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ON EXTENDING ABHYANKAR’S TWO POINT
LEMMA TO POSITIVE WEIGHTS

JAMES C. PRICE

ABSTRACT. In this paper we answer the question of
whether we can extend the current proof of Abhyankar’s
two point lemma to any positive weight in the negative. This
is done by constructing suitable w-homogeneous polynomial
pairs of positive weight that behave the same way under the
Jacobian as their negatively weighted counterparts, but they
do not possess the same pairwise properties.

1. Introduction. The motivation for this work comes from the
Jacobian conjecture.

Conjecture 1.1 (Jacobian conjecture). If f, g ∈ k[X,Y ] and

J(f, g) =

∣∣∣∣ fX fY
gX gY

∣∣∣∣ = fXgY − fY gX = 0 ,

then (f, g) is an automorphic pair, i.e., k[f, g] = k[X,Y ].

Of course, k is a field of characteristic zero, and 0 is used to
represent a nonzero constant in k. This conjecture has many different
incarnations, including an obvious generalization in k[X1, X2, . . . , Xn].
A nice introduction to these things can be found in Van den Essen [12].

The main technique used in this paper is the theory of weights,
which is really an algebrization of the Newton polygon. This approach,
in conjunction with the Jacobian, was started by Magnus [7] in 1955
and later generalized by Abhyankar in the Jacobian lectures he gave
at Purdue in 1971. These have been wonderfully preserved in the
lecture notes of van der Put and Heinzer which were later published
by Abhyankar with an update by Sathaye in [2]. This method gained
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momentum near the end of the 70’s and through the 80’s in the work of
Abhyankar [1], Appelgate-Onishi [6], Nagata [8] [9], Nakai-Baba [10],
and Oka [11].

More recently, Abhyankar revisited some of his work after realizing
a certain case of this conjecture he had proved was never published. He
published this previously omitted case, along with some of this revisited
work in [3], [4], and [5]. The results here follow mainly from the second
of these publications in which he proves the following:

Theorem 1 (Two point lemma). If w is negative and J(f, g) = 0 ,
then f has at most two w-points at infinity.

One corollary to this theorem is that the conjecture is true if the
greatest common divisor of the degrees of f and g is less than or equal
to eight ([2], [9], or [4] and [5]). It can also be shown that the Jacobian
conjecture will follow if the theorem holds for positive weights. This
is due in part to the following corollary of the automorphism theorem
[1].

Corollary 1. If (x, y) is a positively w-automorphic pair in k[X,Y ],
then {x, y} = {αX, γY }, where α, γ ∈ k×.

This leads naturally to the question of whether or not we can extend
Abhyankar’s proof of theorem 1 to include some positive weights. The
answer we give in this paper is we cannot. In particular, there are two
lemmas used in his proof that do not hold when the weight is positive.

Lemma 1. If w is negative and J(F,G) = 0 F with F and G w-
homogeneous polynomials, then F has at most two w-points at infinity.

Lemma 2. If w is negative and J(F,G) = 0 F 2 with F and G w-
homogeneous polynomials, then G/F ∈ k[X,Y ].

The fact that these two lemmas do not hold for any positive weight
is shown in Proposition 3.1 and Proposition 3.2 in Section 3. This is
done by generalizing the following weighted homogeneous polynomial
pairs due to Abhyankar [4], Nagata [9], and Cassou-Nogues [5] to any
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positive weight:

(X(XY 3 + 1)2, XY (XY 3 + 1)) with w = (3,−1),(1)

(Y (X3Y + 1)2, XY (X3Y + 1)) with w = (1,−3),(2)

and

(3) (X(X2Y − 1)2(X2Y − 2), (X2Y − 1)3(3X2Y − 7))

with w = (1,−2). These pairs were originally constructed as coun-
terexamples to these two lemmas.

2. Weights and the Jacobian. We will adopt the following no-
tation in order to simplify the examples and computations given in
the next section. For any nonzero f ∈ k[X,Y ], we can express
f =

∑
αijX

iY j as

(4) f =
∑

αPZ
P , where P = (i, j), αP = αij , and ZP = XiY j .

Any such polynomial can be associated to a polygon with vertices in
N×N by defining the support of f to be Supp (f) = {P |aP ̸= 0} and
then taking the Abhyankar polygon of f to be the convex hull of the
Supp (f).

This can be algebraicized by defining a weight to be an element of
the set W = {w = (w1, w2) ∈ (Z × Z)× | gcd (w1, w2) = 1}. Then, for
any w ∈ W, we define the w-degree of f to be

(5) degw(f) = max{P · w | P ∈ Supp (f)},

and the w-degree form of f to be

(6) F =
∑

{P∈Supp (f)|P ·w=degw(f)}

aPZ
P .

f is said to be w-homogeneous if f = F . Observe that the w-degree
forms of f correspond to the sides and vertices of the Abhyankar
polygon and that the slope of these sides can be algebraicized by
defining a weight w ∈ W with w1 ̸= 0 to be negative if −w2/w1 < 0
and positive if −w2/w1 > 0.

For a Jacobian pair, i.e., a pair of polynomials (f, g) such that
J(f, g) = 0 , not every weight needs to be considered. In fact, we
only need to consider the set of standard weights given by W = {w ∈
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W|w1 > 0}. For w ∈ W , f is said to have at most two w-points
at infinity if F = 0 xiyj , where i ∈ N×, j ∈ N, and (x, y) is a w-
automorphic pair, i.e., x, y ∈ k[X,Y ] are w-homogeneous polynomials
with k[x, y] = k[X,Y ]. The statements of Theorem 1, Corollary 1,
Lemma 1 and Lemma 2 should now be clear.

In order to further simplify the Jacobian computations of the next
section, we define the wedge product of two points P = (a, b), Q =
(c, d) ∈ N × N and two nonzero polynomials f =

∑
αPZ

P , g =∑
βQZ

Q ∈ k[X,Y ] as follows: the wedge product of two points is
P ∧Q = ad− bc, and the wedge product of two nonzero polynomials is

(7) f ∧ g =
∑

αPβQ(Z
P ∧ ZQ),

where ZP ∧ ZQ = (P ∧ Q)ZP+Q. This gives an equivalent way to
compute the Jacobian of two polynomials which has the same algebraic
properties as the Jacobian. This clearly follows from (7) and the
identity

(8) J(f, g) =
f ∧ g

ZI
, where I = (1, 1).

3. Abhyankar’s two point lemma and positive weights. We
begin here with two observations that clearly follow from (5), (6) and
(7). The first is that the following polynomial pair is w-homogeneous
when w ∈ W is positive:

(9) (F,G) = (ZP f(T ), ZQg(T )),

where P = (a, b), Q = (c, d) ∈ N×N, f, g ∈ k[X]× and T = Zw⊥ with
w⊥ = (−w2, w1). The second observation is that the wedge product of
such a pair can be expressed as

(10) F ∧G = [(P ∧Q)fg + (P ∧ w⊥)Tfg
′ + (w⊥ ∧Q)Tf ′g]ZP+Q.

Proposition 3.1. For any positive weight w ∈ W , there exists a w-
homogeneous pair (F,G) such that J(F,G) = 0 F and F does not have
at most two w-points at infinity.
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Proof. In (9), take

(P, f,Q, g) =

 ((a, b), h, I, 1) if w1 + w2 = 0
((α, 0), (T + 1)n, I, T + 1) if w1 + w2 > 0
((0, α), (T + 1)n, I, T + 1) if w1 + w2 < 0,

where a ̸= b, h ∈ k[T ]\k,

α =
v1 + v2

gcd (v1 + 1, v1 + v2)
and n =

v1 + 1

gcd (v1 + 1, v1 + v2)

with v = w or w∗ = (−w2,−w1) depending on whether w1 +w2 > 0 or
w1 + w2 < 0, respectively. Then (F,G) is w-homogeneous by (9), and
F does not have at most two w-points at infinity by Corollary 1. Also,

(11) P ∧ I =

 a− b w1 + w2 = 0
α w1 + w2 > 0
−α w1 + w2 < 0

= 0 ,

and P ∧ I + P ∧ w⊥ + n(w⊥ ∧ I)

(12) =

{
α+ αw1 − n(w1 + w2) if w1 + w2 > 0
−α+ αw2 − n(w1 + w2) if w1 + w2 < 0

= 0

by definition. From (10), we have for w1 + w2 = 0 and w1 + w2 ̸= 0
that

F∧G =

 [(P ∧ I)h+ (w⊥ ∧ I)Th′]ZP+I

[((P ∧ I)+(P ∧ w⊥)+ n(w⊥ ∧ I))T+(P ∧ I)]ZP+I(T+1)n

= (P ∧ I)ZP+If = 0 FZI .

This follows in the first case from w1 + w2 = 0 ⇒ w = (1,−1) and
in the second case from (11) and (12). Therefore, J(F,G) = 0 F by
(8). �

Proposition 3.2. For any positive weight w ∈ W with w ̸= (1,−1),
there exists a w-homogeneous pair (F,G) such that J(F,G) = 0 F 2 and
G/F /∈ k[X,Y ].

Proof. In (9), take (P, f,Q, g) = (w⊥ − I, h′, (0, 0), h), where h ∈
k[T ]× with h′ ̸= 0 and ord (h) = min{i + j|(i, j) ∈ Supp (h)} = 0.
Then (F,G) is w-homogeneous by (9), and G

F /∈ k[X,Y ] because the
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ord (G/F ) = ord (G)− ord (F ) = 2− (w1 − w2 + ord (h′)) < 0. Also,

(13) P ∧ w⊥ = w⊥ ∧ I = 0 and P + w⊥ = 2P + I

since w ̸= (1,−1). From (10), we have

F ∧G = ((w⊥ − I) ∧ w⊥)Z
P+w⊥h′h′ = (w⊥ ∧ I)Z2P+Ih′2 = 0 F 2ZI

by (13). Therefore, J(F,G) = 0 F 2 by (8).

�

Interestingly, Lemma 2 is true when w = (1,−1) [3].
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