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VALUE DISTRIBUTION OF CERTAIN DIFFERENCE
POLYNOMIALS OF MEROMORPHIC FUNCTIONS

XIAO-MIN LI, HONG-XUN YI AND WEN-LI LI

ABSTRACT. In this paper, we establish a theorem con-
cerning value distribution of certain difference polynomials
of meromorphic functions, which extends [14, Theorem 2]
and [16, Theorem 1.2]. Applying this result, we prove some
uniqueness theorems of meromorphic functions whose certain
difference polynomials share a non-zero polynomial, which ex-
tends [18, Theorems 1.1 and 1.2] and [23, Theorem 6], where
the meromorphic functions are of finite order.

1. Introduction and main results. In this paper, by meromorphic
functions we will always mean meromorphic functions in the complex
plane. We adopt the standard notations of the Nevanlinna theory
of meromorphic functions as explained in [7, 13, 22]. It will be
convenient to let E denote any set of positive real numbers of finite
linear measure, not necessarily the same at each occurrence. For
a nonconstant meromorphic function h, we denote by T (r, h) the
Nevanlinna characteristic of h and by S(r, h) any quantity satisfying
S(r, h) = o{T (r, h)}, as r → ∞ and r /∈ E.

Let f and g be two nonconstant meromorphic functions, and let a be
a value in the extended plane. We say that f and g share the value
a CM, provided that f and g have the same a-points with the same
multiplicities. We say that f and g share the value a IM, provided that
f and g have the same a-points, and each common a-point of f and
g is counted only once (see [22]). We say that a is a small function
of f, if a is a meromorphic function satisfying T (r, a) = S(r, f) (see
[22]). Throughout this paper, we denote by ρ(f) and ρ2(f) the order
and the hyper-order of f , respectively (see [7, 13, 22]). We also need
the following two definitions:
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Definition 1.1 [12, Definition 1]. Let f be a non-constant mero-
morphic function, let p be a positive integer, and let a ∈ C ∪ {∞}.
Then, by Np)(r, 1/(f − a)), we denote the counting function of those
a-points of f (counted with proper multiplicities) whose multiplici-
ties are not greater than p, by Np)(r, 1/(f − a)), we denote the cor-
responding reduced counting function (ignoring multiplicities). By
N(p(r, 1/(f − a)), we denote the counting function of those a-points
of f (counted with proper multiplicities) whose multiplicities are not
less than p, by N (p(r, 1/(f − a)) we denote the corresponding reduced
counting function (ignoring multiplicities), where Np)(r, 1/(f − a)),

Np)(r, 1/(f−a)), N(p(r, 1/(f−a)) andN (p(r, 1/(f−a)) mean Np)(r, f),

Np)(r, f), N(p(r, f) and N (p(r, f), respectively, if a = ∞.

Definition 1.2. Let f be a non-constant meromorphic function, let
a be any value in the extended complex plane, and let k be an arbitrary
nonnegative integer. We define

Nk

(
r,

1

f − a

)
= N

(
r,

1

f − a

)
+N (2

(
r,

1

f − a

)
+· · ·+N (k

(
r,

1

f − a

)
.

Much research on the uniqueness theory of meromorphic functions
whose differential polynomials share one nonzero value has been done,
for example, see [3, 15, 19, 21]. Recently the difference variant of the
Nevanlinna theory has been established in [1, 5] and, in particular, in
[4], by Halburd-Korhonen and by Chiang-Feng, independently. Using
these theories, some mathematicians from Finland and China began
to consider the uniqueness questions of meromorphic functions sharing
values with their shifts, and produced many fine works (for example,
see [9, 10, 23]). In this paper, we will consider the value distribution
question and the uniqueness question of meromorphic functions whose
difference polynomials share one nonzero value or an entire function of
smaller order.

We recall the following result, which was proved by Clunie and
Hayman, respectively:

Theorem A [2, 8]. Let f(z) be a transcendental entire function,
and let n ≥ 1 be a positive integer. Then fn(z)f ′(z) − 1 has infinitely
many zeros.
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Regarding Theorem A, it is natural to ask the following question:

Question 1.1. What can be said about the conclusion of Theorem A
if fn(z)f ′(z) of Theorem A is replaced with fn(z)f(z + η) for a
transcendental entire function f(z), where η is a nonzero complex
number?

Laine and Yang proved the following result dealing with Question 1.1:

Theorem B [14, Theorem 2]. Let f be a transcendental entire
function of a finite order, and let η be a nonzero complex number. Then
f(z)nf(z + η) assumes every finite nonzero value a infinitely often for
n ≥ 2.

We recall the following two examples:

Example A [14]. Let f(z) = 1+ ez. Then f(z)f(z+πi)− 1 = −e2z

has no zeros. This example shows that Theorem B does not remain
valid if n = 1.

Example B [16, Remark 1]. Let f(z) = e−ez . Then f(z)2f(z +
η) − 2 = −1 and ρ(f) = ∞, where η is a nonzero constant satisfying
eη = −2. Evidently, f(z)2f(z + η) − 2 have no zeros. This example
shows that Theorem B does not remain valid if f is of infinite order.

Recently Liu and Yang proved the following result:

Theorem C [16, Theorem 1.2]. Let f be a transcendental entire
function of finite order, let η be a nonconstant complex number, and
let n ≥ 2 be an integer. Then fn(z)f(z+ η)−P (z) has infinitely many
zeros, where P (z) �≡ 0 is a polynomial.

We recall the following example:

Example C [16, Remark 1]. Let f(z) = e−ez . Then f(z)nf(z+η)−
P (z) = 1−P (z) and ρ(f) = ∞, where η is a nonzero constant satisfying
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eη = −n, P (z) is a nonconstant polynomial, n is a positive integer.
Evidently, f(z)nf(z+ η)−P (z) has finitely many zeros. This example
shows that the condition “ρ(f) < ∞” in Theorem C is necessary.

One may ask, what can be said about the conclusion of Theorem C,
if f is a transcendental meromorphic function? In this direction, we
will prove:

Theorem 1.1. Let f be a transcendental meromorphic function such
that its order ρ(f) = ρ < ∞, let η be a nonzero complex number, and
let n ≥ 1 be an integer. Suppose that P �≡ 0 is a polynomial. Then
(1.1)

nT (r, f(z)) +m(r, f(z)) ≤ 2N(r, f(z)) + 2N

(
r,

1

f(z)

)
+N

(
r,

1

f(z)

)

+N

(
r,

1

fn(z)f(z + η)− P (z)

)

+ o

(
T (r, f(z))

r1−ε

)
+O(1),

as r /∈ E and r → ∞.

From Theorem 1.1, we can get the following results, which is an
analogue of Theorem C for meromorphic functions of finite orders:

Corollary 1.1. Let f be a transcendental meromorphic function
such that its order ρ(f) < ∞, let η be a nonzero complex number, and
let n ≥ 6 be an integer. Suppose that P �≡ 0 is a polynomial. Then
fn(z)f(z + η)− P (z) has infinitely many zeros.

Proof. Noting that

N

(
r,

1

f(z)

)
≤ N

(
r,

1

f(z)

)
≤ T (r, f(z)) +O(1),(1.2)

N(r, f(z)) ≤ T (r, f(z)) +O(1)(1.3)

and
m(r, f(z)) ≥ 0,
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we can get from (1.1) that

(n− 5)T (r, f(z)) ≤ N

(
r,

1

fn(z)f(z + η)− P (z)

)

+ o

(
T (r, f(z))

r1−ε

)
+O(1),

as |z| = r /∈ E and r → ∞. This, together with the condition n ≥ 6,
reveals the conclusion of Corollary 1.1.

Corollary 1.2. Let f be a transcendental meromorphic function such
that ρ(f) < ∞ and δ(∞, f(z)) > 0, let η be a nonzero complex number,
and let n ≥ 5 be an integer. Suppose that P �≡ 0 is a polynomial. Then
fn(z)f(z + η)− P (z) has infinitely many zeros.

Proof. Proceeding as in the proof of Corollary 1.1, we have (1.2) and
(1.3). From the definition of deficiency δ(∞, f(z)), we have

(1.4) m(r, f(z)) ≥ (δ(∞, f(z))− ε)T (r, f(z)),

as |z| = r → ∞. From (1.1) (1.4), we have

(n+ δ(∞, f(z))− 5− ε)T (r, f(z)) ≤ N

(
r,

1

fn(z)f(z + η)− P (z)

)

+ o

(
T (r, f(z))

r1−ε

)
+O(1),

as |z| = r /∈ E and r → ∞. This, together with the conditions
δ(∞, f(z)) > 0 and n ≥ 5 implies the conclusion of Corollary 1.2.

Corresponding to Theorem B, Qi, Yang and Liu [18] proved the
following uniqueness results:

Theorem D [18, Theorem 1.1]. Let f and g be two distinct
transcendental entire functions of finite order. Suppose that η is a
nonzero complex number and n ≥ 6 is an integer. If f(z)nf(z + η)− z
and g(z)ng(z + η) − z share 0 CM, then f = tg, where t �= 1 is a
constant satisfying tn+1 = 1.
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Theorem E [18, Theorem 1.2]. Let f and g be two distinct transcen-
dental entire functions of finite order. Suppose that η is a nonzero com-
plex number and n ≥ 6 is an integer. If f(z)nf(z+η) and g(z)ng(z+η)
share 1 CM, then f = tg, where t �= 1 is a constant satisfying tn+1 = 1.

One may ask, what can be said about the relationship between f and
g, if f and g in Theorems D and E are meromorphic functions? In this
direction, we will prove:

Theorem 1.2. Let f and g be two distinct transcendental mero-
morphic functions of finite order, let η be a nonzero complex num-
ber, let n ≥ 14 be an integer, and let P �≡ 0 be a polynomial such
that 2deg (P ) < n − 1. Suppose that f(z)nf(z + η) − P (z) and
g(z)ng(z + η)− P (z) share 0 CM. Then:

(I) If n ≥ 10 and if f(z)nf(z + η)/P (z) is a Möbius transformation
of g(z)ng(z + η)/P (z), then one of the following two cases will hold:

(i) f = tg, where t �= 1 is a constant satisfying tn+1 = 1.

(ii) fg = t, where P reduces to a nonzero constant c, say, and t is a
constant such that tn+1 = c2.

(II) If n ≥ 14, then one of the two cases (I) (i) and (I) (ii) will hold.

Proceeding as in the proof of Theorem 1.2 in Section 3 of this paper,
we can get the following result by Lemma 2.7 in Section 2 of this paper.

Theorem 1.3. Let f and g be two distinct transcendental mero-
morphic functions of finite order, let η be a nonzero complex num-
ber, let n ≥ 12 be an integer, and let P �≡ 0 be a polynomial
such that 2deg (P ) < n + 1. Suppose that f and g share ∞ IM,
f(z)nf(z + η)− P (z) and g(z)ng(z + η)− P (z) share 0,∞ CM. Then:

(I) If n ≥ 10 and if f(z)nf(z + η)/P (z) is a Möbius transformation
of g(z)ng(z + η)/P (z), then one of the following two cases will hold:

(i) f = tg, where t �= 1 is a constant satisfying tn+1 = 1.

(ii) f = eQ and g = te−Q, where P reduces to a nonzero constant
c, say, and t is a constant such that tn+1 = c2, Q is a nonconstant
polynomial.

(II) If n ≥ 12, then one of the two cases (I) (i) and (I) (ii) will hold.
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From Theorems 1.1 and 1.2, we can get the following result:

Corollary 1.3. Let f and g be two distinct nonconstant meromorphic
functions of finite order. Suppose that η is a nonzero complex number
and n ≥ 17 is an integer. If f(z)nf(z + η) − z and g(z)ng(z + η) − z
share 0 CM, then f = tg, where t is a constant satisfying tn+1 = 1 and
t �= 1.

Proceeding as in the proof of Corollary 1.3 in Section 3 of this paper,
we can deduce the following result by Theorem 1.3 and Lemma 2.8 in
Section 2 of this paper:

Corollary 1.4. Let f and g be two distinct nonconstant meromorphic
functions of finite order, let η be a nonzero complex number, and let n ≥
13 be an integer. Suppose that f and g share ∞ IM, f(z)nf(z+ η)− z
and g(z)ng(z+η)−z share 0,∞ CM. Then f = tg, where t is a constant
satisfying tn+1 = 1 and t �= 1.

Recently Zhang proved the following result.

Theorem D [23, Theorem 6]. Let f and g be two transcendental
entire functions of finite order, and let α be a small function related to
f and g. Suppose that η is a nonzero complex number and n ≥ 7 is an
integer. If f(z)n(f(z)−1)f(z+η)−α(z) and g(z)n(g(z)−1)g(z+η)−
α(z) share 0 CM, then f = g.

We will prove the following result, which is an analogue of Theorem D
for meromorphic functions of finite order.

Theorem 1.4. Let f and g be two transcendental meromorphic
functions of finite order, let α �≡ 0 be an entire function such that
ρ(α) < ρ(f), let η be a nonzero complex number, and let n and m
be two positive integers such that n ≥ m + 12 and m ≥ 2. Suppose
that f and g share ∞ IM, f(z)n(f(z)m − 1)f(z + η) − α(z) and
g(z)n(g(z)m − 1)g(z + η)− α(z) share 0,∞ CM. Then f = tg, where t
is a constant satisfying tm = 1.
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2. Preliminaries. In this section, we introduce the following
important lemmas for proving the main results in this paper.

Lemma 2.1 [20, Proof of Lemma 2]. Let f be a nonconstant
meromorphic function in the complex plane, and let

(2.1) P (f) = anf(z)
n + an−1f(z)

n−1 + · · ·+ a1f(z) + a0,

where a0, a1, · · · , an−1, an are constants and an �= 0. Then

m(r, P (f)) = nm(r, f) +O(1).

Lemma 2.2 [6, Theorem 5.1]. Let f be a nonconstant meromorphic
function, and let η be a nonzero complex number. If f is of finite order,
then

m

(
r,
f(z + η)

f(z)

)
= O

(
T (r, f(z)) log r

r

)

for all r outside of a set E satisfying

lim sup
r→∞

∫
E∩[1,r)

dt/t

log r
= 0,

i.e., outside of a set E of zero logarithmic density. If ρ2(f) = ρ2 < 1
and ε > 0, then

m

(
r,
f(z + η)

f(z)

)
= o

(
T (r, f(z))

r1−ρ2−ε

)
,

for all r outside of a finite logarithmic measure, where and in what
follows, ε is an arbitrary positive number.

Lemma 2.3. Let f be a nonconstant meromorphic function of order
ρ(f) < ∞, let η be a nonzero complex number, and let P (f) be defined
as in (2.1). Suppose that F (z) = P (f(z))f(z + η). Then

m(r, F (z)) = (n+ 1)m(r, f(z)) + o

(
T (r, f(z))

r1−ε

)
+O(1),

for all r outside of a finite logarithmic measure.
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Proof. First of all, by the condition ρ(f) < ∞, we get ρ2(f) = 0.
This, together with Lemma 2.1, Lemma 2.2 and the assumptions of
Lemma 2.3 gives

(n+ 1)m(r, f(z)) = m(r, f(z)P (f(z))) + O(1)

≤ m

(
r,
f(z)P (f(z))

F (z)

)
+m(r, F (z)) +O(1)

= m

(
r,

f(z)

f(z + η)

)
+m(r, F (z)) +O(1)

≤ m(r, F (z)) + o

(
T (r, f(z))

r1−ε

)
+O(1),

i.e.,

(2.2)

m(r, F (z)) ≥ (n+ 1)m(r, f(z))

+ o

(
T (r, f(z))

r1−ε

)
+O(1).

Next from Lemma 2.1 and Lemma 2.2, we get

m(r, F (z)) ≤ m(r, P (f(z))) +m

(
r, f(z) · f(z + η)

f(z)

)

≤ nm(r, f(z)) +m(r, f(z))

+m

(
r,
f(z + η)

f(z)

)
+O(1)

= (n+ 1)m(r, f(z)) + o

(
T (r, f(z))

r1−ε

)
+O(1),

i.e.,

(2.3)

m(r, F (z)) ≤ (n+ 1)m(r, f(z))

+ o

(
T (r, f(z))

r1−ε

)
+O(1).

From (2.2) and (2.3), we get the conclusion of Lemma 2.3.

Lemma 2.4 [6, Lemma 8.3]. Let T : [0,+∞) → [0,+∞) be a
nondecreasing continuous function, and let s ∈ R+. If the hyper-order
of T is strictly less than one, i.e.,

lim sup
r→∞

log logT (r)

log r
= ζ < 1,
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and δ ∈ (0, 1− ζ), then

T (r + s) = T (r) + o

(
T (r)

rδ

)
,

where r runs to infinity outside of a set of finite logarithmic measure.

Let F and G be two nonconstant meromorphic functions, let a ∈
C ∪ {∞}, and let NE(r, a) “count” those points in N(r, 1/(F − a)),
where a is taken by F and G with the same multiplicity, and each
point is counted only once. We next denote by N0(r, a) the reduced
counting function of common a-points of F and G in |z| < r. We say
that F and G share the value a CM∗, if

N

(
r,

1

F − a

)
−NE(r, a) = S(r, F )

and

N

(
r,

1

G− a

)
−NE(r, a) = S(r,G),

where and in what follows, N(r, 1/(F −∞)) means N(r, F ).

Lemma 2.5 [22, Lemma 7.1]. Let F and G be two nonconstant
meromorphic functions such that G is a Möbius transformation of F .
Suppose that there exists a subset I ⊂ R+ with its linear measure
mes I = +∞ such that

N

(
r,

1

F

)
+N(r, F ) +N

(
r,

1

G

)
+N(r,G) < (λ + o(1))T (r, F ),

as r ∈ I and r → ∞, where λ < 1. If there exists a point z0 ∈ C such
that F (z0) = G(z0) = 1, then F = G or FG = 1.

Lemma 2.6 [22, Theorem 7.10] or [21, Lemma 3]. Let F and G
be two nonconstant meromorphic functions such that F and G share
1 CM. Suppose that there exists some subset I ⊂ R+ with its linear
measure mes I = ∞ such that
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N2(r, F ) +N2(r,G) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
< (μ+ o(1))T (r),

where μ < 1, T (r) = max{T (r, F ), T (r,G)}. Then F = G or FG = 1.

Lemma 2.7 [22, Proof of Theorem 7.10]. Let F and G be two
nonconstant meromorphic functions such that F , G share 1, ∞ CM∗.
Suppose that there exists a subset I ⊂ R+ with linear measure mes I =
+∞ such that

N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2N(r, F ) < λT (r) + S(r),

as r ∈ I and r → ∞, where λ < 1, T (r) = max{T (r, F ), T (r,G)} and
S(r) = o{T (r)}, as r ∈ I and r → ∞. Then F = G or FG = 1.

Lemma 2.8 [11, Lemma 2.2]. Let ϕ(r) be a nondecreasing, contin-
uous function on R+. Suppose that

0 < ρ < lim sup
r→∞

logϕ(r)

log r
,

and set
I := {r ∈ R+|ϕ(r) ≥ rρ}.

Then we have

log dens I = lim sup
r→∞

∫
I∩[1,r](dr)/r

log r
> 0.

3. Proof of theorems.

Proof of Theorem 1.1. By Lemma 2.3, we have

(3.1)

m(r, fn(z)f(z + η)) = (n+ 1)m(r, f(z))

+ o

(
T (r, f(z))

r1−ε

)
+O(1),
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where ρ = ρ(f) is the order of f . Noting that

lim sup
r→∞

log logN(r, (1/f(z)))

log r
≤ ρ2(f) = 0,

we can get from Lemma 2.4 that

(3.2)

N

(
r,

1

f(z + η)

)
≤ N

(
r + |η|, 1

f(z)

)

= N

(
r,

1

f(z)

)

+ o

(
T (r, f(z))

r1−ε

)
+O(1),

as r /∈ E and r → ∞, where and in what follows, E ⊂ (1,∞) denotes
some subset with logarithmic measure logmesE < ∞. Similarly,

N (r, f(z + η)) ≤ N(r, f(z)) + o

(
T (r, f(z))

r1−ε

)
+O(1),

(3.3)

N (r, f(z + η)) ≤ N(r, f(z)) + o

(
T (r, f(z))

r1−ε

)
+O(1)

(3.4)

and

N

(
r,

1

f(z + η)

)
≤ N

(
r,

1

f(z)

)
+ o

(
T (r, f(z))

r1−ε

)
+O(1),

(3.5)

as r /∈ E and r → ∞.

Next we denote by N(r, |fn(z)f(z+η) = f(z) = ∞, f(z+η) �= ∞) the
counting function of those common poles of fn(z)f(z + η) and f(z) in
|z| < r, where each such point is not a pole of f(z + η), and each such
point is counted according to its multiplicity in N(r, fn(z)f(z + η)),
denote by N(r, |f(z+η) = f(z) = ∞) the counting function of common
poles of f(z) and f(z + η) in |z| < r, where each such point is counted
according to its multiplicity in N(r, fn(z)f(z + η)), and denote by
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N(r, |fn(z)f(z+ η)) = f(z+ η) = ∞, f(z) �= ∞) the counting function
of those common poles of fn(z)f(z + η) and f(z + η) in |z| < r, where
each such point is not a pole of f(z), and each such point is counted
according to its multiplicity in N(r, fn(z)f(z + η)). By observing, we
have

(3.6) N(r, fn(z)f(z + η))

= N(r, |fn(z)f(z + η) = f(z) = ∞, f(z + η) �= ∞)

+N(r, |f(z + η) = f(z) = ∞)

+N(r, |fn(z)f(z + η)) = f(z + η) = ∞, f(z) �= ∞).

Then, from (3.2) and (3.6), we have

N(r, fn(z)f(z + η)) ≥ nN(r, f(z))−N

(
r,

1

f(z + η)

)

≥ nN(r, f(z))−N

(
r,

1

f(z)

)

+ o

(
T (r, f(z))

r1−ε

)
+O(1),

as r /∈ E and r → ∞, this together with (3.1) gives

(3.7)

T (r, fn(z)f(z + η)) = m(r, fn(z)f(z + η))

+N(r, fn(z)f(z + η))

≥ nT (r, f(z)) +m(r, f(z))−N

(
r,

1

f(z)

)

+ o

(
T (r, f(z))

r1−ε

)
+O(1),

as r /∈ E and r → ∞. By (3.4), (3.5) and Nevanlinna’s three small
functions theorem (see [22, Theorem 1.36]), we have

T (r, fn(z)f(z + η)) ≤ N(r, fn(z)f(z + η)) +N

(
r,

1

fn(z)f(z + η)

)(3.8)

+N

(
r,

1

fn(z)f(z + η)− P (z)

)
+O(log r)
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≤ N(r, f(z)) +N(r, f(z + η)) +N

(
r,

1

f(z)

)

+N

(
r,

1

f(z + η)

)
+N

(
r,

1

fn(z)f(z + η)− P (z)

)

+O(log r)

≤ 2N(r, f(z)) + 2N

(
r,

1

f(z)

)

+N

(
r,

1

fn(z)f(z + η)− P (z)

)

+ o

(
T (r, f(z))

r1−ε

)
+O(1),

as r /∈ E and r → ∞. From (3.7) and (3.8), we get the conclusion of
Theorem 1.1.

Theorem 1.1 is thus completely proved.

Proof of Theorem 1.2. First of all, we set

(3.9) F1(z) =
f(z)nf(z + η)

P (z)
, G1(z) =

g(z)ng(z + η)

P (z)
.

From the condition n ≥ 14 and the condition that f , g are transcenden-
tal meromorphic functions, we can deduce from (3.9) and Lemma 2.4
that F1, G1 are transcendental meromorphic functions. Suppose that
z0 ∈ C is a zero of F1−1 of multiplicity μ. Then, by the condition that
P �≡ 0 is a polynomial, we can see that z0 is a zero of f(z)

nf(z+η)−P (z)
of multiplicity μ+ ν, where ν ≥ 0 is the multiplicity of z0 as a zero of
P . Hence, z0 is a zero of g(z)ng(z + η)− P (z) of multiplicity μ+ ν by
the value sharing assumption. Now one sees that z0 is a zero of G1 − 1
of multiplicity μ. This also works in the other direction. Therefore,
F1 and G1 indeed share 1 CM. Since f , g are of finite order, it follows
from (3.9) and Lemma 2.4 that the same is true for F1 and G1 as well.
We discuss the following two cases.

Case 1. Suppose that F1 is a Möbius transformation of G1. Then it
follows from the (3.9) and the standard Valiron-Mokhon’ko lemma (see
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[17]) that

(3.10)

T (r, F1(z)) = T (r, f(z)nf(z + η)) +O(log r)

= T (r, g(z)ng(z + η)) +O(log r)

= T (r,G1(z)) +O(1).

From Theorem 1.1, we get

(3.11) (n− 5)T (r, f(z)) +m(r, f(z))

≤ N

(
r,

1

fn(z)f(z + η)− P (z)

)
+ o

(
T (r, f(z))

r1−ε

)
+O(1).

This, together with Lemma 2.4 and the condition that f(z)nf(z+ η)−
P (z) and g(z)ng(z + η)− P (z) share 0 CM, gives

(n− 5)T (r, f(z)) +m(r, f(z))

≤ N

(
r,

1

gn(z)g(z + η)− P (z)

)
+ o

(
T (r, f(z))

r1−ε

)
+O(1)

≤ T (r,G1(z)) + o

(
T (r, f(z))

r1−ε

)
+O(log r)

(3.12)

≤ (n+ 1)T (r, g(z)) + o

(
T (r, f(z))

r1−ε

)

+ o

(
T (r, g(z))

r1−ε

)
+O(log r),

(3.13)

as r /∈ E and r → ∞. Similarly,

(n− 5)T (r, g(z)) +m(r, g(z))

≤ N

(
r,

1

fn(z)f(z + η)− P (z)

)
+ o

(
T (r, g(z))

r1−ε

)
+O(1)

≤ T (r, F1(z)) + o

(
T (r, g(z))

r1−ε

)
+O(log r)

(3.14)

≤ (n+ 1)T (r, f(z)) + o

(
T (r, f(z))

r1−ε

)

+ o

(
T (r, g(z))

r1−ε

)
+O(log r),

(3.15)
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as r /∈ E and r → ∞. From (3.12), (3.13), the condition n ≥ 10,
Definition 1.1 and the standard reasoning of removing exceptional set
(see [13, Lemma 1.1.2]) we get

(3.16) ρ(f) ≤ ρ(G1) ≤ ρ(g).

Similarly, from (3.14) and (3.15), we have

(3.17) ρ(g) ≤ ρ(F1) ≤ ρ(f).

From (3.16) and (3.17), we have

(3.18) ρ(f) = ρ(g) = ρ(F1) = ρ(G1).

From (3.9), (3.18) and Lemma 2.4, we deduce

(3.19) N(r, F1(z)) +N

(
r,

1

F1(z)

)

≤ N (r, f(z)) +N (r, f(z + η))

+N

(
r,

1

f(z)

)
+N

(
r,

1

f(z + η)

)
+O(log r)

≤ 2T (r, f(z)) + 2T (r, f(z + η)) +O(log r)

≤ 4T (r, f(z)) + o

(
T (r, f(z))

r1−ε

)
+O(log r),

as r /∈ E and r → ∞. Similarly,
(3.20)

N(r,G1(z))+N

(
r,

1

G1(z)

)
≤4T (r, g(z))+o

(
T (r, g(z))

r1−ε

)
+O(log r),

as r /∈ E and r → ∞. Proceeding as in the proof of Theorem 1.1, we
can get (3.7). From (3.7) and (3.10), we have

(3.21) T (r, f(z)) ≤ 1

n− 1
T (r, F1(z)) + o

(
T (r, f(z))

r1−ε

)
+O(log r)

and

(3.22) T (r, g(z)) ≤ 1

n− 1
T (r,G1(z)) + o

(
T (r, g(z))

r1−ε

)
+ O(log r),
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as r /∈ E and r → ∞. From (3.19)–(3.22), we have

(3.23) N

(
r,

1

F1

)
+N(r, F1) +N

(
r,

1

G1

)
+N(r,G1)

≤ 4

n− 1
{T (r, F1) + T (r,G1)}(1 + o(1))

=
8

n− 1
T (r, F1)(1 + o(1)),

as r /∈ E and r → ∞. Again, from (3.9) and (3.11), we have

(3.24)

(n− 5)T (r, f(z)) +m(r, f(z)) ≤ N

(
r,

1

F1(z)− 1

)

+ o

(
T (r, f(z))

r1−ε

)
+O(log r),

as r /∈ E and r → ∞. Noting that F1 and G1 share 1 CM, we know
from (3.24) and n ≥ 10 that there exists some point z0 ∈ C such
that F1(z0) = G1(z0) = 1. This, together with (3.23) and Lemma 2.5,
implies that either F1 = G1 or F1G1 = 1. We discuss the following two
subcases.

Subcase 1.1. Suppose that F1 = G1. Then it follows from (3.9) that

(3.25) f(z)nf(z + η) = g(z)ng(z + η)

for all z ∈ C. Let

(3.26) h =
f

g
.

From (3.25) and (3.26), we get

(3.27) h(z)nh(z + η) = 1

for all z ∈ C.

First suppose that h is rational. If h has a zero at some point z0,
then h has a pole at z0 + η by (3.27). Continuing, h(z0 + 2η) = 0,
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h(z0 + 3η) = ∞, and so on. Therefore, h would have infinitely many
zeros and poles, which is impossible. Hence, h has neither zeros nor
poles, meaning that h has to be a constant, say h = t. By (3.27),
tn+1 = 1. This together with (3.26) gives the conclusion (I) (i) of
Theorem 1.2.

Next suppose that h is a transcendental meromorphic function. Since
f , g are of finite order, the same is true for h as well. Thus it follows
from (3.27), Lemma 2.4 and the standard Valiron-Mokhon’ko lemma
(see [17]) that

nT (r, h(z)) = T

(
r,

1

h(z + η)

)

= T (r, h(z + η)) +O(1)

≤ T (r + |η|, h(z)) +O(1)

= T (r, h(z)) + o

(
T (r, h(z))

r1−ε

)
+O(1),

and so

(3.28) (n− 1)T (r, h(z)) = o

(
T (r, h(z))

r1−ε

)
+O(1),

as r /∈ E and r → ∞. From (3.28) and the condition n ≥ 10, we deduce
that h is a constant, which is impossible.

Subcase 1.2. Suppose that F1G1 = 1, while F1 �≡ G1. By substituting
(3.9) into F1G1 = 1, we get

(3.29) f(z)nf(z + η)g(z)ng(z + η) = P (z)2

for all z ∈ C. Proceeding as in Subcase 1.1, we can deduce from (3.29),
Lemma 2.4 and the condition n ≥ 10 that fg is a nonzero rational
function. Let

(3.30) fg = R,

where R is a nonzero rational function. Then, by (3.30), we know that
(3.29) can be rewritten as

(3.31) R(z)nR(z + η) = P (z)2
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for all z ∈ C.

Suppose that R is not a constant. Then

(3.32) R =
P1

P2
,

P1 and P2 are two nonzero relatively prime polynomials. From (3.32),
we have

(3.33) T (r, R) = max{deg (P1), deg (P2)} log r +O(1).

From (3.31)–(3.33), we get

(3.34) nmax{deg (P1), deg (P2)} log r
= T (r, R(z)n) +O(1)

≤ T (r, R(z + η)) + 2T (r, P (z)) +O(1)

= max{deg (P1), deg (P2)} log r + 2deg (P ) log r +O(1).

Noting that max{deg (P1), deg (P2)} ≥ 1, we deduce from (3.34) that
n − 1 ≤ 2deg (P ), which contradicts the condition 2deg (P ) < n − 1.
Therefore, R =: t is a nonzero constant. This, together with (3.31),
reveals the conclusion (I) (ii) of Theorem 1.2.

Case 2. Suppose that n ≥ 14. First of all, in the same manner as
in the proof of Case 1, we can get (3.21) and (3.22). From (3.9) and
Lemma 2.4, we have

N2(r, F1(z)) +N2

(
r,

1

F1(z)

)(3.35)

≤ 2N (r, f(z)) +N (r, f(z + η))

+ 2N

(
r,

1

f(z)

)
+N

(
r,

1

f(z + η)

)
+O(log r)

≤ 4T (r, f(z)) + 2T (r, f(z + η)) +O(log r)

≤ 6T (r, f(z)) + o

(
T (r, f(z))

r1−ε

)
+O(log r)
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and

(3.36)

N2(r,G1(z)) +N2

(
r,

1

G1(z)

)
≤ 6T (r, g(z))

+ o

(
T (r, g(z))

r1−ε

)
+O(log r),

as r /∈ E and r → ∞. From (3.21), (3.22), (3.35) and (3.36), we have

(3.37)

N2(r, F1(z)) +N2

(
r,

1

F1(z)

)
≤ 6

n− 1
T (r, F1(z))

+ o

(
T (r, f(z))

r1−ε

)
+O(log r)

and

(3.38)

N2(r,G1(z)) +N2

(
r,

1

G1(z)

)
≤ 6

n− 1
T (r,G1(z))

+ o

(
T (r, g(z))

r1−ε

)
+O(log r),

as r /∈ E and r → ∞. From (3.37) and (3.38), we have

(3.39) N2(r, F1(z)) +N2

(
r,

1

F1(z)

)
+N2(r,G1(z)) +N2

(
r,

1

G1(z)

)

≤ 12

n− 1
T1(r)(1 + o(1)),

as r /∈ E and r → ∞, where T1(r) = max{T (r, F1), T (r,G1)}. From
(3.39), Lemma 2.6 and the condition n ≥ 14, we have F1 = G1 or
F1G1 = 1. Next, in the same manner as in Subcases 1.1 and 1.2, we
can get the conclusion (II) of Theorem 1.2.

Theorem 1.2 is thus completely proved.

Proof of Corollary 1.3. We discuss the following cases.

Case 1. Suppose that one of f and g is a rational function, the other
one of f and g is a transcendental meromorphic function. Without
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loss of generality, we suppose that f is a transcendental meromorphic
function and g is a rational function. Then, on the one hand, we get
from Theorem 1.1 that f(z)nf(z + η)− z has infinitely many zeros in
C. On the other hand, by the supposition that g is a rational function,
we know that g(z)ng(z + η) − z is also a rational function, and so
g(z)ng(z+η)−z has at most finitely many zeros in C. This contradicts
the condition that f(z)nf(z+ η)− z and g(z)ng(z+ η)− z share 0 CM.

Case 2. Suppose that f and g are transcendental meromorphic func-
tions. Then, from Theorem 1.2 and the assumptions of Corollary 1.3,
we get the conclusion of Corollary 1.3.

Case 3. Suppose that f and g are nonconstant rational functions.
Set

(3.40) F2(z) =
f(z)nf(z + η)

z
, G2(z) =

g(z)ng(z + η)

z
.

Let

(3.41) f =
P3

P4
,

where P3, P4 are two nonzero relatively prime polynomials. Proceeding
as in Subcase 1.2 of the proof of Theorem 1.2, we can deduce from (3.41)
and n ≥ 17 that F2 and G2 are not constants. Proceeding as in the
beginning of the proof of Theorem 1.2, we can deduce that F2 and G2

share 1 CM. From (3.40), (3.41), the condition n ≥ 17 and the standard
Valiron-Mokhon’ko lemma, we have

N2(r, F2(z)) +N2

(
r,

1

F2(z)

)(3.42)

≤ 2N(r, f(z)) +N(r, f(z + η))

+ 2N

(
r,

1

f(z)

)
+N

(
r,

1

f(z + η)

)
+ log r +O(1)

≤ 3deg (P4) log r + 3deg (P3) log r + log r +O(1)

≤ 6max{deg (P3), deg (P4)} log r + log r +O(1)
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= 6T (r, f(z)) + log r +O(1).

Similarly,

(3.43) N2(r,G2(z)) +N2

(
r,

1

G2(z)

)
≤ 6T (r, g(z)) + log r +O(1).

Noting that f is a nonconstant rational function, we deduce

(3.44) m(r, fn(z)f(z + η)) = (n+ 1)m(r, f(z)) +O(1).

From (3.41) and the standard Valiron-Mokhon’ko lemma, we have

N(r, fn(z)f(z + η)) ≥ ndeg (P4) log r − deg (P3) log r +O(1)
(3.45)

≥ nN(r, f(z))−max{deg (P3), deg (P4)} log r +O(1)

= nN(r, f(z))− T (r, f(z)) +O(1).

From (3.40), (3.44) and (3.45), we have

(3.46)
(n− 1)T (r, f(z)) +m(r, f(z)) ≤ T (r, fn(z)f(z + η)) +O(1)

≤ T (r, F2(z)) + log r +O(1).

From (3.42) and (3.46), we get

(3.47)
N2(r, F2(z)) +N2

(
r,

1

F2(z)

)
≤ 6

n− 1
T (r, F2(z))

+
n+ 5

n− 1
log r +O(1).

Similarly,

(3.48)
N2(r,G2(z)) +N2

(
r,

1

G2(z)

)
≤ 6

n− 1
T (r,G2(z))

+
n+ 5

n− 1
log r +O(1).

Noting that T (r, f(z)) ≥ log r +O(1), we get from (3.46) that

(3.49) log r ≤ 1

n− 2
T (r, F2(z)) +O(1).
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Similarly,

(3.50) log r ≤ 1

n− 2
T (r,G2(z)) +O(1).

From (3.47) (3.50), we get

(3.51) N2(r, F2(z)) +N2

(
r,

1

F2(z)

)

+N2(r,G2(z)) +N2

(
r,

1

G2(z)

)

≤ 14n− 14

(n− 1)(n− 2)
T2(r)(1 + o(1)),

where T2(r) = max{T (r, F2), T (r,G2)}. Noting that F2 and G2 share
1 CM, we have from (3.51), Lemma 2.6 and n ≥ 17 that F2 = G2 or
F2G2 = 1. Next, in the same manner as in Subcases 1.1 and 1.2 of the
proof of Theorem 1.2, we can get the conclusion of Corollary 1.3 from
(3.40).

This proves Corollary 1.3.

Proof of Theorem 1.4. First of all, we set

(3.52)

F3(z) =
f(z)n(f(z)m − 1)f(z + η)

α(z)
,

G3(z) =
g(z)n(g(z)m − 1)g(z + η)

α(z)

for all z ∈ C. Proceeding as in the beginning of the proof of Theo-
rem 1.2, we can deduce that F3 and G3 share 1 CM. From Lemma 2.3,
we have

(3.53)

m(r, f(z)n(f(z)m − 1)f(z + η)) = (m+ n+ 1)m(r, f(z))

+ o

(
T (r, f(z))

r1−ε

)
+O(1),

as r /∈ E and r → ∞. In the same manner as in the proof of
Theorem 1.1, we can get from Lemma 2.4 that

N(r, f(z)n(f(z)m − 1)f(z + η))
(3.54)
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≥ (m+ n)N(r, f(z))−N

(
r,

1

f(z + η)

)

≥ (m+ n)N(r, f(z))−N

(
r + |η|, 1

f(z)

)

= (m+ n)N(r, f(z))−N

(
r,

1

f(z)

)
+ o

(
T (r, f(z))

r1−ε

)

≥ (m+ n)N(r, f(z))− T (r, f(z))

+ o

(
T (r, f(z))

r1−ε

)
+O(1),

as r /∈ E and r → ∞. From (3.53) and (3.54), we have

(3.55) T (r, f(z)n(f(z)m − 1)f(z + η))

≥ (m+ n− 1)T (r, f(z)) +m(r, f(z))

+ o

(
T (r, f(z))

r1−ε

)
+O(1),

as r /∈ E and r → ∞. By (3.52), Lemma 2.4, the condition ρ(α) <
ρ(f) < ∞, the standard Valiron-Mokhon’ko lemma and the condition
that f is a transcendental meromorphic function, we deduce that F3 is a
transcendental meromorphic function. This, together with Lemma 2.4,
the second fundamental theorem and the fact that F3, G3 share 1 CM,
gives

T (r, F3(z)) ≤ N(r, F3(z)) +N

(
r,

1

F3(z)

)(3.56)

+N

(
r,

1

F3(z)− 1

)
+O(log r)

≤ N(r, f(z)n(f(z)m − 1)f(z + η))

+N

(
r,

1

f(z)n(f(z)m − 1)f(z + η)

)

+N

(
r,

1

G3(z)− 1

)
+N

(
r,

1

α(z)

)
+O(log r)

≤ N(r, f(z)) +N(r, f(z + η))

+N

(
r,

1

f(z)

)
+N

(
r,

1

f(z + η)

)
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+N

(
r,

1

f(z)m − 1

)
+ T (r,G3(z)) +O(rρ(α)+ε)

+O(log r)

≤ (m+ 4)T (r, f(z)) + T (r,G3(z))

+ o

(
T (r, f(z))

r1−ε

)
+O(rρ(α)+ε) +O(log r)

≤ (m+ 4)T (r, f(z)) + (m+ n+ 1)T (r, g(z))

+ o

(
T (r, f(z))

r1−ε

)

+ o

(
T (r, g(z))

r1−ε

)
+O(rρ(α)+ε) +O(log r),

as r /∈ E and r → ∞. Also, from (3.52), we have

(3.57)
T (r, f(z)n(f(z)m − 1)f(z + η)) ≤ T (r, F3(z)) + T (r, α(z))

≤ T (r, F3(z)) +O(rρ(α)+ε).

From (3.55) (3.57), have

(3.58) (m+ n− 1)T (r, f(z))

≤ (m+ 4)T (r, f(z)) + T (r,G3(z))

+ o

(
T (r, f(z))

r1−ε

)
+ O(rρ(α)+ε) +O(log r)

≤ (m+ 4)T (r, f(z)) + (m+ n+ 1)T (r, g(z)

+ o

(
T (r, f(z))

r1−ε

)
+ o

(
T (r, g(z))

r1−ε

)

+O(rρ(α)+ε) +O(log r),

as r /∈ E and r → ∞. From (3.58), the condition ρ(α) < ρ(f) and the
standard reasoning of removing exceptional set (see [13, Lemma 1.1.2])
we deduce

(3.59) ρ(f) ≤ ρ(G3) ≤ ρ(g).
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Similarly

(3.60) (m+ n− 1)T (r, g(z))

≤ (m+ 4)T (r, g(z)) + T (r, F3(z))

+ o

(
T (r, g(z))

r1−ε

)
+O(rρ(α)+ε) +O(log r)

≤ (m+ 4)T (r, g(z)) + (m+ n+ 1)T (r, f(z))

+ o

(
T (r, f(z))

r1−ε

)
+ o

(
T (r, g(z))

r1−ε

)

+O(rρ(α)+ε) +O(log r),

as r /∈ E and r → ∞, and so

(3.61) ρ(g) ≤ ρ(F3) ≤ ρ(f).

From (3.59) and (3.61) we have

(3.62) ρ(f) = ρ(g) = ρ(F3) = ρ(G3).

Noting that λ(f) ≤ ρ(f), we can get from (3.52), (3.55) and ρ(α) < ρ(f)
that

(3.63) (m+ n− 1)T (r, f(z))

≤ T (r, f(z)n(f(z)m − 1)f(z + η))

+ o

(
T (r, f(z))

r1−ε

)

≤ T (r, F3(z)) + T (r, α(z)) + o

(
T (r, f(z))

r1−ε

)

≤ T (r, F3(z)) + o

(
T (r, f(z))

r1−ε

)
+ rρ(α)+ε,

as r /∈ E and r → ∞. From (3.58), (3.60), (3.62), (3.63), Lemma 2.4,
Lemma 2.8, the conditions ρ(α) < ρ(f) < ∞ and n ≥ m+ 6, we know
that there exists some subset I ⊆ R+ with linear measure mes I = ∞
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such that

rρ(α)+ε = o{T (r, F3)},(3.64)

rρ(α)+ε = o{T (r,G3)},(3.65)

N

(
r,

1

F3 − 1

)
−NE(r, 1) = 0,(3.66)

N

(
r,

1

G3 − 1

)
−NE(r, 1) = 0,(3.67)

N(r, F3)−NE(r,∞) = o{T (r, F3)}(3.68)

and

N(r,G3)−NE(r,∞) = o{T (r, F3)},(3.69)

as r ∈ I and r → ∞, such that

N2

(
r,

1

F3

)
+ 2N(r, F3)

(3.70)

≤ 2N

(
r,

1

f(z)

)
+N

(
r,

1

f(z)m − 1

)

+N

(
r,

1

f(z + η)

)
+ 2N(r, f(z))

+ 2N(r, f(z + η)) + 2N

(
r,

1

α(z)

)

≤ (m+ 7)T (r, f(z)) + o{T (r, f)}
=

m+ 7

m+ n− 1
T (r, F3(z)) + o{T (r, F3(z))}

and

(3.71) N2

(
r,

1

G3

)
≤ m+ 3

m+ n− 1
T (r,G3) + o{T (r,G3)},

as r → ∞ and r ∈ I. From (3.70) and (3.71), we get

(3.72) N2

(
r,

1

F3

)
+N2

(
r,

1

G3

)
+ 2N(r, F3)

≤ 2m+ 10

m+ n− 1
T3(r) + o{T3(r)},
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as r → ∞ and r ∈ I, where T3(r) = max{T (r, F3), T (r,G3)}. From
(3.72), Lemma 2.7 and the condition n ≥ m+ 12, we have F3 = G3 or
F3G3 = 1. We discuss the following two cases:

Case 1. Suppose that F3 = G3. Then, it follows from (3.52) that

(3.73) f(z)n(f(z)m − 1)f(z + η) = g(z)n(g(z)m − 1)g(z + η)

for all z ∈ C. Let h be defined as (3.26). From (3.26) and (3.73) we
get

(3.74) {h(z)m+nh(z + η)− 1}g(z)m = h(z)nh(z + η)− 1

for all z ∈ C.

Suppose that h(z)m+nh(z + η) − 1 = 0 for all z ∈ C. Then, from
(3.74), we have h(z)nh(z + η) − 1 = 0 for all z ∈ C, and so hm = 1.
This together with (3.26) gives the conclusion of Theorem 1.2. Next we
suppose that h(z)m+nh(z + η) − 1 �≡ 0. Then, (3.74) can be rewritten
as

(3.75) g(z)m =
h(z)nh(z + η)− 1

h(z)m+nh(z + η)− 1

for all z ∈ C.

First suppose that h is rational. Then, from (3.75) we know that g is
a rational function, which is impossible.

Next suppose that h is a transcendental meromorphic function. Since
f , g are of finite order, the same is true for h as well. Set

(3.76) H1(z) = h(z)nh(z + η), H2(z) = h(z)m+nh(z + η)

for all z ∈ C. Let z0 ∈ C be such a point that H2(z0) − 1 = 0 and
H1(z0) − 1 �= 0. Then, from (3.75) and (3.76), we deduce that z0 is
a zero of H2(z) − 1 with multiplicity ≥ m. Let z1 ∈ C be a common
zero of H1(z) − 1 and H2(z) − 1. Then, from (3.76), we deduce that
h(z1)

m = 1. Therefore, from Lemma 2.4 and the standard Valiron-
Mokhon’ko lemma, we have

N

(
r,

1

H2(z)− 1

)
≤ N(r, |H2(z)− 1 = 0, H1(z)− 1 �= 0)

(3.77)
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+N

(
r,

1

h(z)m − 1

)

≤ 1

m
N

(
r,

1

h(z)m+nh(z + η)

)
+mT (r, h(z)) + O(1)

≤ m+ n+ 1

m
T (r, h(z)) +mT (r, h(z))

+ o

(
T (r, h(z))

r1−ε

)
+O(1)

=
m2 +m+ n+ 1

m
T (r, h(z))

+ o

(
T (r, h(z))

r1−ε

)
+O(1),

where N(r, |H2(z)−1 = 0, H1(z)−1 �= 0) denotes the reduced counting
function of those points in N(r, 1/(H2(z)− 1)), where each such point
is not a zero of H1(z) − 1. Since h is of finite order, it follows from
(3.76) and Lemma 2.4 that the same is true for H2 as well. Hence,
from (3.76), (3.77), Lemma 2.4 and the second fundamental theorem,
we get

T (r,H2) ≤ N(r,H2) +N

(
r,

1

H2

)
(3.78)

+N

(
r,

1

H2 − 1

)
+O(log r)

≤ N(r, h(z)) +N(r, h(z + η))

+N

(
r,

1

h(z)

)
+N

(
r,

1

h(z + η)

)

+
m2 +m+ n+ 1

m
T (r, h(z))

+ o

(
T (r, h(z))

r1−ε

)
+O(log r)

≤
(
m2 +m+ n+ 1

m
+ 4

)
T (r, h(z))

+ o

(
T (r, h(z))

r1−ε

)
+O(log r),
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as r /∈ E and r → ∞. From (3.76), (3.78), Lemma 2.4 and the standard
Valiron-Mokhon’ko lemma, we get

(3.79) (m+ n+ 1)T (r, h(z))

= T (r, h(z)m+n+1) +O(1)

≤ T (r,H2(z)) + T

(
r,
h(z)m+n+1

H2(z)

)
+O(1)

= T (r,H2(z)) + T

(
r,

h(z)

h(z + η)

)
+O(1)

≤ T (r,H2(z)) + 2T (r, h(z))

+ o

(
T (r, h(z))

r1−ε

)
+ O(log r)

≤
(
m2 +m+ n+ 1

m
+ 6

)
T (r, h(z))

+ o

(
T (r, h(z))

r1−ε

)
+ O(log r),

as r /∈ E and r → ∞. By the conditions n ≥ m + 12 and m ≥ 2 we
deduce

m+ n+ 1 >
m2 +m+ n+ 1

m
+ 6,

which together with (3.79) gives

(3.80) T (r, h) ≤ o

(
T (r, h(z))

r1−ε

)
+O(log r),

as r /∈ E and r → ∞, which means that h is a rational function. This
contradicts the above supposition.

Case 2. Suppose that F3G3 = 1 and F3 �≡ G3. Then it follows from
(3.52) that

(3.81) f(z)n(f(z)m − 1)f(z + η)g(z)n(g(z)m − 1)g(z + η) = α(z)2

for all z ∈ C. From (3.58), (3.60), (3.62), the condition ρ(α) < ρ(f)
and Lemma 2.8, we know that there exists some subset I ⊆ R+ with
linear measure mes I = ∞ such that

(3.82)
T (r, g(z)) = O(T (r, f(z))),

T (r, f(z)) = O(T (r, g(z)))
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and

(3.83) T (r, α(z)) = o{T (r, f(z))},

as r ∈ I and r → ∞. By rewriting (3.81), we have

(3.84) f(z)n(f(z)m − 1)g(z)n(g(z)m − 1) =
α(z)2

f(z + η)g(z + η)
.

From (3.84), Lemma 2.4, the fact λ(f) ≤ ρ(f) < ∞ and the condition
that f and g share ∞ IM we have

(3.85) (m+ n)[N(r, f(z)) +N(r, g(z))]

≤ N

(
r,

1

f(z + η)

)
+N

(
r,

1

g(z + η)

)

≤ N

(
r,

1

f(z)

)
+N

(
r,

1

g(z)

)

+ o

(
T (r, f(z))

r1−ε

)
+ o

(
T (r, g(z))

r1−ε

)
,

as r /∈ E and r → ∞. By rewriting (3.81), we have

(3.86)
1

f(z)n(f(z)m − 1)g(z)n(g(z)m − 1)
=

f(z + η)g(z + η)

α(z)2
.

From (3.82), (3.83), (3.86), Lemma 2.4, the fact λ(f) ≤ ρ(f) < ∞ and
the condition that f , g share ∞ IM we get

(3.87) n

{
N

(
r,

1

f(z)

)
+N

(
r,

1

g(z)

)}

+N

(
r,

1

f(z)m − 1

)
+N

(
r,

1

g(z)m − 1

)

≤ N(r, f(z + η)) +N(r, g(z + η)) + 2N

(
r,

1

α(z)

)

≤ N(r, f(z)) +N(r, g(z)) + 2T (r, α(z))

+ o

(
T (r, f(z))

r1−ε

)
+ o

(
T (r, g(z))

r1−ε

)
+O(1)

≤ N(r, f(z)) +N(r, g(z)) + o{T (r, f(z))},
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as r ∈ I and r → ∞. From (3.82), (3.83), (3.85) and (3.87), we have

(3.88) N(r, f(z)) +N(r, g(z)) +N

(
r,

1

f(z)

)

+N

(
r,

1

g(z)

)
+N

(
r,

1

f(z)m − 1

)

+N

(
r,

1

g(z)m − 1

)

= o{T (r, f(z))},
as r ∈ I and r → ∞. By (3.88) and the second fundamental theorem,
we have

mT (r, f) ≤ N

(
r,

1

f

)
+

m∑
j=1

N

(
r,

1

f − ωj

)
+O(log r)

= o{T (r, f)},
as r ∈ I and r → ∞, where ω1, ω2, . . . , ωm stand for the roots of
ωm = 1. This is impossible.

Theorem 1.4 is thus completely proved.

4. Concluding remarks. From Example A and the condition
“n ≥ 6” of Theorem 1.1, we give the following question:

Question 4.1. What can be said about the conclusion of Theo-
rem 1.1, if we replace the condition “n ≥ 6” with “2 ≤ n ≤ 5”?
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