefree number or a square of a squarefree number
times a coprime squarefree number. Finally, we use the method of
Oppenheim, developed for f(n), to derive an asymptotic expression for
the average of f2(n).

Notation. By a squarefree factorization of n, we mean a tuple s =
(n1, . . . , nt) such that each ni is squarefree, n = n1 · · ·nt and n1 ≤
n2 ≤ · · · ≤ nt. By the length of a squarefree factorization, l(s) := t, the
number of factors. The symbols p, q and pi represent prime numbers.
The expression Ω(n) is the total number of primes dividing n, including
multiplicity. Expressions of the form(

n

i

)
or

{
t

r

}
represent the standard binomial coefficient or Stirling numbers of the
first kind (being the number of ways to partition a set of t objects into
r nonempty subsets) respectively. The related Bell numbers Bn are the
total number of distinct subset partitions of a set of n elements,

(Bn)n≥0 = (1, 1, 2, 5, 15, 52, 203, 877, . . .).

The generating function ee
x−1 gives Bn as the coefficient of xn times

n!. We also need the Bell polynomials, Bn(x). These can be expressed
as the coefficients in the exponential generating function

e(e
t−1)x =

∞∑
n=0

Bn(x)

n!
tn.
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They satisfy Bn = Bn(1). Finally, if a ≥ 0 is an integer and
u a real variable, define the so-called downward factorial function
(u)a := u(u− 1) · · · (u− a+ 1) so (u)0 = 1, (u)1 = u.

2. Examples. We begin with a number of easy to derive properties
of f2(n). Let a, b, ai, bi, i ∈ {1, 2}, be positive integers.

(1) f2(p
a) = 1,

(2) f2(p1p2 · · · pr) = Br,
(3) (a, b) = 1 implies f2(ab) ≥ f2(a)f2(b),
(4) If a | b, then f2(a) ≤ f2(b),
(5) f2(p

a1
1 pa2

2 ) = 1 +min{a1, a2},
(6) f2(p

a1
1 pa2

2 p3) = 2 + 3min{a1, a2}+min{a1 − 1, a2} if a1 ≥ a2,

(7) f2(2
Ω(b) · b) = f2(2

a · b), a ≥ Ω(b).

The first three properties are the same or similar to those of f(n).
For item (4), take the corresponding multiset for a given squarefree fac-
torization of a and map this to its union with the multiset of singleton
primes for b/a to get a unique multiset squarefree decomposition of b.

To see (5), let a = max{a1, a2}, b = min{a1, a2} so f2(p
a1
1 pa2

2 ) =
f2(2

a × 3b). Then the squarefree factorizations of 2a3b have 0 through
b factors with value 6, the remaining factors being singletons. No other
squarefree factorizations are possible, giving the result b + 1. For (6),
let f2(p

a1
1 pa2

2 p3) = f2(2
a × 3b × 5) with a ≥ b. If a > b, then there can

be i 6’s in any squarefree factorization of 2a × 3b, with 0 ≤ i ≤ b, the
remaining factors being singleton 2’s or 3’s. This gives, when a > b,
1 + b factors with a singleton 5, 1 + b with one of the 2’s replaced by
10, b with one of the 3’s replaced by 15, and b with one of the 6’s
replaced by 30. In case a = b, then we lose a factorization because of
the situation where there are no 2’s to be replaced. This gives a total
of 2 + 3b+min{a− 1, b} factors.

Finally, to see (6), simply note that in any squarefree factorization
of b there must be at most Ω(b) factors, and each may be combined
with at most that many 2’s. Hence, each factorization must have at
least a− Ω(b) single 2’s.

In a similar vein, we can go beyond these examples, but the results
get much more complicated. For example, if n = paqbrc with p, q, r
distinct primes and natural numbers a ≥ b ≥ c > 0 then, with a bit of
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work, it is possible to see that

f2(n) =

b∑
i=0

min{i,c}∑
j=0

θ(a− i, b− i, c− j)

where, if β(n) := 1 + 2 + · · ·+ n with β(0) := 0, we set

θ(u, v, w) :=


1/2(w + 1)(w + 2) 0 ≤ w ≤ v,

β(w + 1)− β(w − v) v < w < u,

(u+ 1)(v + 1)− β(u+ v − w) u ≤ w ≤ u+ v,

(u+ 1)(v + 1) u+ v < w,

which is example (8).

To our knowledge, there do not exist corresponding direct formulas
to (4)–(7) for the computation of f(n). Going beyond example (8),
would result, we consider, in even more complicated expressions.

3. Rota’s method and the combinatorial sieve. Let M be
a finite multiset with one element of multiplicity a1 ≥ 1, one of
multiplicity a2 ≥ 1, etc., so |M | = a1 + · · · + ak. Let U be a finite
set with |U | = u. Then

Lemma 3.1. ∑
π

(u)N(π)

b1! · · · bli !
=

(u)a1 · · · (u)ak

a1! · · · ak!
,

where the sum is over partitions π of M such that each subset of π is a
set, and for each such partition there are b1 equal subsets of type 1, b2
of type 2, etc., so N(π) = b1+ · · · bli where N(π) represents the number
of subsets with multiplicity in the partition π.

Proof. Let

M = {p1, . . . , p1, p2, . . . , p2, . . . , . . . , pk . . . , pk}

with aj ≥ 1 copies of pj for 1 ≤ j ≤ k be the multiset. For the
right hand side of the given identity, consider the set of functions
F := {f : M → U} where each element with multiplicity has each
copy mapped to a different element of U . Then

|F | = (u)a1 · · · (u)ak
.
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For each such f , define a partition of M , called ker f , by x ∼ y if
and only if f(x) = f(y).

For the left hand side, for each partition of M into disjoint sets,
M = B1 ∪ B2 ∪ · · · ∪ Bl, define a function g : M → U , such that g is
constant on each Bi, and such that if Bi ̸= Bj as sets; then g(x) ̸= g(y)
for all x ∈ Bi and y ∈ Bj and ker g is the partition B1 ∪ B2 ∪ · · · ∪ Bl

of M . Note here that since M is a multiset it is quite possible to have
some Bi = Bj for some i ̸= j in this partition, and the functions g
must give have different values on such subsets. Finally, we regard
as equivalent functions which have the same set of values on identical
B′

is. The number of functions in M associated in this manner with
each partition B1 ∪B2 ∪ · · · ∪Bl is given by

u(u− 1)(u− 2) · · · (u− l + 1)

b1! · · · bm!
,

where the bi are the number of sets Bj which are equal so l =
b1 + · · · + bm. Let G be the set of all such functions g defined in
this manner.

Since each f is associated with a unique partition into sets we can
define a map θ : F → G by setting θ(f)(Bi) = f(x) for x ∈ Bi and
where ker f = B1 ∪ B2 ∪ · · · ∪ Bl. Then, if f , f ′ ∈ F , θ(f) = θ(f ′) if
and only if there is a group element

σ ∈ Sa1
× · · ·Sak

=: H,

acting on M in such a way that each pi is mapped to another copy of
pi, and where Sn is the symmetric group of all permutations of n ≥ 1
symbols, such that f(x) = f ′(σ ·x) for all x ∈ M . Hence, θ is onto and
the inverse image of each element on the left hand side has size |H|,
and the given identity follows. �

Example 3.2. Let n = 2432 with corresponding multiset M =
{2, 2, 2, 2, 3, 3}, so a1 = 4, a2 = 2 and the right hand side of Lemma 1
is the polynomial in Q[u]

(u)4(u)2
4!2!

=
u(u− 1)(u− 2)(u− 3)

4!
· u(u− 1)

2!
.
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For the left hand side, the partitions with subparts which are sets are

π1 = {{2, 3}, {2, 3}, {2}, {2}},
π2 = {{2, 3}, {2}, {2}, {2}, {3}},
π3 = {{2}, {2}, {2}, {2}, {3}, {3}},

giving, since N(π1) = 4, N(π2) = 5, N(π3) = 6, the three correspond-
ing terms on the left hand side

(u)4
2!2!

+
(u)5
3!1!1!

+
(u)6
4!2!

.

Using Lemma 3.1 to derive partition identities is not as straightfor-
ward as Rota’s original application to sets. However, we do have some
results. First we treat the case with just one prime to a power higher
than 1:

Example 3.3. Let p1, . . . , pk be distinct odd primes with k ≥ 1. Then

(1) f2(2
1p1 · · · pk) =

1

1!
(Bk+1) ,

(2) f2(2
2p1 · · · pk) =

1

2!
(Bk+2 −Bk+1 +Bk) ,

(3) f2(2
3p1 · · · pk) =

1

3!
(Bk+3 − 3Bk+2 + 5Bk+1 + 2Bk) ,

(4) f2(2
4p1 · · · pk) =

1

4!
(Bk+4 − 6Bk+3 + 17Bk+2 − 4Bk+1 + 9Bk) .

To see how to obtain equations of this type we will derive (4): For
2 ≤ j ≤ 4, let bj be the number of squarefree factorizations of n ∈ N
with exactly j 2’s. Let fd

2 (n) be the number of these factorizations
where each of the factors is different. Then f2(n) = fd

2 (n)+ b2+ b3+ b4
(*). Note that b4 = f2(p1 · · · pk) and that, for 2 ≤ j ≤ 3, bj =
f2(2

4−jp1 · · · pk)− f2(2
3−jp1 · · · pk).

Define a linear mapping L from V := Q[u] to Q in the same
manner as Rota, i.e., set L((u)n) = 1 for n ≥ 0 and, recalling that
the polynomials ((u)n)n≥0 are a basis, extend L to the whole of V .
Then apply L to the identity of Lemma 3.1 when n = 24p1 · · · pk, so
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the right hand side is

(u)4(u)1 · · · (u)1
4!1! · · · 1!

=
uk(u)4

4!
,

to obtain the equation

fd
2 (n) +

b2
2!

+
b3
3!

+
b4
4!

=
1

24
L
(
uk(u)4

)
,

where

b2 = f2(2
2p1 · · · pk)− f2(2p1 · · · pk),

b3 = f2(2p1 · · · pk)− f2(p1 · · · pk),
b4 = f2(p1 · · · pk),

and uk(u)4 = uk+1(u− 1)(u− 2)(u− 3).

Now use the fact that, for all n ≥ 0, L(un) = Bn and the values of
f2(·) from (1) and (2) listed above, to obtain an equation for fd

2 (n) in
terms of the Bj ’s, substitute this back in (*) to obtain (4).

The following gives the general form for these equations. It is derived
in a similar manner to the special case set out above.

Theorem 3.4. Let 1 ≤ a ≤ k and p1, . . . , pk be a set of distinct odd
primes. Then

f2(2
ap1 · · · pk) =

1

a!
L
(
uk(u)a

)
+

a∑
j=2

(
j − 1

j!

)
f2(2

a−jp1 · · · pk).

If a > k, then f2(2
ap1 · · · pk) = f2(2

kp1 · · · pk).

We are also able to use the lemma to derive an expression for f2(s
2)

where s is squarefree. We use the version of the combinatorial sieve
that is easily derived using generating functions [18], i.e., given a finite
set Ω of objects and a family P of properties, for each subset S ⊂ P
of properties, let NS be the number of objects that has at least the
properties in S. Then define, for each r ≥ 0,

(3.1) Nr :=
∑

S:|S|=r

NS .
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Then, for j ≥ 0, the number of objects having exactly j of the properties
is given by

(3.2) ej :=
∑
r≥0

(−1)r−j

(
r

j

)
Nr.

Set a0 = 1 and, for k ≥ 1, if p1, . . . , pk is a set of distinct odd primes,
set ak = f2((p1 · · · pk)2). Then (ak)k≥0 = (1, 1, 3, 16, 139, 1750, . . .),
and we have the following recurrence:

Theorem 3.5. For all k ≥ 0,

ak =
1

2k

k∑
j=0

(
k

j

)
(−1)k−jBk+j −

k∑
j=1

ak−j

(
k

j

)
Bj

(
− 1

2

)
.

Proof. Let n = (p1 · · · pk)2 and, for j ≥ 0, let ej represent the
number of squarefree factors of n with exactly j equal factor pairs,
with order not counting. Note that we need not consider factor triples
or higher multiplicities. Then, if fd

2 (n) is the number of squarefree
factors of n with all factors different, by Lemma 3.1,

(3.3) fd
2 (n) +

k∑
j=1

ej
(2!)j

= L

((
(u)2
2!

)k)
.

Let Q be the set of squarefree factors of
√
n, excluding 1, and for

every non-empty subset S ⊂ Q, let NS be the number of squarefree
factorizations of n with at least each of the factors s ∈ S repeated.
Then by equation (3.1)

Nr :=
∑

S:|S|=r

NS =
∑
|S|=r

f2

(
n∏

s∈S s2

)
=

∑
|S|=r

ak−ø(
∏

s∈S s)

=
∑

1≤t≤k

(
#S : |S| = r and ø(

∏
s∈S

s) = t

)
ak−t

=
∑

1≤t≤k

(
k

t

){
t

r

}
ak−l.
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Note that f2(n) = fd
2 (n) + e1 + · · ·+ ek, so by equation (3.3)

(3.4) f2(n) = L

((
(u)2
2!

)k)
+

k∑
j=1

(
1− 1

2j

)
ej .

By the binomial theorem,

L
(
((u)2)

k
)
= L

(
uk(u− 1)k

)
(3.5)

= L

(
uk

( k∑
j=0

(−1)k−j

(
k

j

)
uj

))
(3.6)

=

k∑
j=0

(−1)k−j

(
k

j

)
L
(
uj+k

)
(3.7)

=
k∑

j=0

(−1)k−j

(
k

j

)
Bk+j .(3.8)

Now using the expression derived for Nr and equation (3.2), we get

(3.9) ej =
∑

j≤r≤k

(−1)r−j

(
r

j

) ∑
1≤t≤k

(
k

t

){
t

r

}
ak−t,

so by equation (3.9),∑
1≤j≤k

(
1− 1

2j

)
ej =

∑
1≤j,r,t≤k

(
1− 1

2j

)
(−1)r−j

(
r

j

)(
k

t

){
t

r

}
ak−t

=
∑

1≤t≤k

ak−t

(
k

t

)
∑

1≤r≤k

{
t

r

} ∑
1≤j≤k

(
1− 1

2j

)
(−1)r−j

(
r

j

)

= −
∑

1≤t≤k

ak−t

(
k

t

) ∑
1≤r≤k

(−1)r
{

t
r

}
2r
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= −
∑

1≤t≤k

ak−t

(
k

t

)
Bt

(
− 1

2

)
.

Feeding this expression into equation (3.4) and using equation (3.5),
we obtain the recurrence for ak, and the derivation is complete. �

We can extend this recurrence to count the number of squarefree
factorizations of numbers of the form n = (p1 · · · pk)2pk+1 · · · pk+l,
simply replacing ak by ak,l := f2(n), leading to

Theorem 3.6. For all l ≥ 0, a0,l = Bl, and for all k ≥ 1, l ≥ 0, we
have

ak,l =
1

2k

k∑
j=0

(
k

j

)
(−1)k−jBk+l+j −

k∑
j=1

ak−j,l

(
k

j

)
Bj

(
− 1

2

)
.

It should be possible to extend this method to derive a recursive
expression for the evaluation of f2((p1 · · · pk)a) for a ≥ 1, k ≥ 1.
Instead, here we derive a simple lower bound. Since there are Bk

partitions of {p1, . . . , pk}, and we may select a of these, with order not
significant, to form squarefree factorizations of n = (p1 · · · pk)a, we get

Proposition 3.7. Let the primes pi, for 1 ≤ i ≤ k, be distinct and
a ≥ 1. Then

f2((p1 · · · pk)a) ≥
(
Bk + a− 1

a

)
.

Note that there are squarefree factorizations of n = (p1 · · · pk)a which
are not included in these selections, e.g., (6, 10, 15) when n = (2×3×5)2.
Indeed we get equality only when a = 1 or k = 2.

4. The average of f2(n). We can express the Dirichlet series of
f2(n) as an Euler product

φ(s) :=
∞∑

n=1

f2(n)

ns
=

∏
1<n

n squarefree

(
1− n−s

)−1
,
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which converges at least for ℜs > 2. We can rewrite this series as

∞∑
n=1

f2(n)

ns
= exp

( ∞∑
k=1

1

k

(
ζ(ks)

ζ(2ks)
− 1

))
= exp

( ∞∑
n=1

cn
ns

)
.

where c1 = 0 and, for all n ≥ 1, 0 ≤ cn ≤ 1. Indeed,

logφ(s) =
0

1
+

1

2s
+

1

3s
+

1

2

1

4s
+

1

5s
+

1

6s
+

1

7s
+

1

3

1

8s
+ · · · .

Note that, for n > 1, cn = 0 whenever n is not a power of a squarefree
number, and 1/k if n is the k’th power of a squarefree number. This
Dirichlet series converges for ℜs > 1, has poles at s = 1, 1/2, 1/3, . . .
and at the points s = 1/(2m) + iγ/(2m), m ∈ N for each zero of ζ(s),
1/2 + iγ. It has an essential singularity at s = 0.

To obtain the average of f2(n), we will use the method of Oppenheim
[14] developed for f(n). Indeed, the method applies almost in its
entirety, and we only give sufficient detail to show how the constants
in the leading asymptotic expressions are different in this case.

We need the following standard result in the case k = 1.

Lemma 4.1. [1, Lemma 3, page 281]. Let c > 0 and u > 0 be real
numbers. Then

1

2πi

∫ c+i∞

c−i∞

u−s

s(s+ 1) · · · (s+ k)
ds =

{
1
k! (1− u)k 0 < u ≤ 1,

0 u > 1.

We also need as a property the Bessel function Iα(z) [4, Chapter
10]. For α > 0 and ζ ∈ C \ (−∞, 0], let

Iα(z) :=
∞∑

m=1

(z/2)
2m+α

m!Γ(m+ α+ 1)

be the usual definition of the modified Bessel function of the first kind.
It is one of the two linearly independent power series solutions to the
differential equation x2y′′ + xy′ − (x2 + α2)y = 0, is holomorphic in
the given open subset of C, goes to infinity with real positive z and,
for α > 0, limx→0+ Iα(x) = 0, whereas limx→0+ I0(x) = 1. If Γ is any
contour enclosing the origin in a positive direction (anti-clockwise),
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then we can represent this function as

Iν(z) =
1

2πi

∮
Γ

ez(t+
1
t )/2

tν+1
dt.

Asymptotic expressions for the function and its derivative are

Iν(z) ∼
ez√
2πz

∞∑
n=0

(−1)n
an(ν)

zn
, arg z < π/2,

I ′ν(z) ∼
ez√
2πz

∞∑
n=0

(−1)n
bn(ν)

zn
, arg z < π/2,where

a0(ν) = 1,

an(ν) =
(4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2n− 1)2)

n!8n
, n > 0,

b0(ν) = 1, b1(ν) =
(4ν2 + 3)

8
,

bn(ν) =
(4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2n− 3)2)(4ν2 + 4n2 − 1)

n!8n
,

n > 1.

The properties of Iα(z) which we need are summarized in the
following lemma.

Lemma 4.2. If x, c and α are real and positive, then

(a) Iα(x) =
xα

2πi

∫ c+i∞

c−i∞

ez+(x2)/(4z)

zα+1
dz,

and, as x → ∞,

(b) Iα(x) =
ex√
2πx

(
1− 4α2 − 1

8x
+O

(
1

x2

))
.

Theorem 4.3. Let an = f2(n) and A2(n) =
∑

1≤n≤x an. Then, as
x → ∞, we get

A2(x) ∼ c1
61/4

4π

xe((2
√
log x)/(

√
ζ(2)))

(log x)3/4
.
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Proof.

(i) If s > 1, we have

(4.1) logφ(s) =
∞∑

m=1

1

m

(
ζ(ms)

ζ(2ms)
− 1

)
.

This series is uniformly convergent on compact subsets of s > 0
which avoid the points s = 1/m and s = 1/(2m) + iγ/m
where 1/2 + iγ are the complex zeros of ζ(s). Thus, φ(s) is
holomorphic on the right half plane away from these points.

(ii) For fixed m ∈ N, on an open neighborhood of s = 1/m, there
exists a holomorphic function φm(s) such that we can write

φ(s) = exp

(
1

ζ(2)m(ms− 1)
+ φm(s)

)
= exp

(
1

ζ(2)(s− 1)
+ φ1(s)

)
.

The function P1(s) is holomorphic on |s− 1| < 1/2, so we have
a convergent power series representation on this disk given by

P1(s) =

∞∑
n=0

P(n)
1 (1)

n!
(s− 1)n.

Therefore, for some real coefficients (αn : n ≥ 0) we have

P(s) = c1e
1/(ζ(2)(s−1))

(
1 + α1(s− 1) + α2(s− 1)2 + · · ·

)
,

where c1 = eP1(1) and P1(1) = 0.395895 . . . . To derive this last
constant, let as s → 1+,

P1(s) = ∆(s) + Φ(s),

Φ(s) :=
∞∑

m=2

1

m

(
ζ(ms)

ζ(2ms)
− 1

)
, so

Φ(1) = 0.35203769 . . . ,

∆(s) :=
ζ(s)

ζ(2s)
− 1

ζ(2)(s− 1)
− 1,
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ζ(s) =
1

s− 1
+ γ +O(|s− 1|),

ζ(2s) = ζ(2) + 2ζ ′(ξ)(s− 1), 2 < ξ < 2s, so

∆(s) =
γ

ζ(2)
− 2ζ ′(ξ)

ζ(2)2
− 1 +O(|s− 1|), giving

P1(1) =
γ

ζ(2)
− 2ζ ′(2)

ζ(2)2
− 1 + Φ(1) = 0.395895 . . . .

(iii) Now we claim that the order of P(s) on s = 1 + it, for some
ε with 0 < ε < 1, satisfies P(1 + it) = O(|t|ε) uniformly for
t ≥ e. Write

exp (P(1 + it))

=
ζ(1 + it)

ζ(2 + 2it)
+

∞∑
m=2

1

m

(
ζ (m(1 + it))

ζ (2m(1 + it))
− 1

)
− 1

≤ 6

π2
log t+ C

for t ≥ e and some absolute constant C > 0, where we have
used Lindelöf’s estimate ζ(1 + it) ≪ log t, which requires a
simple application of the Euler-Maclaurin summation [12].

(iv) By Lemma 4.1 with u = 1/x, we get

1

2πi

∫ 2+i∞

2−i∞

xs+1

s(s+ 1)
ds =

{
x− 1 x ≥ 1,

0 0 < x ≤ 1.

Therefore,

B(x) :=
∑

1≤n≤x

an(x− n) =
1

2πi

∫ 2+i∞

2−i∞

xs+1

s(s+ 1)
φ(s) ds.

Now let a > 0 be a small real number. By Cauchy’s theorem, we can
deform the contour of integration (2 − i∞, 2 + i∞) to a new contour
Γ which consists of the five components C1 = (1 − i∞, 1 − it0], C2 =
[1− it0, 1− ia], C3 = {1+aeiθ := π/2 ≤ θ ≤ π/2}, C4 = [1+ ia, 1+ it0]
and C5 = [1 + it0, 1 + i∞) with corresponding integrals having values
Vj with 1 ≤ j ≤ 5.

Using the estimate of item (iii), we get V1 = O(x2) and V5 = O(x2).
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Also,

|V2| ≤
c1x

2

2π

∫ e

0

1

|1 + it||2 + it|
|eφ1(1+it)| dt ≤ c2x

2

with the same bound holding for |I4|.
For the integral V3, make the change of variables w = 1/(s − 1) so

the contour of integration is now w = eiθ/a with θ going from −π/2 to
+π/2. It follows that, for b > 0,

V3 =
1

2πi

∫ b+i∞

b−i∞

x2+(1/w)

(w + 1)(2w + 1)
φ

(
1 +

1

w

)
dw +O(x2).

Therefore, using the change of variables w = ζ(2)u and Lemma 4.2,

I3 = c1
x2

2πi

∫ b+i∞

b−i∞

exp((log x/w) + (w/ζ(2)))

(w + 1)(2w + 1)

× exp

(
P1

(
1 +

1

w

))
dw +O(x2)

=
c1x

2

2πi

∫ b+i∞

b−i∞

exp((log x/w) + (w/ζ(2)))

(w + 1)(2w + 1)

×
(
1 +

α1

w
+

α2

w2
+ · · ·

)
dw +O(x2)

=
c1x

2

4πiζ(2)

∫ b+i∞

b−i∞
exp

(
u+

log x/ζ(2)

u

)
1

u2

(
1+

β1

u
+ · · ·

)
du+O(x2)

=
c1x

2

2ζ(2)

∞∑
n=0

1

2πi

∫ b+i∞

b−i∞

exp(u+ (log x/ζ(2))/u)

un+2
du+O(x2)

=
c1x

2

2ζ(2)

∞∑
n=0

ζ(2)(n+1)/2In+1(2
√
log x/

√
ζ(2))

2n+1(log x)(n+1)/2
+O(x2).

Using a similar analysis to Oppenheim [14],

V3 ∼ c1
61/4

8π

x2e(2
√
log x/

√
ζ(2))

(log x)3/4
,

we get the asymptotic expansion for the derivative

A2(x) ∼ c1
61/4

4π

xe(2
√
log x/

√
ζ(2))

(log x)3/4
. �
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5. Concluding remarks. (1) Corresponding to f(n), there is a
function, often called m(n), the number of multiplicative compositions,
or the number of factorizations of n with order counting. This function
has been studied by many authors, starting with Kalmár. See [6, 7,
8, 9, 10]. So here we could consider m2(n), the number of squarefree
factorizations of n with order counting. Here the Dirichlet series is
simpler, and the average easier to derive than that for f2(n):

∞∑
n=1

m2(n)

ns
= 1 +

∞∑
j=1

(
ζ(s)

ζ(2s)
− 1

)j

=
ζ(2s)

2ζ(2s)− ζ(s)
.

for ℜs > η, so ∑
n≤x

m2(n) ∼ xη ζ(2η)

η(4ζ ′(2η)− ζ ′(η))

where η is the real root of 2ζ(2s) = ζ(s) with η > 1, η = 1.57802 . . . .

(2) There are a number of issues regarding f2(n) which must await
further study. For example, the property of numbers which is analogous
to the highly composite numbers of Ramanujan [15] or the “highly
factorable” numbers of Cranfield, Pomerance and Erdös [3]. The
highly squarefree factorable numbers are champions for the function
f2(n). I conjecture, based on a small amount of numerical evidence,
that there are an infinite number of these champions which have the
form n = p1 · · · pm, a squarefree number consisting of the product of
an initial sequence of primes.

(3) Finally, corresponding to f2(n), there is the function fk(n),
the number of factorizations of n into k-free integers with order not
counting, so there exists a k ≤ Ω(n) with f(n) = fk(n). It is expected

that the formula for the average of fk(n) would have
√
ζ(k) in the

denominator of the exponential part.
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