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ASSOCIATE ELEMENTS IN COMMUTATIVE RINGS

D.D. ANDERSON AND SANGMIN CHUN

ABSTRACT. Let R be a commutative ring with identity.
For a, b ∈ R, define a and b to be associates, denoted a ∼ b,
if a | b and b | a, so a = rb and b = sa for some r, s ∈ R.
We are interested in the case where r and s can be taken
or must be taken to be non zero-divisors or units. We study
rings, R, called strongly regular associate, that have the
property that, whenever a ∼ b for a, b ∈ R, then there exist
non zero-divisors r, s ∈ R with a = rb and b = sa and rings
R, called weakly présimplifiable, that have the property that,
for nonzero a, b ∈ R with a ∼ b, whenever a = rb and b = sa,
then r and s must be non zero-divisors.

Let R be a commutative ring with identity, and let a, b ∈ R. Then
a and b are said to be associates, denoted a ∼ b, if a | b and b | a,
or equivalently, if Ra = Rb. Thus, if a ∼ b, there exist r, s ∈ R with
ra = b and sb = a, and hence a = sra. So, if a is a regular element
(i.e., non zero-divisor), sr = 1, and hence r and s are units. Hence, if
a and b are regular elements of a commutative ring R with a ∼ b, then
a = ub for some u ∈ U(R), the group of units of R. For a, b ∈ R, let us
write a ≈ b if a = ub for some u ∈ U(R). Of course, a ≈ b implies a ∼ b
for elements a and b of any commutative ring R and for an integral
domain the converse is true. In [9], Kaplansky raised the question of
when a commutative ring R satisfies the property that, for all a, b ∈ R,
a ∼ b implies a ≈ b. He remarked that Artinian rings, principal ideal
rings and rings with Z(R) ⊆ J(R) satisfy this property. (Here Z(R)
and J(R) denote the set of zero-divisors and Jacobson radical of a ring
R, respectively.) But he gave two examples of commutative rings that
fail to satisfy this property. Let us recall these two examples and give
a third example.

(1) Let R = C([0, 3]) be the ring of continuous functions on
[0, 3]. Define a(t), b(t) ∈ R by a(t) = b(t) = 1 − t on [0, 1],
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a(t) = b(t) = 0 on [1, 2] and a(t) = −b(t) = t − 2 on [2, 3].
Then a(t) ∼ b(t) (for c(t)a(t) = b(t) and c(t)b(t) = a(t) where
c(t) = 1 on [0, 1], c(t) = 3−2t on [1, 2] and c(t) = −1 on [2, 3]),
but a(t) ̸≈ b(t).

(2) Let R = {(n, f(X)) ∈ Z × GF (5)[X]|f(0) ≡ n mod 5} be
a subring of Z × GF (5)[X]. Then (0, X) ∼ (0, 2X), but
(0, X) ̸≈ (0, 2X).

(3) (Fletcher [7]). Let K be a field and R = K[X,Y, Z]/(X −
XY Z). Then X ∼ XY , but X ̸≈ XY .

We define a commutative ring R with the property that, for all
a, b ∈ R, a ∼ b implies a ≈ b to be strongly associate. These rings,
called “associate rings,” were introduced and studied by Spellman et
al. [10] and later studied in [1]. The basis for the choice of the word
“strongly associate” will become apparent from the next paragraph.

A general study of various associate relations was begun by Anderson
and Valdes-Leon [3] in their study of factorization in commutative rings
with zero-divisors. Let R be a commutative ring, and let a, b ∈ R.
There a and b were defined to be associates, denoted a ∼ b, if a | b and
b | a, strong associates, denoted a ≈ b, if a = ub for some u ∈ U(R),
and very strong associates, denoted a ∼= b, if a ∼ b and further when
a ̸= 0, a = rb (r ∈ R) implies r ∈ U(R). Clearly a ∼= b ⇒ a ≈ b
and a ≈ b ⇒ a ∼ b, but examples were given to show that neither of
these implications could be reversed. Thus, it is of interest to study
commutative rings R where for all a, b ∈ R (i) a ∼ b ⇒ a ≈ b,
(ii) a ≈ b ⇒ a ∼= b or (iii) a ∼ b ⇒ a ∼= b. We have already defined
a ring R satisfying (i) to be strongly associate. Following Bouvier [6],
we define a commutative ring R to be présimplifiable if, for x, y ∈ R,
xy = x implies x = 0 or y ∈ U(R). Commutative rings satisfying
the equivalent condition (7) of Theorem 1 were studied by Fletcher [8]
who called them “pseudo-domains.” We first note that (ii) and (iii)
are equivalent to R being présimplifiable. Note that, while ∼ and ≈
are both equivalence relations on R, the relation ∼= is an equivalence
relation on R if and only if R is présimplifiable. The following theorem
gives several conditions equivalent to a ring being présimplifiable. A
proof may be found in [1, Theorem 1].

Theorem 1. For a commutative ring R, the following conditions are
equivalent.
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(1) For all a, b ∈ R, a ∼ b⇒ a ∼= b.
(2) For all a, b ∈ R, a ≈ b⇒ a ∼= b.
(3) For all a ∈ R, a ∼= a.
(4) R is présimplifiable.
(5) Z(R) ⊆ 1− U(R) = {1− u|u ∈ U(R)}.
(6) Z(R) ⊆ J(R).
(7) For 0 ̸= r ∈ R, sRr = Rr ⇒ s ∈ U(R).

Our next theorem shows that, in one case when two elements are
associate, we can say more. Recall that a nonunit a of a commutative
ring R is irreducible or is an atom if, whenever a = bc, b, c ∈ R, either
a ∼ b or a ∼ c. This is equivalent to (a) = (b)(c) implies (a) = (b) or
(a) = (c).

Theorem 2. Let R be a commutative ring and a ∈ R an atom. Suppose
that b ∈ R with a ∼ b. Then at least one of the following two conditions
holds.

(1) a = rb and b = sa, r, s ∈ R, imply that r and s are regular.
(2) a ≈ b.

Moreover, if (1) does not hold, then a is prime and a = ue where u
is a unit and e is idempotent.

Proof. Suppose that a = rb where r is not regular. Now (b) = (a) =
(r)(b) ⊆ (r). If (a) ( (r), then r is regular since a is an atom [2,
Theorem 1], a contradiction. So (a) = (r). Thus, (a) = (r)(b) = (a)2.
So a = ta2 for some t ∈ R and so e = ta is idempotent with (a) = (e).
Write R = R1 ×R2 where R1 = Re and R2 = R(1− e) with e = (1, 0)
and a = (α, β). Then Ra = Re gives α ∈ U(R1) and β = 0. Hence,
a = ue for some u ∈ U(R). Also, a irreducible forces β = 0 to be
irreducible in R2; so R2 is an integral domain, and hence a is prime.
Likewise, (b) = (a) = (e), so b = ve where v ∈ U(R). Thus b = vu−1a
and hence a ≈ b.

Now a ∼ b gives that b is an atom. So, likewise, if b = sa where s
is not regular, then b = ue where u ∈ U(R) and e is idempotent and
b ≈ a. Thus, (2) and the moreover statement hold. �
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We next show that all possibilities in the previous theorem may
occur.

Example 3.

(1) Let R be an integral domain. If 0 ̸= a ∈ R is an atom and
b ∈ R with a ∼ b, then both (1) and (2) of Theorem 2 hold.
For example, take a = 2, b = −2 in Z.

(2) Let F be a field and R = F [X,Y, Z]/(X −XY Z) = F [x, y, z].
Then x ∈ R is an atom and x = xyz gives x ∼ xy. But x ̸≈ xy
[3, Example 2.3]. So (2) of Theorem 2 fails and hence (1) holds.

(3) Let F be a field, and take a = (1, 0) ∈ R = F × F . So a is an
atom, even prime. Take b = a, so certainly (2) of Theorem 2
holds, but a = aa where a is not regular, so (1) fails.

Theorem 2 motivates the following definitions.

Definition 4. Let R be a commutative ring and a, b ∈ R. We say
that a and b are strongly regular associates, denoted a ≈r b, if there
exist regular elements r, s ∈ R with a = rb and b = sa and a and b are
very strongly regular associates, denoted a ∼=r b, if a ∼ b and either (1)
a = b = 0 or (2) a = rb implies r is regular. A ring R is said to be
strongly regular associate if whenever a ∼ b for a, b ∈ R, a ≈r b.

It is easily seen that ≈r is an equivalence relation on R, even a
congruence. It is also easily seen that ∼=r is transitive and in fact
∼=r is symmetric. For, suppose a ∼=r b, where we can assume a ̸= 0.
Let b = sa, so we need s regular. Now a ∼ b, so a = tb. Thus,
a = tb = t(sa) = (ts)a = (ts)tb = (tst)b. Since a ∼=r b, tst is regular,
and hence so is s. However, ∼=r need not be reflexive. For if e ∈ R is
an idempotent with e ̸= 0, 1, then e = e2 shows that e ̸∼=r e. Note that
∼=r is reflexive if and only if, for x, y ∈ R, x = xy implies x = 0 or y is
regular. With this in mind we make the following definition.

Definition 5. Let R be a commutative ring. Then R is weakly présim-
plifiable if, for x, y ∈ R, x = xy implies x = 0 or y is regular.
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We next give a weakly présimplifiable analog of Theorem 1. For a
commutative ring R, reg (R) is the set of regular elements (i.e., non
zero-divisors) of R.

Theorem 6. For a commutative ring R the following conditions are
equivalent.

(1) For all a, b ∈ R, a ∼ b implies a ∼=r b.
(2) For all a, b ∈ R, a ≈r b implies a ∼=r b.
(3) For all a, b ∈ R, a ≈ b implies a ∼=r b.
(4) For all a ∈ R, a ∼=r a.
(5) R is weakly présimplifiable.
(6) Z(R) ⊆ 1− reg (R) (= 1+ reg (R)).
(7) For (prime) ideals P,Q ⊆ Z(R), P +Q ̸= R.
(8) For a, b ∈ Z(R), (a, b) ̸= R.
(9) For a ∈ R, either a or a− 1 is regular.
(10) For 0 ̸= r ∈ R, sRr = Rr implies s is regular.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4). Clear.

(4) ⇒ (1). Suppose that a ∼ b. We need to show that a ∼=r a
implies that a ∼=r b. As the case a = 0 is trivial, we assume that a ̸= 0.
Suppose that a = rb. Now a ∼ b gives b = sa; so a = rsa. Hence rs
and thus r itself is regular.

(4) ⇔ (5). This has already been noted.

(5) ⇒ (6). Let y ∈ Z(R), so there exists 0 ̸= x ∈ R with xy = 0.
Then x = x(1− y), so 1− y ∈ reg (R), and hence y ∈ 1− reg (R).

(6) ⇒ (5). Suppose that x = xy with x ̸= 0. Then x(1 − y) = 0 so
1− y ∈ Z(R) ⊆ 1− reg (R), and hence y ∈ reg (R).

(6) ⇒ (7). Suppose P +Q = R so there exist p ∈ P and q ∈ Q with
p+ q = 1. Now q = 1− r where r ∈ reg (R). Hence, 1− p = q = 1− r
gives that p = r is regular, a contradiction.

(7) ⇒ (8) ⇒ (9) ⇒ (6). Clear.

(5) ⇒ (10). sRr = Rr implies r = str for some t ∈ R. Then st, and
hence s is regular.

(10) ⇒ (5). Suppose r = sr where r ̸= 0. Then sRr = Rr; so s is
regular. �



722 D.D. ANDERSON AND SANGMIN CHUN

Corollary 7. A weakly présimplifiable ring R is strongly regular asso-
ciate.

Definition 8. A commutative ring R is called a bounded factorization
ring (BFR) if, for each nonzero nonunit a ∈ R, there exists a natural
number N(a) so that, for any factorization a = a1 · · · an of a where
each ai is a nonunit, we have n ≤ N(a). A commutative ring R is
called a z-BFR if, for each nonzero zero-divisor a ∈ R, there exists a
natural number NZ(a) so that for any factorization a = b1 · · · bn of a
where each bj is a zero-divisor, we have n ≤ NZ(a).

Certainly, R a BFR implies R is a z-BFR. Also, a z-BFR R is weakly
présimplifiable. For suppose that, in R, 0 ̸= x = xy with x, y ∈ Z(R).
Then x = xy = xy2 = · · · , so x has arbitrarily long factorizations
involving zero-divisors, a contradiction.

Theorem 9. For a Noetherian ring R, the following conditions are
equivalent.

(1) R is a BFR (z-BFR).
(2) R is (weakly) présimplifiable.
(3) ∩∞n=1(y

n) = 0 for each nonunit y ∈ R (y ∈ Z(R)).
(4) ∩∞n=1I

n = 0 for each proper ideal I (contained in Z(R)).

Proof. The BFR case is given in [3, Theorem 3.9]. We do the z-BRR
case, which is similar. We have already observed that (1)⇒ (2).

Certainly (4)⇒ (3)⇒ (2).

By the Krull intersection theorem, ∩∞n=1I
n = 01−I = {x ∈ R | xi = x

for some i ∈ I}, so (2)⇒ (4).

We show that (4) ⇒ (1). Let 0 ̸= x ∈ R be a zero-divisor, and let
Z(R) = P1∪· · ·∪Pn, a finite union of prime ideals. Suppose that x has
arbitrarily long factorizations involving zero-divisors. If x = a1 · · · am
where m ≥ kn and each ai is a zero-divisor, then each ai is in some
Pj and hence x ∈ P k

i for some i ≤ i ≤ n. So, for each k, there
exists a 1 ≤ i(k) ≤ n with x ∈ P k

i(k). Thus, for some 1 ≤ l ≤ n,

there are infinitely many k with i(k) = l. Then x ∈ ∩∞m=1P
m
l = 0, a

contradiction. �



ASSOCIATE ELEMENTS IN COMMUTATIVE RINGS 723

Theorem 10. Let R be a commutative ring with the property that, for
each ideal I (⊆ Z(R)), ∩∞n=1I

n = {x ∈ R | x = xi for some i ∈ I}.
Then the following statements are equivalent.

(1) ∩∞n=1I
n = 0 for each proper ideal I (contained in Z(R)).

(2) ∩∞n=1(y
n) = 0 for each nonunit y ∈ R (y ∈ Z(R)).

(3) R is (weakly) présimplifiable.

Proof. The présimplifiable case is [3, Theorem 3.10]. We do the
weakly présimplifiable case.

(1) ⇒ (2). This is always true.

(2) ⇒ (1). Let z ∈ ∩∞n=1I
n. Then z = zi for some i ∈ I, so

z ∈ ∩∞n=1(i
n) = 0.

(2) ⇒ (3). Suppose that xy = x and y ∈ Z(R). Then x ∈
∩∞n=1(y

n) = 0.

(3) ⇒ (2). Let y ∈ Z(R) and x ∈ ∩∞n=1(y
n). Then x = x(ry) for

some r ∈ R. Then ry ∈ Z(R) forces x = 0 and hence ∩∞n=1(y
n) = 0. �

Let’s revisit the three examples of rings mentioned in the first
paragraph.

Example 11.

(1) The ring R = C([0, 3]) is not weakly présimplifiable. For define
f(t) ∈ R by f(t) = 1 on [0, 1], f(t) = 2−t on [1, 2] and f(t) = 0
on [2, 3]. Then f(t) and f(t) − 1 are both zero-divisors. Note
that the function c(t) in the example is regular, so a(t) ≈r b(t).
Our next theorem will show that C([a, b]) is strongly regular
associate (but not strongly associate).

(2) Let R = {(n, f(X)) ∈ Z × GF (5)[X]|f(0) ≡ n mod 5}. Now
Z(R) = 5Z × {0} ∪ {0} × X GF (5)[X]. So, for a ∈ R, a or
a − 1 is regular. So R is weakly présimplifiable and hence
strongly regular associate, but not strongly associate and hence
not présimplifiable.

(3) Let R = K[X,Y, Z]/(X −XY Z) = K[x, y, z], K a field. Here
Z(R) = (x) ∪ (1 − yz). Since (x) + (1 − yz) ̸= R, R is weakly
présimplifiable and hence strongly regular associate, but not
strongly associate and hence not présimplifiable.
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Theorem 12. The ring C([a, b]) is strongly regular associate.

Proof. Let R = C([a, b]), a < b. First, observe f ∈ Z(R) if and
only if there exist α, β, a ≤ α < β ≤ b with f(t) = 0 on [α, β]. Also,
note that, if f(t) = 0 on [α, β], then there is a maximal closed interval
[α′, β′], [α, β] ⊆ [α′, β′] ⊆ [a, b] with f(t) = 0 on [α′, β′]. Suppose that
a(t), b(t) ∈ R with a(t) ∼ b(t). Choose c(t) ∈ R with a(t)c(t) = b(t).
Note that c−1(0) ⊆ a−1(0) = b−1(0). Suppose that c(t) is not regular.
Let [α, β] be a maximal closed subinterval on which c(t) = 0. Modify
c(t) on [α, β] to t − α on [α, (α+ β)/2] and −t + β on [(α+ β)/2, β].
Make this modification on each such maximal subinterval to obtain a
new c1(t) ∈ R which is regular. Then c1(t)a(t) = b(t). Similarly, there
is a regular element c2(t) ∈ R with c2(t)b(t) = a(t). �

Example 13. Let R = K[X1, . . . , Xn]/(f
s1
1 · · · fsn

n ), K a field, where
fi ∈ K[Xi] is irreducible and si ≥ 0 with at least one si ≥ 1.
Then R is weakly présimplifiable but is présimplifiable if and only
if exactly one si > 0. Note that Z(R) = ∪{(fi) | si ≥ 1} and
J(R) = nil (R) = ∩{(fi)|si ≥ 1} since R is a Hilbert ring. Now∑
{(fi)|si ≥ 1} ̸= R; so R is weakly présimplifiable by Theorem 6.

But R is présimplifiable if and only if Z(R) ⊆ J(R), which occurs
when exactly one si ≥ 1.

We have yet to give an example of a ring that is not strongly
regular associate. We do so using the method of idealization. Let
R be a commutative ring and M an R-module. The idealization
or trivial extension R(+)M of R and M is the ring R

⊕
M with

addition (r1,m1) + (r2,m2) = (r1 + r2,m1 + m2) and multiplication
(r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1). For a good introduction to
idealization, see [5]. We recall the following:

(1) every prime (maximal) ideal of R(+)M has the form P
⊕

M
where P is a prime (maximal) ideal of R,

(2) J(R(+)M) = J(R)
⊕

M ,
(3) nil (R(+)M) = nil (R)

⊕
M ,

(4) Z(R(+)M) = {Z(R) ∪ Z(M)}
⊕

M ,
(5) reg (R(+)M) = {reg (R) ∩ (R− Z(M))}

⊕
M , and

(6) U(R(+)M) = U(R)
⊕

M . Before studying R(+)M , we give
the promised example.
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Example 14. Let R be a commutative ring that is not strongly asso-
ciate, e.g., one of the three examples in the first paragraph. Let M =⊕

M∈max(R) R/M. Then R(+)M is not strongly regular associate.

Note that Z(R(+)M) = (R − U(R))(+)M = R(+)M − U(R(+)M),
so R(+)M is a total quotient ring. Since R is not strongly associate,
there exist a, b ∈ R with a ∼ b, but a ̸≈ b. Then (a, 0) ∼ (b, 0), but
(a, 0) ̸≈r (b, 0) as elements of R(+)M . For, if (b, 0) = (r,m)(a, 0) for
some regular (r,m) ∈ R(+)M , then r ∈ U(R) so b = ra and hence
a ≈ b, a contradiction.

A (weakly) présimplifiable ring R must be indecomposable as e ̸∼=r e
for an idempotent e ∈ R with e ̸= 0, 1. Example 14 can be used to
construct indecomposable rings that are not strongly regular associate.

In [4] the associate relations defined on commutative rings were
extended to modules as follows. LetM be an R-module. Form,n ∈M ,
define m ∼ n if Rm = Rn, m ≈ n if m = un for some u ∈ U(R), and
m ∼= n if m ∼ n and either m = n = 0 or m = rn implies r ∈ U(R).
Then M is strongly associate (présimplifiable) if m ∼ n implies m ≈ n
(m ∼= n). Theorem 1 may be appropriately extended to modules. We
note that the following are equivalent for an R-module M :

(1) for m,n ∈M , m ∼ n implies m ∼= n,
(2) m = rm ̸= 0 implies r ∈ U(R), and
(3) Z(M) ⊆ J(R).

Form,n ∈M , we further definem ≈r n ifm = rn and sm = n for some
r, s ∈ R− {Z(M)∪Z(R)} and m ∼=r n if m ∼ n and either m = n = 0
or m = rn implies r ∈ R − {Z(M) ∪ Z(R)}. Then M is strongly
regular associate (weakly présimplifiable) if m ∼ n implies m ≈r n
(m ∼=r n). So M is weakly présimplifiable if and only if m = rm ̸= 0
implies r /∈ Z(M)∪Z(R). Finally, we say that R is M-strongly regular
associate (M-weakly présimplifiable) if, for a, b ∈ R, a ∼ b implies
ra = b and sb = a for some r, s ∈ R − {Z(M) ∪ Z(R)} (a = b = 0 or
a = rb implies r /∈ Z(M) ∪ Z(R), or equivalently, a = ra ̸= 0 implies
r /∈ Z(M) ∪ Z(R).)

Theorem 15. Let R be a commutative ring and M an R-module.

(1) R(+)M is présimplifiable if and only if R is présimplifiable
and Z(M) ⊆ J(R) (i.e., M is présimplifiable), or equivalently,
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Z(M) ∪ Z(R) ⊆ J(R).
(2) The following are equivalent.

(a) R(+)M is weakly présimplifiable.
(b) Z(M) ∪ Z(R) ⊆ 1− reg (R) ∩ (R− Z(M)).
(c) For (prime) ideals P,Q ⊆ Z(M) ∪ Z(R), P +Q ̸= R.
(d) For a ∈ R, a or a− 1 /∈ Z(M) ∪ Z(R).
(e) R is M -weakly présimplifiable and M is weakly présimplifi-

able.
(3) If R(+)M is strongly (regular) associate, then R is strongly

associate (M -strongly regular associate) and M is strongly
(regular) associate.

(4) Suppose that R is présimplifiable (M -weakly présimplifiable).
Then R(+)M is strongly (regular) associate if and only if M
is strongly (regular) associate.

Proof. (1) This is given in [4]. It follows from Theorem 1 since
Z(R(+)M) = {Z(M) ∪ Z(R)}

⊕
M and J(R(+)M) = J(R)

⊕
M .

(2) This easily follows from Theorem 6 since Z(R(+)M) = {Z(M)∪
Z(R)}

⊕
M and reg (R(+)M) = {reg (R)∩(R−Z(M))}

⊕
M .

(3) The strongly associate case is given in [1, Theorem 14]. The
proof of the strongly regular associate case is similar.

(4) The case where R is présimplifiable is given in [1, Theorem 14].
The proof of the case where R is M -weakly présimplifiable is
similar. �

Corollary 16. Let G be an abelian group with torsion subgroup Gt and
let R = Z(+)G.

(1) R is présimplifiable ⇔ G is présimplifiable ⇔ G is torsion-free.
(2) R is strongly associate ⇔ G is strongly associate ⇔ G =

F
⊕

Gt where F is torsion-free and 4Gt = 0 or 6Gt = 0.
(3) R is weakly présimplifiable ⇔ G is weakly présimplifiable ⇔

Gt = 0 or Gt is p-primary (i.e., Z(G) = (p)) for some prime
p.

(4) R is strongly regular associate ⇔ G is strongly regular asso-
ciate. The group G is strongly regular associate if Z(G) is a
finite union of prime ideals.

Proof. (1) and (2) [1, Theorem 15 and Corollary 16].
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(3) This follows from the equivalence of (a), (c) and (e) of Theorem
15(2).

(4) The first statement follows from Theorem 15 (4). Suppose
that Z(G) = Z(Gt) = (p1) ∪ · · · ∪ (ps), where p1, . . . , ps are distinct
primes. We show that G is strongly regular associate. Suppose that
0 ̸= a ∼ b in Gt. So ⟨a⟩,= ⟨b⟩ ≈ Zn where the primes dividing n are
a subset of {p1, . . . , ps}. With a change of notation, for l,m ∈ Z with
[l, n] = [m,n] = 1, we need a k ∈ Z with kl ≡ m mod n and [k, pi] = 1
for any pi that doesn’t divide n. Now l and m are units in Zn, so there
is a k0 ∈ Z with k0 = (l)−1m. Now by the Chinese remainder theorem,
the system x ≡ k0 mod n, x ≡ 1 mod pi for pi ∈ {p1, . . . , ps}, pi - n,
has a solution k. Then ka = b and k /∈ Z(G). So G is strongly regular
associate. �

We next investigate the stability of the four properties présimplifiable,
weakly présimplifiable, strongly associate and strongly regular associate
under various standard ring constructions.

Theorem 17.

(1) Let {Rα}α∈Λ be a nonempty family of commutative rings. Then
R =

∏
α∈Λ Rα is strongly (regular) associate if and only if each

Rα is strongly (regular) associate. However, R is not (weakly)
présimplifiable whenever |Λ| > 1.

(2) Let (Λ,≤) be a directed quasi-ordered set, and let {Rα}α∈Λ

be a direct system of rings. If each Rα is strongly associate
(respectively, présimplifiable, weakly présimplifiable), then the
direct limit lim−→Rα is strongly associate (respectively, présimpli-

fiable, weakly présimplifiable). Further, suppose that for α < β,
the map λα

β : Rα → Rβ preserves regular elements, then if each
Rα is strongly regular associate, then lim−→Rα is strongly regular

associate.
(3) Let (Λ,≤) be a directed quasi-ordered set, and let {Rα}α∈Λ be

an inverse system of rings. If each Rα is (weakly) présimplifia-
ble, then the inverse limit R = lim←−Rα is (weakly) présimplifiable.

(4) Let T be an ultrafilter on Λ where {Rα}α∈Λ is a nonempty
family of commutative rings. Then the ultraproduct

∏
Rα/T is

présimplifiable (respectively, strongly associate, weakly présim-
plifiable, strongly regular associate) ⇔ {α ∈ Λ | Rα is
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présimplifiable (respectively, strongly associate, weakly présim-
plifiable, strongly regular associate)} ∈ T. Hence, an ul-
traproduct of présimplifiable (respectively, strongly associate,
weakly présimplifiable, strongly regular associate) rings is again
présimplifiable (respectively, strongly associate, weakly présim-
plifiable, strongly regular associate).

Proof. (1) The strongly associate case is given in [1, Theorem 3 (1)].
The strongly regular associate case is similar. The “however” statement
follows since a (weakly) présimplifiable ring is indecomposable.

(2) The strongly associate and présimplifiable cases are given in [1,
Theorem 3 (2)]. The weakly présimplifiable case is similar. We do the
strongly regular associate case. Let x, y ∈ R with x ∼ y. Let x = ay
and y = bx. For α ∈ Λ, let λα : Rα → R be the natural map. Now there
exists α0 ∈ Λ and xα0

, yα0
, aα0

, bα0
with λα0

(xα0
) = x, λα0

(yα0
) = y,

λα0(aα0) = a, λα0(bα) = bα0 , xα0 = aα0yα0 , and yα0 = bα0xα0 .
Then xα0 ∼ yα0 in Rα0 , so there exist rα0 , sα0 ∈ reg (Rα0) with
xα0 = rα0yα0 and yα0 = sα0xα0 . Let r = λα0(rα0) and s = λα0(sα0);
so x = ry and y = sx. Moreover, r, s ∈ reg (R). For, if say, rt = 0
in R, there exists a β ≥ α0 and tβ ∈ Rβ with λβ(tβ) = t and
λα0

β (rα0)tβ = 0. But rα0 ∈ reg (Rα0) and λα0

β preserve regular elements,

so λα0

β (rα0) ∈ reg (Rβ). Hence, tβ = 0 and thus t = 0.

(3) The présimplifiable case is due to Bouvier, see [1, Theorem 3(3)].
The weakly présimplifiable case is similar.

(4) Each of the given four properties can be expressed in terms of
a first-order sentence. The sentence for présimplifiable and strongly
associate are given in the proof of [1, Theorem 3 (4)]. A sentence
for strongly regular associate is σ = ∀x∀y∃z∃w∃u∃v∀l∀k∀s∀t [((xz =
y) ∧ (yw = x)) ⇒ ((xu = y) ∧ (x = vy) ∧ ((ul = uk) ⇒ (l =
k))∧((vs = vt)⇒ (s = t)))] while a sentence for weakly présimplifiable
is σ = ∀x∀y∃w∃v∀z∀t∀u [(xy = x)⇒ (((x = w) ∧ (wz = w)) ∨ (((ty =
v)∧ (vz = v))⇒ (tu = u)))]. Thus, (4) follows from Los’s theorem. �

Theorem 18. Let R be a commutative ring and {Xα} a nonempty set
of indeterminates over R.

(1) R[{Xα}] is présimplifiable if and only if 0 is a primary ideal of
R [6].



ASSOCIATE ELEMENTS IN COMMUTATIVE RINGS 729

(2) R[{Xα}] is weakly présimplifiable if and only if R is. Hence, if
R is présimplifiable, R[{Xα}] is weakly présimplifiable.

(3) R[{Xα}] is always strongly regular associate. Hence if a, b ∈ R
with a ∼ b in R, then a ≈r b in R[X].

Proof. (1) This is given in [6]. Since J(R[{Xα}]) = nil (R[{Xα}]),
Z(R[{Xα}])⊆ J(R[{Xα}])⇔Z(R[{Xα}])⊆ nil (R[{Xα}])⇔Z(R[{Xα}])
= nil (R[{Xα}]) ⇔ 0 is a primary ideal of R[{Xα}] ⇔ 0 is a primary
ideal of R.

(2) (⇒). Suppose x = xy in R. This also holds in R[{Xα}] so x = 0
or y ∈ reg (R[{Xα}]) ∩R = reg (R).

(⇐). Since a polynomial only involves finitely many Xα, by induc-
tion it is enough to show that R weakly présimplifiable implies R[X]
is weakly présimplifiable. Let f = a0 + a1X + · · · + anX

n ∈ R[X]. If
a0 is regular, f is regular. If a0 is not regular, a0 − 1 is regular since
R is weakly présimplifiable (Theorem 6). Thus f − 1 is regular. By
Theorem 6, R[X] is weakly présimplifiable.

(3) It is enough to show that R[X] is strongly regular associate. For
l ∈ R[X], c(l) denotes the ideal of R generated by the coefficients of l.
Suppose f ∼ g for f, g ∈ R[X]; say fh = g and gk = f for h, k ∈ R[X].
Then c(g) = c(fh) ⊆ c(f)c(h) ⊆ c(f) and c(f) = c(gk) ⊆ c(g)c(k) ⊆
c(g). So c(f) = c(g), and thus c(f) = c(f)c(h). Hence, there exists
a ∈ c(h) with (1−a)c(f) = 0; so (1−a)f = 0. Put h = h+(1−a)Xn+1

where n = degh. So c(h) = c(h)+R(1−a) = R, and hence h is regular.
Now fh = f(h+(1−a)Xn+1) = fh+(1−a)fXn+1 = fh = g. Likewise,
there is a regular k ∈ R[X] with f = kg. So f ≈r g. �

Example 19. Let R be a présimplifiable ring in which 0 is not
primary, e.g., R = K[[S, T ]]/(S2, ST ) (K a field). Then R[X] is weakly
présimplifiable, but not présimplifiable.

Certainly if R[{Xα}] is strongly associate, then so is R. But R
strongly associate (even présimplifiable) does not imply that R[X] is
strongly associate [1, Example 19]. We next do the power series case.

Theorem 20. Let R be a commutative ring.
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(1) R[[X1, . . . , Xn]] is (weakly) présimplifiable if and only if R is
(weakly) présimplifiable.

(2) If R is Noetherian, then R[[X1, . . . , Xn]] is strongly regular
associate.

Proof. (1) (⇒). Suppose x = xy for x, y ∈ R. Then x = xy in
R[[X1, . . . , Xn]] so x = 0 or y is (regular) a unit in R[[X1, . . . , Xn]] and
hence in R.

(⇐). Let f ∈ Z(R[[X1, . . . , Xn]]). Then the constant term a of f
lies in Z(R). So 1 − a ∈ U(R) (reg (R)). Then the constant term of
1− f is a unit (regular). Thus 1− f is a unit (regular).

(2) The proof is similar to the proof of Theorem 18 (3). We sketch
the modification. Since c(f) is finitely generated, there is an a ∈ c(h)
with (1 − a)c(f) = 0. Now if h = a0 + a1X + a2X

2 + · · · , then
c(h) = (a0, . . . , an) for some n. Put h = h+ (1− a)Xn+1; so c(h) = R
and fh = g. As R is Noetherian and c(h) = R, h is regular. �

Wemake the belated remark that a subring of a weakly présimplifiable
ring is again weakly présimplifiable. SinceR[[X]] may be présimplifiable
while R[X] is not (Example 19), a subring of a présimplifiable ring need
not be présimplifiable. Also, for any commutative ring R, R embeds
into

∏
M∈Max (R) RM which is strongly associate; thus, a subring of

a strongly (regular) associate ring need not inherit the property. As
any commutative ring is a homomorphic image of Z[{Xα}] for some
set {Xα} of indeterminants, it follows that none of the four properties
is preserved by homomorphic image. If R is weakly présimplifiable or
strongly regular associate, so is R[X]. However, if R is présimplifiable
or strongly associate, R[X] need not be. Example 19 gives an exam-
ple of a présimplifiable ring R with R[X] not présimplifiable, while
[1, Example 19] shows that R = Z(2)(+)Z4 is strongly associate while
R[X] is not. If R is (weakly) présimplifiable, so is R[[X]]. We do not
know if the property of being strongly (regular) associate is preserved
by power series adjunction. Example 20 [1] gives an example of a lo-
cal ring with a regular ring of quotients that is not strongly associate.
Thus, a regular quotient ring of a présimplifiable (strongly associate)
ring need not be présimplifiable (strongly associate). Now a total quo-
tient ring is présimplifiable (or, equivalently, weakly présimplifiable) if
and only if it is quasilocal. Thus, if R is a ring with total quotient
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ring T (R) (weakly) présimplifiable, Z(R) is a prime ideal. Hence, the
ring R = Z[X,Y, Z]/(X −XY Z) given in the first paragraph is weakly
présimplifiable, but T (R) is not.
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