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ABSTRACT. The notion of Reiter’s Segal algebra in com-
mutative group algebras is generalized to a notion of Segal
algebra in more general classes of commutative Banach alge-
bras. Then we introduce a family of Segal algebras in commu-
tative Banach algebras under considerations and study some
properties of them.

1. Introduction. In this paper, G stands for a locally compact
abelian group (LCA group) with character group G. For a commutative
semi-simple Banach algebra B, ® 5 denotes the Gelfand space of B with
the Gelfand topology, and IC(®pg) is the set of all compact subsets of
®p. The set K(®p) forms a directed set with respect to the inclusion
order: K1 < Ky & Ky C Ko (K1, Ky € K(®p)). If x € B, Z stands for
the Gelfand transform of . For a subset E of B, E := {Z : z € E}
and B, := {x € B : T has compact support}. We denote by (B, || llz)
a Banach function algebra on ®p which is isometrically isomorphic to
(B,|| ||B) through the Gelfand transform. In the case B = L'(G),
(B,|| |l5) is the Fourier algebra on G, which will be denoted by
(A NLa)s or (A, ]1.4):

In the rest of this paper, B stands for a non-unital commutative
semi-simple Banach algebra which satisfies the following conditions:

(ap) B is regular.

(BB) There exists a bounded approximate identity of B composed of
elements in B..
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For such a B above, we will define Segal algebras in B, which are
generalizations of Reiter’s Segal algebras in L'(G).

In Section 2, definitions and results concerning Reiter’s Segal algebras
in L1(G) are stated briefly. In Section 3, the notion of Segal algebras
in L'(G) are generalized to the notion of Segal algebras in B, and the
results on Segal algebras in L' (G) stated in Section 2 are generalized to
the results on Segal algebras in B. In Section 4, definitions and some
basic properties of the multipliers of Segal algebras in B are stated for
later use.

In Section 5 we introduce the notion “local A-functions,” and in
Sections 5-9, by making use of local A-functions, we introduce some
classes of Segal algebras in A (which seems new even in the case of
classical Segal algebras in group algebras), and study properties of them
in detail.

In Section 10, as another application of local A-functions, we give
Theorem 10.3, which characterizes the multiplier algebra of the smallest
translation invariant Segal algebra in the Fourier algebra A = A(G) on
a non-compact LCA group G, and some new results follow from this
theorem.

2. Segal algebras and normed ideals in L!(G). In this section,
we state the definitions and results concerning the theory of Reiter’s
Segal algebras in L!(G), which are necessary to state our results later.
Although Reiter’s Segal algebras are defined in group algebras on
locally compact groups, we restrict ourselves to the commutative cases
in this paper (cf., [17, 18]).

2.1. Definition. A subspace S of L!(G) is said to be a Segal algebra
if it satisfies the following conditions:

(So) S is dense in L'(G).

(S1) S is a Banach space under some norm, which dominates || - ||1;
Il < W flls (f €S)

(S2) fyisin S and ||f||ls = ||fylls for all f € S and y € G, where
fy(@) = flz —y) (x € G).

(S3) For all f € S, y — f, is a continuous map of G into S.
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Here we cite a few examples of Segal algebras from [18].

2.2. Examples. (1) Let § := {f € C(R) : M(f) < oo}, where
M(f) =3, cz5UPg<z<y [f(# +n)|. Then S is an ideal of L'(R) and
M (-) is a complete algebra norm on S but not translation invariant.
So, if we renorm M(-) by || - ||s, where || f||s :=sup{M(fy) : y € R},
then || ||s is a translation invariant norm on S which is equivalent to
M(-), and (S, || ||s) becomes a Segal algebra in L'(R).

(2) Sp(G). For each p (1 < p < x0), put

Sp(G) = {f € LYG) : | flly < oo} [Iflls, := [Ifllx + [If]lp-
Then (S,(G), ]| ||s,) is a Segal algebra in L*(G).
(3) A, »(@), Ap(G). Let p be an unbounded positive Radon measure

~

on G. For each p (1 < p < o), put

Aup(@) = {f e LNG) : Fe LP()}, I fllup = 111+ 1]l 2o o)-

Then (A, ,(G), || ||.p) is & Segal algebra in L*(G). In particular, in
case (1 is a Haar measure mp of G, we denote this Segal algebra by
(Ap(G), | Ila,) instead of (An p(G), || [lm,p) for simplicity.

Cigler [3] introduced the notion of normed ideal in L'(G), which
is a generalization of the notion of the Segal algebra in L!(G), and
gave necessary and sufficient conditions for a normed ideal to be a
Segal algebra. Also, Dunford [5] and Riemersma [19] gave alternative
necessary and sufficient conditions for a normed ideal to be a Segal
algebra.

2.3. Definition (cf., [3]). Let N be a linear subspace of L*(G). N
is called a normed ideal in L(G) if N satisfies the following conditions:

(a) N is a dense ideal in L'(G),

(b) NV is a Banach space under some norm || ||» such that

Iflle < 1flla (f € N),
1F % gllx < lIflhllgla (f € LYG), g €N).

Next we state fundamental properties of normed ideals and Segal
algebras in L*(G).
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2.4. Lemma (cf., [3]). Let N be a normed ideal in L'(G). Then the
following conditions hold.

(i) If U is a neighborhood of vo € G, then there is an f € N such
that supp f C U and f(y) =1 for every v in a neighborhood of vy.

(ii)) If K,U C G such that K is compact and U is open with K C U,
then there is an e € N such that e(y) =1 (v € K) and suppe C U.

(iii) LY(G). is contained in N, where L*(G). = {f € LYG) :
supp f is compact}.

2.5. Theorem A ([3, 5, 19]). For a normed ideal N in L*(G), the
following conditions are equivalent:

(a) N is a Segal algebra.

(b) For any closed ideal J in N, there is a closed ideal T in L'(G)
such that T =TI NN.

(c) N = No, where Ny is the norm closure of L'(G). in N.

(d) N has approzimate units, that is, for all f € N and for all € > 0,
there exists

e € N such that ||f — f*e|n <e.

(@ N ={fxg:feL}G),geN}
2.6. Theorem B (cf., [17, 18]). Let S be a Segal algebra in L' (G).
(i) The ideal theory of S is the same as that of L*(G). More
precisely, if T is a closed ideal of L'(G), then TNS is a closed ideal
of S, and conversely each closed ideal of S is of this form for a unique
closed ideal T of L*(Q).
(i) G and ®s are homeomorphic to each other. More precisely, the
map: G = @) — Ps o — ¢|s is a homeomorphism.

2.7. Theorem C (cf., [22]). (i) If S is a Segal algebra in L'(G),
and if {ex}rea is a bounded approximate identity of L'(G) composed
of elements in LY(G)., then {ex}ren is an approzimate identity of S
which is bounded with respect to the norm defined by

[fllop :=sup{[lf *glls : g € S, llglls <1} (f €3).
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(ii) If a Segal algebra S has a bounded approzimate identity, then
S = LY(G) holds.

2.8. Theorem D (cf., [22]). If (S1, || Ils,) and (Sa, || ||s,) are Segal
algebras in L'(G), then S := 81 NSy is a Segal algebra in LY(G) with
respect to the norm || |ls = || lls; + || |ls,-

3. Definitions and fundamental properties of Segal algebras
in B. Burnham [2] defined abstract Segal algebras (ASA) in general
Banach algebras, which are generalizations of Cigler’s normed ideals in
group algebras. In this section, we will define “Segal algebras in B,”
which are generalizations of Reiter’s Segal algebras in L!(G).

3.1. Definition (cf., [7]). An ideal N in B is called a Banach ideal
if A satisfies the following two conditions.

(a) \V is a Banach space under some norm || || ;- which dominates the
original norm: |la||p < |la||x (@ € N).

(b) llazln < llallsllzlly (a € B,z e N).

3.2. Definition (cf.,, [3]). A Banach ideal (V|| ||x) in B is called
a Segal algebra in B if N satisfies the following properties.

(i) NV is dense in B,

(ii) NV has approximate units, that is, A/ satisfies for all z € A" and
for all € > 0, there exists

e € N such that ||z — ze||y < &.

One will see immediately that an abstract Segal algebra in B is a
Segal algebra in B if and only if it possesses approximate units (cf.,
Burnham [2]).

3.3. Examples. The following are examples of Banach algebras B
satisfying the conditions (ap) and (8p).

(1) Group algebras L!(G) of non-discrete LCA groups G.
(2) Beurling algebras L (G) on a non-discrete LCA groups G with
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a weight function w satisfying the Beurling-Domar condition (cf., [4,
18]).

(3) Lipschitz algebra Lip)(R) (cf., [14]).

(4) Commutative C*-algebras Co(X) on non-compact locally compact
Hausdorff spaces X.

3.4. Lemma ([3, 18]). Suppose that N is a dense Banach ideal in
B. Then the following hold.

(i) If U is a neighborhood of @o € ®p, then there is an e € N such
that e(p) =1 for all ¢ in a neighborhood of vy and suppe C U.

(ii) If K,U C ®p such that K is compact and U is open with
K C U, then there is an ex € N such that eg(p) = 1 (¢ € K)
and supp éx C U.

(ifi) B, C V.

Proof. (i) Since N is dense in B, there exists an x € N such that
Z(po) # 0. Choose a y € B such that g(pg) # 0 with suppy C U.
We can choose a z € B such that Z(¢) = 1/(Z(¢)y(¢)) for all ¢ in a

neighborhood of ¢ since B is regular. Letting e = zyz € N, it is easy
to see that e is a desired element.

(ii) For each ¢ € K, there exists an a, € N and a neighborhood V,
of ¢ such that suppa, C U and a, = 1 on V,, by (i). We can choose
a finite number of elements ¢1,... , ¢, € K such that U, V,,, D K.
Then, if we define ex € N by 1 —ex = (1 —ayp,) - (1 —ay,), it is
easy to see that ey is a desired element.

(iii) Let « € B, be arbitrary, and put K := suppZ. Then, by (ii),
there is an e € A/ such that € =1 on K; hence, z = xe € N. Thus, B,
is contained in N, o

Under the above definition of Segal algebras in B, all the theorems
(A, B, C and D) of the previous section are also valid for Segal algebras
in B. Although the proofs are similar to those in the case of Reiter’s
Segal algebras in L'(G), we show them for the sake of completeness.

3.5. Theorem A’ (cf., [2, 3, 5]). Let {ex}rca be a bounded
approzimate identity of B composed of elements in B.. If N is a dense
Banach ideal in B, the following five conditions are equivalent:

(a) NV is a Segal algebra in B.
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(b) For any closed ideal J of N, there exists a closed ideal T of B
such that 7 =TI NN.

(¢) N = Ny, where Ny is the norm closure of B, in N.
(d) {ex}rea 15 an approzimate identity of N.
(e) N ={ax:a € B,z e N}.

Proof. (a) = (b). Let J be a closed ideal of A/. One can prove easily
by a routine argument that the closure J of J in B is a closed ideal
in B, and we omit the proof. For each z € J NN and ¢ > 0, there
exists an e € A such that ||z — ze||pr < £/2. Choose a y € J such that
llx — yllsB <e/(2]le||n)- Then we have

[z —yelly < ||z — zeln + [lze — yellx
<e/2+ |z —ylslleln

€
<e/2+
2|lellar

llellar

=c.
The facts ye € J and that J is closed in N yield z € J, which implies
JNN C J. Since the reverse inclusion is obvious, we have J = JNN.

(b) = (c). Since Aj is a closed ideal of N, there exists by (b) a
closed ideal Z of B such that Ng = ZNN. Since Ny contains B,
Ny and hence T is dense in B, which implies that Z = B. Therefore,
No=ZINN=BNN=N.

(¢) = (d). Let z € N and 0 < £(< 1) be arbitrary. Then there is an
xe € B, such that ||z — z||n < €/(2(Co + 1)), where Cp is a bound of
{ex}rea- Choose an e € N and a Ay € A such that z.e = x. and

g
lexe —ellB < 5 (A > Qo).

(lzella + 1)
Then we have
lleare — zc||n = [leazce — z-e|n

llexe —ell B[l

IA

N

&
S o T ||V
EANES

£
B (A > o),

IN
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and hence we have
et — lla = llea(e — 22) + (eawe — 22) + (@ — )|
< llexllsllz — ze[la + [lexze — 2elnv + llze — 2llnr

< (C’0+1)m+6/2=5 (A > o).

Thus, we get that {ex}aea is an approximate identity of N.
(d) = (e). Suppose (d). Then an application of the Cohen factoriza-
tion theorem yields (e).

(e) = (a). Let x € N be arbitrary. By (e), there exist an a € B and
a y € N such that x = ay. For each € > 0, there exists a A € A such
that ||a — aex||B < &/|ly|lar- Then we have

lexz — |y = llexay —aylly < llyllnlla —aerlls < llylla(e/llylln) = e
Since {ex} € B. € N, N has approximate units, and hence (a) holds. O

3.6. Theorem B'. Let S be a Segal algebra in B.

(i) The ideal theory of S is the same as that of B. More precisely, if
T is a closed ideal of B, then TNS is a closed ideal of S, and conversely
each closed ideal of S is of this form for a unique closed ideal T of B.

(ii) @5 and ®s are homeomorphic to each other. More precisely, the
map: Op — Ps : p — ¢|s is a homeomorphism.

For proofs of this theorem, we refer to [2, 6].

3.7. Remark. Theorem B’ (i) does not necessarily hold for abstract
Segal algebras. In fact, NV := L>°(T) is an abstract Segal algebra
(which is the same as a normed ideal) in B = L'(T) for the circle
group T. But the closed ideal C(T) of N cannot be represented in the
form N'NZ with any closed ideal Z of B (cf., [3, page 277]).

3.8. Theorem C'. (i) Let S be a Segal algebra in B, and let {ex}ren
be a bounded approximate identity of B composed of elements in B.
Then {ex}ren is an approximate identity of S which is bounded with
respect to the multiplication operator norm

[z]lop := sup{llzylls : y € S, [lylls <1} (x € S).
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(ii) If a Segal algebra S in B has a bounded approzimate identity,
then S = B holds.

Proof. (i) {ex}aea is an approximate identity of S by Theorem A’.
It is bounded with respect to the multiplication operator norm since,
for each \g € A,

lexollop = suplex,zlls
2€S, |zl s<1

< sup |lexllBllzlls
z€S,||z]|s<1

< sup |lealls < oc.
AEA

(ii) For the proof, we refer to [2]. 0

3.9. Theorem D’. If (S1,] ||s,) and (Sa, | ||s,) are Segal algebras
in B, then § := §1NSs is a Segal algebra in B with respect to the norm

s =1l llsy + 1l lls. -

Proof. Tt is easy to see that (S, || ||s) is a dense Banach ideal in B, and
we omit a proof. If we take a bounded approximate identity {e)}xea of
B which is composed of elements in B, by the condition (5g), then by
Theorem A’, {ex}reca is an approximate identity of (S;, || ||s), ¢ = 1, 2.
Let x € S and € > 0 be arbitrary, and choose \; (i = 1,2) such that
|z —exx||ls, <e/2 (A>N\;) for i = 1,2. Therefore, if we take a A3 € A
such that A3 > A; (i = 1,2), then

|z —zexlls = |z — zealls, + ||z — zealls,
<e/24¢/2=¢c (A= A3).

Thus, {ex}rea is an approximate identity of (S, || ||s). Hence, the
assertion of the theorem follows from Theorem A’. O

If S is a Segal algebra in B, we can identify ®s with &5 by the
homeomorphism &5 — ®s5 : ¢ — ¢|s (cf., Theorem B’). By this
identification, the Gelfand transform of an element x € S is just equal
to the Gelfand transform of x as an element of B.
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4. Multiplier algebras of Segal algebras in B.

4.1. Definition. Let &7 and Sz be Segal algebras in B. A map T of
81 to Sy is called a multiplier of S; to S if T'is a bounded linear map
satisfying (Txz)y = z(Ty) (x,y € S1). The set of all multipliers of S;
to Sy is denoted by M(S1,S2), and M (S1,S1) will simply be denoted

4.2. Lemma (cf., [16, Theorem 1.2.2]). Let &1 and Sz be Segal
algebras in B, and let T' be a linear map of S1 to Sa. Then the following
conditions are equivalent:

(a) T € M(S1,82).

(b) There exists a unique continuous function o on ®p satisfying
Tr =20 (v € S1).

Furthermore, if S1 and Sa satisfy the conditions So C St and ||z]|s, <
lz]ls, (z € S2), then (b) is equivalent to the following (b’).

(b") There exists a unique bounded continuous function o on ®pg
satisfying Tx = To (x € 81).

Proof. (a) = (b). Let ¢ € ®p and z,y € S; be such that T(p) # 0,
y(p) # 0. Since (Tx)y = x(Ty), it follows that

For each ¢ € ®p, choose x € 87 such that Z(y) # 0, and define

() := Ta(p)/Z ().

The preceding equation shows that the definition is independent of x
and hence o is a well-defined continuous function on ®p. Moreover,
if Z(p) = 0 and y(p) # 0, then Tz(p)y(p) = Z(¢)Ty(p) = 0 implies
that T?r(ap) = 0. Hence, the equation T?r(gp) = o(p)Z(p) is valid for
all p € ®p and x € &;. If 7 is a continuous function on ®p for which

Tr = 72 (x € &1), then [o(p) — 7(¢)]Z(¢) = 0 for all z € & and
¢ € ®p. This implies that o(p) = 7(¢) (¢ € ®p). Thus o is unique.
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(b) = (a). Since o is a continuous function on ® g such that Tz =02
(x € S1), it is easy to see that T satisfies the equation (Tx)y = x(Ty)
(z,y € 81). The boundedness of T' is an easy consequence of the routine
argument applying the closed graph theorem.

Suppose that S; and Sy satisfy So C S; and ||z]|s, < ||z]|s, (x € S2).
We set K ; = sup{|Z(¢)| : € S;,||z|ls, < 1} for each p € ®p and
i =1,2. Then we have 0 < K 9 < K,1 <1 (p € ®p). For each

x €8 and p € Pp,
lo()z(p)| = |Tx(p)| < Ky 2| Tx|s, < Ko2||T|[||2]s, -

In particular, restricting our attention to only those z € &7 such that
lz|ls, <1, we obtain

o ()] < inf { Ky o

T||/[x(p)| = z(p) # 0, [[zlls, <1}

= Kool T/ supl[7(e)| 7(e) # 0, olls, < 1}
K,

= ==|T| < ||T]-
oI <7

Thus, ||o]|e < ||T|| < oo follows. This implies (b) = (b)’. The converse
is trivial. o

4.3. Definition. Let &; and S; be Segal algebras in B. For each
T € M(S1,82) there exists a unique continuous function o on ® g such
that Tz = 0% (z € 81) by Lemma 4.2. We denote this ¢ by 7. The
space of all TofTc M(S;,S82) will be denoted by M\(Sl, Sa).

It is easy to see that the map T — T is a bijection of M(Sy,Ss) to
M(81,8s).

4.4. Lemma [1]. Suppose {ex}rca is a bounded approzimate identity
of B composed of elements in B. such that supyep |lexl|lr < Co. For
every K € K(®pg), we can choose an ex € B, satisfying ex(p) = 1
(¢ € K) so that supge(a,) llexlls < Co.

In particular, {ex}kex(@y) 95 a bounded approzimate identity of B
since B s Tauberian.

Proof. Put € = Cy — supy¢, |lea]|B. For any K € K(®p), there exist
aug € Beand a A\g € A such that ug =1 on K and |jux —ukex, ||z <
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e/2 by (ap) and (Bp). Put ex := ey, + ux — uxer, € Be.. Then
ex(p) = ex(p) T ur(p) —ur(p)éx,(¢) =1 (p € K) and

lexlls < llexyllB+[lux —ukexr|ls < Su§||€x||B+€/2 =Co—¢/2<Co
xe
hold. Thus, we get supex(a,) llex|s < Co. O

4.5. Proposition. Suppose that B has a bounded approximate
identity {ex}rea composed of elements in B, such that supycy |lealls <
Co. Then, for any Segal algebra S in B, we have:

(i) Tz € S, |Tz|s < Col|IT||||z]ls (z € S, T € M(B)).
(ii) M(B) C M(S).

Proof. (i) Let T € M(B),x € B. and € > 0 be arbitrary. Put
K, := suppZ. Then, by Lemma 4.4, there exists an ex, € B, such
that |lek,||p < Co and ek, =1 on K, and

[Tzlls = T (ex.2)lls = [[(Tex.)zls < [Tex, | sllzlls
< ller, 8l THlzls < Coll T[]zl

Therefore, T'|p, is a bounded linear operator of B, to B, with respect
to the norm || ||s. Since B, is dense in S, we can conclude that T'|s is
a bounded linear operator of S of norm at most Cyl|T|.

(ii) If T e ]\//.T(B), we have 7% € 8 (x € §) by (i). Therefore,

I~

Te M (S) by Lemma 4.2. O

In the rest of this paper, A stands for a regular Banach function al-
gebra on a locally compact, non-compact Hausdorff space X satisfying
the following conditions:

(ca) A is natural in the sense that any non-zero complex homomor-
phism ¢ of A is represented in the form ¢(f) = f(z) (f € A) by a
unique element z € X.

(Ba) A has a bounded approximate identity {ex}rca satisfying ey €
Ac (A€ A) and supyep [lealla < Co.

By Lemma 4.4, (84) can be replaced by
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(8;) Ais has a bounded approximate identity {ex } xeic(x) satisfying:
ex € Ac withex(z) =1 (z € K), K € K(X), and supgex(x) llexlla <
Cy.

Obviously, the Banach function algebra (g, | Il5) on ®p is of this
type. Under these circumstances, if S; and So are Segal algebras in A,
the multiplier space of S; to Sz is M(51,82) = {r € C(X) : fT1 € S2
(f € S1)} with the operator norm || |[az(s,,s,)- Analogously, the
multiplier algebra of a Segal algebra S'is M(S) = {r € Cp(X) : fr €S
(f € 8)} with the operator norm || || as(s)-

In the following sections, we introduce new classes of Segal algebras
in A and investigate their properties in detail.

5. Segal algebras induced by local A-functions. I.

5.1. Definition. Let o be a complex-valued continuous function
on X satisfying fo € A for all f € A, where 4. = {f € A :
supp f is compact in X}. We call such a o a local A-function, and
the set of local A-functions is denoted by Ajqc.

We remark that the terminology local A-function is proper since we
will see in Proposition 7.2 that “c € C(X) belongs to A if and
only if for every © € X there exists an f € A such that ¢ = f on a
neighborhood of z.”

5.2. Examples. (i) If S is a Segal algebra in A, each o € M(S, A) is
a continuous function on X satisfying of € A (f € S). Since A. C S,
it follows that o is a local A-function. In the same way, we have that
every o0 € M(S) is a bounded local A-function by Lemma 4.2.

Conversely, it turns out that every local A-function belongs to
M(S, A) for some Segal algebra S in A (Theorem 5.4 (ii)). Also, every
bounded local A-function belongs to M (S) for some Segal algebra S in
A (Corollary 6.3).

(i) If f € A and f(x) # 0 for all € X, then f=! € Ajc. Indeed,
for every x € X there is a g € A such that f~! = g on a neighborhood
of x. Hence f~! € A follows from Proposition 7.2.
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(iii) If X is a disjoint union of a family of open compact subsets
{Xx: A €A} of X, then any function on X which is constant on each
X is a local A-function. In fact, this follows from Proposition 7.2 since
A possesses local units (see the condition (5',)).

As a special case, when X is discrete, any complex function on X is
a local A-function.

5.3. Definition. For each complex continuous function 7 on X and
a non-negative integer n, we put

Ay ={feA:fr"eA (0<k<n)}

£ llry =D IF¥Ma (f € Arny)-
k=0

Note that (A; (), [I-(0)) is nothing but (A, || ||4).

5.4. Theorem. Suppose T € Ajo.. Then we have:
(i) 7 € M(A) if and only if A1) = A.

(ii) For each positive integer n, (Ar(ny, | |l-(n)) s a Segal algebra in
Aand T € M(Arn), A).

Proof. (i) Suppose 7 € M(A). Then fr € A (f € A), and hence
Arqy = A. Conversely, if A,y = A, we have fr € A (f € A) and
7 € M(A) follows.

(ii) It is easy to see that A,(,) is a linear subspace of A and || ||+
is a norm on A, ,). For each g € A and f € A,(,), we have (gf)7F =
g(fr*) € A (k = 1,....n) with [lgflrc) = Dh_ol(gf)T"a <
lgllall fllz(n)- That A;e,y is dense in A follows from the facts that
A € Ar(yy and A satisfies (84).

Next we will show that || ||;(,) is complete. To see this, let {f;}72, be
a Cauchy sequence in A.,). Then lim; ; ;oo || fi — fj|lr(n) = 0 implies

lim; 00 | fith — ijkHA =0 for k =0,...,n, and hence there exist
an f € Aand a g € A(l <k < n) such that lim; , || fi — flla =
lim; oo || fiTF — gk||A =0 (k=1,...,n). Since lim; ,~ fi(z) = f(2)

and lim; o fi(2)7%(2) = gi(z ) ( X), it follows that fr% = gp € A
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(k=1,...,n), and hence f € A.(,). Therefore,

zlggo i = Fllzy = lli{élo Z I fir® = 7
k=0

n
. ko _
Jim ;) Ifi7* ~ gilla = 0.

Let {ex}rea be a bounded approximate identity of A composed of
elements of A.. We show that {ey}rca i an approximate identity
of Army. Let f € A.y be arbitrary. Since [exf — fllrn) =
S o llea(fr*) — f7%|| 4, we obtain the desired result by taking the
limit with respect to A € A.

We have shown that (A.@), || |l7(n)) is a dense Banach ideal with
an approximate identity, which implies the first assertion of (ii). That
T € M(A;(n),A) follows from 7f € A (f € A;(ny)- O

5.5. Theorem. For f € A such that supp f is o-compact but not
compact, f & N{A;q1): 7 € Aoc} holds.

Proof. Since supp f is o-compact, there exists a sequence {K,}
of compact subsets of X such that supp f = USL,K,. Let U; be
a relatively compact open subset of X such that K; C U;. Since
supp f is not compact, we can choose an n; € N (1 < n;) such that
@ # Ut K; \ U;. Let Us be a relatively compact open subset of X
such that Uy U (U, K;) C Us. Suppose that we have chosen {nj}i_,
and {Uj} 2! such that

l<ni <. <ny,
and
U, U (uﬁl K) CUp (1<E<N).

Choose an nyy1 € N(ny < ny41) and a relatively compact open
subset Up 2 of X so that

%] 75 U?:Nf’lKi \ UN+1 and UN+1 U (UnN1+1Ki) - UN+2.

i=
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By induction on n, we have an increasing sequence {U,} of relatively
compact open subsets of X which constitutes an open covering of supp f
such that

supp f NUL S supp f N Uz Csupp fNUz Ssupp fNU3 C -+ .
For each n, take an element y, € suppf N (U1 \ Un). Since
{r € X : f(x) # 0} is dense in supp f and supp f N (Uny1 \ Un)
is an open neighborhood of y, € suppf, we can find an element
zn € supp f N (Upt1 \ Uy) such that f(z,) # 0, and put

G = Ui \Ta) Nz € X : f(z) # 0},

and we can choose an f,, € A so that f,(z,) = 1/f(z,) and supp f,, C
G, by Lemma 3.4.

We next consider a complex function 7 on X defined by

7(z) = an(x) (x € X).

Since G1,G2, s, - - - are mutually disjoint, 7 is well defined. Here we
assert that supp 7 = U2 supp fr. In fact, for each n € N, we have
(1) () =) filx) (v €Unp),

=1

and hence supp7 N Up41 = U] supp fi. From this, it follows that
supp 7 N (U221 Up41) = U supp f; and, with the relation suppr C
supp f C US2 1 Up41, we have supp 7 = U2, supp f;.

To see 7 € C(X), it suffices to show that 7 is continuous at all points
of supp7. If x € supp 7, we have x € supp f,, for some n from above.
Since supp f, C G, and 7 = f,, on G, T is continuous at x.

If g € A, suppg Nsupp f is compact. Since {U,}52; is an open
covering of supp f, there is a positive integer n such that suppg N
supp f € Upt1. Then suppg € (Unq1 Nsupp f) U (X \ supp f) and
T = Y fe on Ups1 U (X \ supp f) by (1). This implies that
79 = (> p_1 [r)g € A, and hence 7 € Ajq,.
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Finally we show f ¢ A.n). Suppose on the contrary that f €
Ar). Then 7f € A C Cp(X), and hence there exists a compact
subset K of X such that |r(z)f(z)] < 1/2 (x € X \ K). Since
{Up, U(X \supp f) : n=1,2,3,...} is an increasing sequence of open
subsets of X which constitutes a covering of X, there exists an ng € N
such that K C U,, U (X \ supp f). Since zp, ¢ Up, U (X \ supp f),
|T(2no ) f(2ne)] < 1/2 must hold. On the other hand, |7(zn, ) f(2n,)| =
| fro (2no ) f (2no )| = 1 holds by the definition of 7. Thus, we arrive at a
contradiction. Therefore, f ¢ A, (). o

5.6. Corollary. If X is a disjoint union of o-compact open closed
subsets of X, then

A= ﬁ{A.,.(l) 1T E A]OC}

holds.

Proof. Let f € A\ A, be arbitrary. To prove the corollary, it
suffices to show that f ¢ N{A;q) : 7 € Apc}. Suppose that X
is a disjoint union of a family {Xx}xea of o-compact open closed
subsets of X. For each positive integer n, {z € X : |f(z)| > 1/n}
is compact and hence covered by a union of a finite subfamily of
{Xx}rea. Therefore, there is a countable subfamily {X, A }5°; such
that U2, X, 2 {z € X : f(z) # 0}. In this case, each X}, is o-
compact and U2, X is closed in X by the assumption on {X}aea.
From this, it follows that supp f is a closed subset of a o-compact set
Use 1 X,,. Thus, supp f is o-compact since a closed subset of a o-
compact set is also o-compact. Therefore, f ¢ N{A;q) : 7 € Aloc}
from Theorem 5.5. O

5.7. Remark. Corollary 5.6 is applicable for A with discrete X and
for A which is the Fourier algebra on a non-compact LCA group.

5.8. Proposition. For a Segal algebra S in A, the following are
equivalent.

(a) M(S,A) = M(A).
(b) There is no T € Ao satisfying S C Ar1y G A.
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Proof. (a) = (b). If (b) does not hold, there is a 7 € Ajo. satisfying
S C A1) G A Then 7 € M(S,A)\ M(A) by Theorem 5.4, that is,
(a) does not hold.

(b) = (a). If (a) does not hold, there is a 7 € M (S, A)\ M(A). Then
it is easy to see by Theorem 5.4 that S C A.;y & A. Thus (b) does
not hold. O

5.9. Corollary. Let A be the Fourier algebra on a non-compact and
non-discrete LCA group G. Suppose that S = Sp(G) (1 < p < o0) or
S=A,(G) (1 <p<o0) (cf, Example 2.2). Then there is no 7 € Ajoc

~

satisfying S € A;q) G A.

Proof. Since M(S,LY(G)) = M(L*(G)) holds (see [16, Corollary

-~

3.5.1] for S = S,(G) and [7, Theorem 3.4] for S = A,(G)), we have
the assertion of the corollary from Proposition 5.8. ]

~

In contrast to Corollary 5.9, for S = A, ,(G) of Example 2.2 (3), we
have the following result.

5.10. Proposition. Let A be the Fourier algebra on an infinite dis-
crete abelian group G, and suppose that T € Ajoe with 0 < infyeqr(x) <
SUp,cq T(z) = 0o. We define an unbounded Radon measure v on G by
v = Tmg, where mg is the normalized Haar measure on G. Then we

have A,1(G) € Arq) G A.

Proof. The first inclusion follows from

fe A (C) = /G 1 (@)| dr(@)me () < oo

= fre LY(G) CL*(G) C A
= fe AT(l)'

Since 7 ¢ M(A), A1) & A follows from Theorem 5.4 (i). O
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6. Segal algebras induced by local A-functions. II.

6.1. Definition. Suppose 7 € Ajoc, and define A, () by

Aoy = {feA:frk €A (k=0,1,2,...), Z||frk||A<oo},
k=0

and put

6.2. Theorem. Let 7 € Ay with ||7]co < 1/Co, where Cy is the
constant in (B4). Then we have the following:
(1) (Ar(oo)s I I7(00)) is a Segal algebra in A.
(ii) 7 € M(Ar()) and ||7'HM(AT(OQ)) <1.
(iit) If 7 ¢ M(A), we have A (o) G A.

Proof. (i) It is easy to see that A, is a linear subspace of A
and || |l7(o0) is @ morm on A, (). For each g € A and f € A, (o,
(gf)TF =g(fr*) € A (k=0,1,2,...) hold. Since

oo

Dl = Zl\g fr* |\A<Z||9|\A||f7k||A

k=0
= ||g||A||f||T<oo)

we have gf € Ay and gflrcey < lgllalflroey. The space
Ar(c) is dense in A since A, C A;(). In fact, if f € A, then
fr* € A (k=1,2,3,...) holds by the definition of local A-functions.
Put K := supp f. By the condition (8), we have an ex € A, with
ex(z) = 1 on K and |lex|la < Co. If we put g = exT, we have
llglloo < 1—e¢ for some ¢ > 0. By the spectral radius formula, there is an
no € N such that Hg”0||114/n0 <1—e. Since fr% = fg* (k=0,1,2,...),



558 JYUNJI INOUE AND SIN-EI TAKAHASI

we have
[e'e] [e%e) oo no—1
SN =D IFg a =D > lfg" 0
k=0 k=0 =0 k=0
[e%s} ] no—1
<3 ||g"°|f4( 3 ||fg’<|A)
=0 k=0
%) no—1
<y - s)”ﬁ)ﬂ( Y ||fgk|A) < .
j=0 k=0

Hence, f € A;(). To see || [|-(x) is complete, let {f,} be a Cauchy
sequence in A; (). Then

Hf’ﬂ_fMHT(oo):Z||fn7—k_fm7k||A—>O (n,m—)oo)
k=0

It follows that, for each k(k = 0,1,2,...), {f,7"} is a Cauchy sequence
in A, and so there exists a g € A such that lim, oo || fn7* — grlla = 0.
Since go(r) = lim, oo fn(7) and grp(z) = lim, oo fu(2)7%(2) =
go(x)7*(x) (z € X), we get gomF =gr € A (k=1,2,3,...).

Now let us show that go € A, (o). Since {f,} is a Cauchy sequence
in A;(), it forms a bounded set in A, (), that is, there is an M > 0
such that Y32 | fn7"]la < M (n =0,1,2,...). For each ko € N, if
we choose an ng € N so that E]ZOZO lgo™™ — fuoT[|a < 1, we have

ko ko ko
D llgor a4 <) llgom™ = faomlla+ > fag 4 < 1+ M,
k=0 k=0 k=0

which implies ;7 lgo7%]|a < 1+ M and hence gy € A, (o).

We claim that || fn — goll-(ce) = 0 (n — 00). Givene >0, let ny € N
be such that || fr, — fu,ll7(00) < €/3 (n1 < ). Choose a k1 € N so that
> oneiia1 lgomlla < /6 and Y207, || fn, TF]l4 < €/6. Choose also
an ny € N (ny > ny) so that S50 lgom — fam|la < &/3 (n > ng).
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Then we have

k1
.frn — gOHT(oo) < Z ||fn7-k - gOTk”A
k=0

o0
+ > (I = fu™la + llgor" L4 + 1 fai 7] 4)
k=k,+1

< 154—154—15—}—15:5 (n > no).

-3 3 6 6 -
Hence, limy,, 0 || fn — goll+(sc) = 0. Therefore, || ||;(s) is complete.

Finally, let {ex}xea be a bounded approximate identity of A com-

posed of elements in A, with a bound Cy (see (54)). We will observe
that {ex}xrea is an approximate identity of A;(o). Let f € A;)
and € > 0 be arbitrary. Choose a positive integer ng such that
(Co + 1) 37 i1 | fT%la < €/2. Choose a A\g € A such that
Sl lleafr® — fr¥]ja < /2 (A > Xo). Then we obtain

no
lexf = Fllrooy < 3 lleafr® = £

k=0
+ > lleafmla+ D I F)a
k=no+1 k=no+1
<e/24(Co+1) Y I la<e (A=)
k=no+1

Thus, (Ar()s || [l7(00)) is @ dense Banach ideal of A with an approxi-
mate identity, which implies (i).

(ii) If f € Ar(oo), then f7 € Ar(oo) and [[f7]lr(00) < [[fll7(00)- So
T E M(AT(OO)) and ”THM(AT(OQ)) <1.

(iii) Let 7 ¢ M(A). Then we have A,
Since A.,.(Oo) - A.,-(l), it follows that AT(OO) 7C¢

A by Theorem 5.4 (i).

C
=
A. |

6.3. Corollary. Let o € Aioc N Cy(X). Then o € M(S) for some

Segal algebra S in A.

Proof. Put 7 = o/C, where C = Cy(||o]lc + 1). Then we have
T € Aloe with [|7]|oc < 1/Co. By Theorem 6.2 (ii), A () is a Segal
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algebra in A with 7 € M(A;(«)), and hence 0 = C7 € M(S) with
S= A.,.(Oo). ]

6.4. Theorem. Suppose that S is a Segal algebra in A satisfying
M(S) 2 M(A). If o € M(S)\ M(A), then there exists a T € Al
which satisfies:

(1) ||T||DQ < 1/00 and S C A-r(oo) g A,

Proof. 0 € Aje as we saw in Example 5.2 (i). Choose an € > 0 so
that [|eoflec < 1/Co and |[ollop := supgses [ folls/|[flls < 1/e. Put
7 =¢e0. Then 7 ¢ M(A), and we have by Theorem 6.2 that A, () & A
with 7 € M(Ar(x)). Hence, 0 € M(A; (). We claim that S C A, ().
To see this, let f € S be arbitrary. Since fr% = ¥(fo*) € S C A for
all k=0,1,2,..., and

Z|\f7'k||A<ZHf7'kHS Zl\f Hlls
Slflsz(naauop) < 0.
k=0

It follows that f € A, (). Hence, S C A, () as required. ]

6.5. Proposition Suppose T € M(A) with ||7||ec < 1/Co, and let
pr = lim, o0 ||T"||M(A), the spectral radius of 7. Then we have the
following.

(i) Ar(o) coincides with A for p. < 1.

(ii) Ar(ec) is a proper Segal algebra in A satisfying M(A) S
M (A () for pr > 1.

Proof. (1) By the condition on 7 and the spectral radius formula, there
exists an ng € N and an € (0 < &€ < 1) such that HT”OH}V/I?,Z) <(1-¢).
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Then, for each f € A, we have

oo nog—1
Z 1Fm™la =D > 7™t  flla

=0 k=0
[e%s} no—1

< X1 B 2 171
j:O
[e%s} no—1

<D (=)™ Y |l frFla < oo
7=0 k=0

Hence, f € A;(o). Thus, A; (o) = A holds.

(ii) Suppose that M(A) G M(A;(«)) does not hold. Then by
Proposition 4.5 (ii), we have M(A) = M(A;(x)). In this case two
norms || [|ar(a, .,) and || ||ar(a) are equivalent and ||7([ar¢a, .,) < 1 by
Theorem 6.2 (ii), and hence we arrive at the following contradiction:
1< pr =l (17 ara) V™ = limgoo (17l )™ < 1.
Thus, we have M (A) G M(A+()), and this also implies A; ) & A. O

6.6. Remarks. Suppose that A is the Fourier algebra on a non-
compact LCA group G. In this case we note that, for any ¢ > 0, we
can set a Cp in the condition (54) so that 1 < Cyp < 1+ ¢ by [20,
Theorem 2.6.8].

(i) There exists a ¢ € M(A) such that p, =2 and —1 < o(g) <1
for all g € G (cf., the proof of [20, Theorem 5.3.4]). Put 7 := 20/3.
Then we have p; = 4/3 and ||7]|c < 2/3. To this 7 we can apply
Proposition 6.5 (ii).

(ii) There exists a 7 € M(A) such that 0 < infycq|7(z)| and
=1 ¢ M(A) by [20, Theorem 5.3.4]. But, in this case, 771 € A
(Example 5.2 (ii)), and by Corollary 6.3, there exists a Segal algebra S
in A such that 7= € M(S).

7. Characterizations of local A-functions. In the rest of this
paper we study BSE-! and BED-properties of commutative Banach
algebras. We now give some definitions and notations for later use.

For a subset F' of X, span(F) is a linear span of F' in A*, the
dual space of A. Any element p € span (F') is represented by p =
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> wer D(x)0s, where p(x) = 0 except for a finite number of z in F' and
0:(f) = f(z) (f € A,z € X). For a complex-valued function 7 on F,
we define 7p by 7p := 3 _p 7(x)p(x)d, € span (I).

For ¢ € C(X) and a proper subset F of X, define

lollsse (s) : = Sup{ > b@)o(x)| : p € span (X), [|p]ls- < 1},
reX
lollBse (s).r : = SHP{ > Bl@)o(x)| : p € span (X \ F), [Ip]ls- < 1}.
reX

We define Cpgp (s)(X) and Chqp (5)(X) by

Cgsk (5)(X) : = {0 € C(X) : [lollssE (s) < 00},

(o X):={oceC X): 1 =0}.
BSE(S)( ) {o BSE(S)( ) Kelg(lx)”U”BSE(S),K }

Then (Cgsi (s)(X), || [|BsE (s)) is a Banach function algebra on X, and
Clsp (s)(X) is its closed ideal. We say that S is BSE if Cpsg (s)(X) =
M(S), and BED if Cgp, ) (X) = S.

For simplicity, we write || o||ssE, |0 | BsE, 7, Cose(X) and CRgp (X) in-
stead of [|o|[psk(s), o ]lBsk(s),7: Crsr (s)(X) and Chgg () (X), respec-
tively, in the case of S = A. For the details of these and related subjects
we refer to [14, 21].

The next lemma will be applied in this section and in Section 10.

7.1. Lemma. Let E be a non-empty closed subset of X. Put
IE)y={f€A: f(x) =0 (z € E)}. Then we have the following.

A+ (p € span (£)).

(i) I71ellBsEa/1(E)) = [ITlBSE, x\E (T € C(X)).

@) lellcasrcey = vl

Proof. (i) Suppose p € span (F). Then we have

12l carzcey- =sup{ ST @)@ 1 f € A If + B Layrmy <1}
zeFE
=sup{ ST P f@)] : f € A ||f||A<1}:||p||A*.

z€E
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(ii) Suppose 7 € C(X). Then we have, using (i),

7| =llBsE (A/I(E))

= sup{ p(x)T(x)| : p € span (E), ||p||(A/I(E))* < 1}
zeFE

- sup{ S #e)r(@)| - p € span (B), [plla- < 1}
zeFE

= HT”BSE,X\E- o

7.2. Proposition. Let 7 be a complex-valued continuous function
on X. The following conditions are equivalent:

(a) T € Aloc~

(b) For each positive integer n, (Ar(n), || l+(n)) is a Segal algebra in
A.

(c) There exists a Segal algebra S in A such that T € M(S, A).

(d) For every non-empty compact subset K of X, there is an f € A
such that 7(z) = f(z) (z € K).

(e) For any x € X, there exists an f € A such that T = f on a
neighborhood of x.

If T € Cp(X), each of the above conditions is equivalent to the following
(c)'.
(c) There exists a Segal algebra S in A such that T € M(S).

Proof. (a) = (b). This follows from Theorem 5.4 (ii).

(b) = (c). Suppose that (b) holds. We have 7 € M(A,(1), A) and (c)
holds with & = A, (q).

(¢) = (d). Suppose (c). Foreach K € K(X), wehaveanexg € A, C S

with e = 1 on K by (84). Put f = rex. Then f € A by (c), and
f(x) =7(z)ex(z) = 7(z) for all z € K.

(d) = (e). Given z € X, choose a compact neighborhood U, of x.
By (d), there exists an f € A such that 7 = f on U,.

(e) = (a). Let f € A, be arbitrary. Then f7 belongs locally to A
at any point € X and at infinity. Since A has local units with small
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supports by Lemma 3.4 (i), it is easy to see that fr € A by applying
localization lemma [18, Lemma 2.1.8]. Hence, 7 € Aj,..

Further, if 7 € Cy(X), we see that (a) and (c)’ are equivalent by
Example 5.2 (i) and Corollary 6.3. O

The proof of the next lemma is almost the same as that of Lemma
1 (i) of [21], and we omit its proof.

7.3. Lemma. Let 01,00 € C(X) and F be a proper subset of X
such that ||oi||Bse,r < 00 (i =1,2). Then we have

llo1oz|lBse, F < ||o1llBsE,Flloz2||BsE, 7

7.4. Theorem. Let A be the Fourier algebra on a non-compact
LCA group G. For any continuous function o on G, the following are
equivalent:

(a) S Aloc-
(b) lollssE,c\x < o0 (@ # K € K(G)).

(c) For every x € G, there is a compact neighborhood V of x such
that ”UHBSE,G\V < 00.

Proof. (a) = (b). Let K be a non-empty compact subset of G. Then
there is an ex € A, such that ex = 1 on K. Suppose that o € Ajoc.
Then oex € A by the definition of local A-functions, and hence

lollsse.cnx :sup{ S Bl)o(a)| : p € span (5), [plla- < 1}
reK
< sup{ Zﬁ(x)a(x)e[( (x)| : p € span (GQ), ||p|la- < 1}
zeG

= ||oek||BsE < 0.

(b) = (c). Trivial.

(c) = (a). Let € G be given arbitrarily. By (c) there is a compact
neighborhood V of x such that HUHBSE.G\V < o0o0. By Lemma 7.1,



SEGAL ALGEBRAS 565

we have |o|7llpsg (a/77)) = HJHBSE,G\V < o0, and by [14, Theorem

5.2] there is an f € A such that f = o on V. Then (a) follows from
Proposition 7.2. ]

8. Segal algebras induced by local A-functions. IIIL. In this
section, we introduce a notion “rank n (0 < n < co) local A-function.”
That 7 € Ajoc is of rank n will give useful information on A, (,) and

8.1. Definition. For 7 € Aj,., we say 7 is a rank 0 local A-function
if A= A1), and a rank n (1 <n) local A-function if

A2 2 Ary = Ar(ny).

Further, if 7 is not a local A-function of finite rank, that is, A, 2
Arryr forallk =0,1,2,..., then we call 7 a rank oo local A-function.

We remark that Theorem 5.4 (i) implies that 7 € Aj.. is a rank 0 local
A-function if and only if 7 € M(A). Here, we introduce the following
notation:

Aft e := {7 € Ajpc : T is a rank n local A-function}

for each n (0 < n < o0). In this case, we have a disjoint union

representation of Ajpe: Aloe = U, AF U ASS.

8.2. Proposition. Suppose T € Ajqc.-

(i) If 7 is a rank n (0 < n < o0) local A-function, then we have
Ariny = Arng1) = Arng2) = -+, and 7 € M(A;(,)). In particular,
we have ||T]|co < 00 by Lemma 4.2.

(ii) If ||T||co = 00, then T is a rank oo local A-function.

Proof. (i) Let 7 be a rank n local A-function. If f € A (41,
then we have fr € A.,) = Arn41), and hence f € A (,49). This
implies A (p41) € Ar(nt2). Since A2y € A;(,) is obvious, the
equality Ar(,11) = A7(n42) holds. In the same way, we have A, (,19) =
A‘r(n+3) = A‘r(n+4) =

Moreover, since f7 € A, (f € Ar(n)), it follows that 7 is an element
of M(Ar(n)):
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(ii) Since a finite rank local A-function must be a bounded function
on X, (ii) follows from (i). m

In the rest of this section, we consider the following problems.
(i) For a given natural number n, are there rank n local A-functions?

(ii) For a given natural number n, how can we construct a rank n
local A-function?

Put Lipi(R) = {f € Cy(R) : p(f) < oo} and Lip{(R) = {f €
Lip1(R) N Co(R) : limps—y00 pra (f) = 0}, where

o { L2101
fly) = f(x)
y—z

—oo<m<y<oo},

() =sup { o # el lyl = M},

Then Lip}(R) is a regular semi-simple Banach function algebra under
the usual pointwise addition, multiplication, scalar product and the
norm || fllLip;, = |fllec + p(f). We can easily show with a routine
argument that the Gelfand space of Lip{(R) is naturally identified
with R, and the Gelfand transform of Lip?(R) is the identity mapping.
Moreover, Lip?(R) satisfies the conditions (a4) and (84) (cf., [14]). O

8.3. Theorem. Suppose A = Lip}(R). Then we have the following.
(i) M(4) = Lips (R).

(i) @ # Aloc N Cy(R) \ M(A) = Al
Proof. (i) The inclusion (Cpsg(R) =)M(A) C Lip,(R) holds due to

the proof of Theorem 5.9 in [14]. To prove the reverse inclusion, let

f € A and g € Lip;(R) be arbitrary. Then fg € Co(R) and

p(f9) —Supﬂf _J;(x)g(m) —oo<x<y<oo}
<wﬂmmk7%@

LHOSIE
Yy—x

)] s o < <y < oo}

< [Iflleop(g) + p(Hllglloc < oo,
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and

pu(fg) < Sup{|f(y)|‘w

+‘f(y) f(=@) )

@)z % g, lo ly] M}

< Iﬁgjlf(y)Ip(g) + o0 (Dllglloe — 0 (M — c0).

Therefore, fg € A. Hence, g € M(A).

(ii) Let o be a continuously differentiable function on R satisfying
o(z) = |z|sinz?/(1 + |:1:|)3/2 (Jz] > 1) and |o'(x)] <1 (Jz] < 1). Then
it is easy to see that o € Ajpe N Cy(R). Further, since

3(14 |22 (2| sin2?) — (1 + |])?/2(sin 2% + 222 cos 2?)
(1 + [2[)?

o’ ()] =
if |z] > 1,

we have o’ ¢ Cp(R). Hence o ¢ Lip;(R) = M(A). Thus, we have
o € Ape N Cb(R) \ M(A)

To show the equality in (ii), let 7 € Aj,cNCy(R)\M (A) and f € A,
be arbitrary. Then fr € A and

p(fT) =sup {' (fT)(y; : ifT)(x) oo <r<y< oo}
(2) :Supﬂf(y)T(y;:;(x) + f(y;:fx)T(x) ;

—oo<m<y<oo}<oo.

Since f € A and 7 € Cy(R), supd|[f(y) — F(@))/(y — 2)7(x)| : —o0 <
x <y < oo} < oo follows, and with (2), we get

(3) sup{‘f(y)w :—oo<x<y<oo}<oo-
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It follows from (2) and (3) that

(4) 2 2
p(f7%) = sup{‘ (/7 Ny; ~Um)e)

(UG (T =T

y—x y—x

:—oo<x<y<oo}

—oo<x<y<oo}<oo.

Furthermore, as f7 € A, we have

pm(fT) = sup{} (fT)(y; : ;fT)(m) rxFy, |z lyl > M}

(5) _ Sup{‘f(y)T(y) —r@) ) - f(w)T(x)‘ :

y—x y—x

o # el o] 2 M0 (M = 0)

Since sup{|[f(y) — F@)/(y - 2)r@)| : @ # ylellyl = M} - 0
(M — 00), we have by (5) that

© sup |70 " L=12

:x#y,|x|,|y|2M}—>o (M = o0).

It follows from (5) and (6) that
™) 2 2
pm(fr?) = sup{’ (f7 )(y; : :(UfT )(z)

(|22 )

# (10 ™= o)

y—x

:x#y,|x|,|y|2M}

. |x|,|y|>M}—>o (M — 00).

From (4) and (7), 72 f € A follows. Thus, we obtain that A, 1) = A (2).
Moreover, since 7 ¢ M(A), it follows from Theorem 5.4 (i) that



SEGAL ALGEBRAS 569

AT(1) S A, and hence 7 is a rank 1 local A-function. Thus, we conclude
that Ajoc N Cp(R) \ M(A) C Al .. The reverse inclusion is trivial, so
the equality holds. O

8.4. Theorem. Suppose that A = A(G) is the Fourier algebra on a
non-compact LCA group G. Then there ezists a rank 1 local A-function.

8.5. Lemma. Let G = Gy x Ga be the direct product of LCA groups
G1 and Gs. Let m be the natural projection of G onto G1. Let A(G1)
be the Fourier algebra on G1. For any continuous function o on Gy, put
0 := o om. Suppose that o € A(G1)1oc. Then we have the following.

(i) 7 € Aoc.

(ii) o € M(A(G1)) if and only if 7 € M(A).

Proof. (i) Let K € K(G) be given arbitrarily. Put K1 = 71 (K). Then
K is compact. By Proposition 7.2 there is an f € A(Gl) such that
f=oon Ky. Tt 1seasytoseethatf6M( )andf—aonK. For
a function ex in A, such that ex = 1 on K, we have fex € A with
fex =0 on K. Thus, ¢ € Aj. follows from Proposition 7.2, again.

(i) It is easy to see that ¢ € M(A(G1)) for a o € M(A). Conversely,
suppose that ¢ € M(A). Since ¢ is constant on each coset of Gg, &
is the Fourier-Stieltjes transform of a measure i € M (G) concentrated
in G1 x {0} by [20, Theorem 2.7.1]. Define a measure u by u(E) =
w(E x {0}) (E : Borel set of G1). Then we have u € M(Gp) with
i = o. Hence, 0 € M(A(G1)). o

8.6. Lemma. IfG is a non-compact LCA group which has a compact
open subgroup Gg, then there exists a function ¢ € Ajoe such that

(i) ¢ is constant on each coset of Gy, and ¢(x) € {—1,1} for all
r € G,

(i) ¢ ¢ M(A )

)

(iii

Proof. G/Gy is an infinite discrete group and hence not a Sidon
set. Therefore, there exists a function ¢ on G/Gy into {—1,1} such
that ¢ ¢ M(A(G/Gp)) by [20, Theorem 5.7.4]. Let 7 be the natural
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projection of G onto G/Gy. Put ¢ = pon. Then we see the following.

(i) Since ¢ is constant on each coset of Gg, we have ¢ € Ajoe by
Proposition 7.2.

(ii) That ¢ ¢ M(A) follows from ¢ ¢ M(A(G/Gy)) is well known,
and we omit the proof.

(iii) p? = 1g € M(A). O

8.7. Lemma. Let A= A(R) be the Fourier algebra on R. Suppose
¢ is a C®-function on R such that p(x) = 1 if v € [1,00) and
o(xr) = =1 if z € (—o0, —1], then we have p & M(A) and p* € M(A).

Proof. 1Tt is easy to see that ¢ € Ay by Proposition 7.2. To
show ¢ ¢ M(A), suppose on the contrary that ¢ € M(A). Then
1+ ¢ e M(A). Since 1+ ¢(z) =0 for all x < —1, it follows from the
theorem of F. and M. Riesz that 1 + ¢ € A and so 1 + ¢ vanishes at
infinity. But since 1+ ¢ = 2 for all z > 1, we arrive at a contradiction.
On the other hand, since ¢? — 1 is a C*°-function on R with compact
support, it follows that p? — 1 € A and so p? € M(A). o

8.8. Lemma. Suppose G = R¢ x L, where d > 1 and L is an
LCA group. Then there exists a ¢ € Ay such that ¢ ¢ M(A) and
$? € M(A).

Proof. We write G = r x H, where H = R%! x L, and let 7 be
the natural projection of G onto R. Let ¢ be the function on R in
Lemma 8.7, and put ¢ := ¢ ow. Then we can conclude by Lemmas
8.5 and 8.7 that ¢ is a function in Ay which satisfies ¢ ¢ M(A) and
»? € M(A). o

Proof of Theorem 8.4. By the structure theorem of LCA groups (cf.,
[12, Theorem 24.30]), G is isomorphic to R¢ x L, where 0 < d and
L is an LCA group which has a compact open subgroup. Then, using
Lemma 8.6, if d = 0 and Lemma 8.8 if d > 1, we can choose a ¢ € Ajoc
which satisfies ¢ ¢ M(A) and ¢? € M(A). Then it is easy to see that
¢ is a local A-function of rank 1. O
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8.9. Theorem. (i) If 7 € M(A) satisfies 7(x) # 0 (v € G) and
7=t ¢ M(A), then we have 71 € A

loc*

(i) If A = A(Q) is the Fourier algebra on a non-compact LCA group
G, then we have A, N Cy(G) # 2.

Proof. (i) Suppose that 7 € M(A) satisfies 7(z) # 0 for all x € G and
771 ¢ M(A). Then 71 € Ay (cf., Example 5.2 (ii)). Let n € N be
arbitrary. Since 771 ¢ M (A), there exists a g € A such that 77 1g ¢ A.
Put f = 7" !g. Then (r~H)Ff =7""1"%gc Afor k(0 <k <n—1),
but (r71)"f = 77'g ¢ A. Hence, A1) S A;-1(,_1). Since n is

arbitrary in N, we have 77! € A% .

(ii) By [20, Theorem 5.3.4], there exists a 7 € M(A) such that
1 < 7(x) for all # € G and 771 ¢ M(A). Then, by (i), we have
1t e AR N Cy(G). O

8.10. Proposition. Let 7 € Al . Then Ar(1) is the largest one in

loc*

the family of Segal algebras S in A satisfying T € M(S).

Proof. Suppose that S is a Segal algebra in A which satisfies
7 € M(S). From Proposition 8.2 (i), we have 7 € M (A, (1)). Since
freS(fes), Arqy={f€A:7f e A} DS follows as required. O

8.11. Remarks. (i) Let X be a locally compact, non-compact Haus-
dorff space, and let Cy(X) be the algebra of all continuous functions
on X which vanishes at infinity provided with the norm || ||oc. Sup-
pose that A = Cy(X). Then we can identify &4 with X. Further-
more, we have Ajoc = C(X)(:= {¢ : a continuous function on X}) and
M(A) = Cy(X). Therefore, Ajoc N Cy(X) \ M(A) = @. This means
that there are no rank n (1 <n < 00) local A-functions.

(ii) Let A = LipJ(R). For any positive integer n > 2, there are no
rank n local A-functions in Aj,. by Theorem 8.3 (ii). Furthermore,
there are no bounded rank oo local A-functions by the same theorem.

(iii) If A is the Fourier algebra on a non-compact LCA, Theorems 8.4
and 8.9 say that the set AN Cy(G) \ M(A) is non-empty and contains
rank 1 local A-functions and rank oco-functions.
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8.12. Problem. Let A be the Fourier algebra on a non-compact
LCA group G. Let n be a positive integer grater than 1. Are there any
rank n local A-functions?

8.13. Definition. For 0,7 € Aj,c, we denote o =< 7 if and only
if NP2 Aoy © MRZ1 Ar(ry- This relation =< is a partial semi-order in

loc:

The next theorem characterizes the multiplier algebra of A;(,),T €
A’I’L

loc*

8.14. Theorem. M (A;(,)) = {0 € Aioc : T 2 0} holds for every
n €N and T € A}

Proof. (C). Ifo € M(A;(,)) and f € A;(,), we have okfe Army €A
(k = 1,2,3,...). This implies f € ﬂ,;“;lAa(k), that is, ﬂzozlA.,-(k) =
Arny € M2 Asr), and hence 7 < o follows.

(D). Let 0 € A with 7 < 0. Then AT(n) = ﬁzozlA.,.(k) C
M2, Ay(ry- In this case, if f € A.(,), then of € A and 7Ff €
Ar(n). Hence, 7™(cf) = o(7"f) € A for all k = 1,2,3,... ,n. So
o c M(A‘r(n)) O

8.15. Corollary. Suppose 7; € Al (i = 1,2). Then A; (,,) C

loc

Ary(ng) if and only if M(Ar,(n,)) © M (A7 (ny))-
Proof. Suppose A, (n,) € Az, (n,)- By Theorem 8.14, we have

M(Ar,(ny) =1{0 € Aloc : T2 20}
={0 € Aloc : Ary(ny) = MiZ1Ary (k) C© M1 Aoy }
C{o € A : An(nl) = ﬁzozlATl(k) - ﬁzozlAU(k)}
= M(A; (n,))-

Conversely, suppose that M(A;,(,,)) € M(A; (n,)). Then 7 €
M(Az,(ny)) € M(A+ (n,)) by Proposition 8.2 (i), and hence 71 < 72 by
Theorem 8.14, that is, A; () = M1 A7 () € M1 Ary(k) = Ary(no)- O
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9. BED- and BSE- properties of A,(,)(1 <n < oco0). We suppose
in this section the following condition (y4) on A.

(y4) A is BSE.

For example, Fourier algebras on non-compact LCA groups G and
Lip; (R) satisfy the condition (v4). Since A has a bounded approximate
identity composed of elements in A., A is also BED (cf., [14, Theorem
4.7]).

A bounded weak approximate identity of S in the sense of Jones-
Lahr is, by definition, a bounded net {u,}weo in S such that
limyequw(@) f(2) = f(z) (f € S,2 € X) (cf, 15, 21]).

9.1. Definition. (i) Let 7 € Ajo and n be a non-negative integer.
We put

M(A)7(n) := {0 € M(A): ot € M(A) (0<k<n)},

ollrn) == Z lom*larcay (0 € M(A)r(n))-
k=0

Note that (M (A)- (o), || [l-(0)) is nothing but (M (A), | |laza))-

9.2. Proposition. For 7 € Ajoc andn € N, (M(A)rny, || [l-(n)) 8
a Banach ideal of M(A).

Proof. Tt is easy to see that M(A); ) is a linear subspace and || ||(»)
is a norm on M(A), (), and we will show that || |-,y is complete.
To see this, let {o;}32; be a Cauchy sequence in M(A),). Then
Hm; jyoe Dopp loi™® — 057" as(ay = 0, and there exist pp € M(A)
(k=0,...,n) such that lim; o ||i7" — pgllar(ay = 0. Then po(z) =
lim; , o 0i(z) (x € X). Since

pr(z) = lim (UiTk)({L') = lim O'i({I?)Tk({IJ) = po(ac)T]C (x)

17— 00 1—00

(reX,k=1,...,n),

pot* = pp € M(A) (k = 1,...,n) follows. Hence, pg € M(A),(n).
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Therefore,

n
lim [lo; = pollr(ny = lim Y [losm — por¥||arca)
71— 00 11— 00 k—o

i—00

= lim Y [losm — pllarcay = 0.
k=0

Finally, we see that po € M(A);(n) and [|po|-n) < lpllarayllolrm)
for all p € M(A) and o € M(A), (). In fact, since (po)r* = p(o7") €
M(A) (1 <k <n), we have po € M(A),(y), and it follows that

lpoll sy = D (o)™ arcay < llpllarcay Y o arcay
k=0 k=0

= ||P||M(A)||U|\T(n)~ O

9.3. Theorem. The cqualities Cpsg (4, ,,)(X) = M(A)rm)
M(A, Arny) hold for T € Ao and n € N.

Proof. We divide the proof into three parts: (i) Cgsg (a,,, (X)
CBSE(AT(TL))(X)'
(1) Ifoe CBSE(A
such that

NN

o) (X), there is a bounded net {f.}weq in Ay

(8) lim fo(z) =o(z) (z€X)

by [21, Theorem 4 (i)]. Then we have, by (8),

akax:imwakx:im Uﬂ'k x
o (2)7* (@) = lim ful@)7* (@) = lim (f7*) ()
(k=1,...,n, x € X).

Since SuPyen ||fw7—k||A < SUPuen ||fw||7'(n) < 0 (k =0,... ,TL), we
have by (9) and [21, Theorem 4 (i)] that o7% € Cpsr(X) = M(A)
(k=0,...,n), that is, 0 € M(A),(n).
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< n). Thus, for

(ii) If 0 € M(A);(n), we have o7% € M(A4) (1 <k
< k <n). This implies

each f € A, we have (fo)™* = f(o7%) € A (1
fo€ A (f € A), and hence o € M(A, A; ().

(iii) Let {ex}rea be a bounded approximate identity of A. If o €
M(A, Ar(ny), then {oex}rea is a bounded net in A, such that
limyer oex(z) = o(z) (z € X), and hence 0 € Cpsg(a,,,)(X) by
[21, Theorem 4 (i)]. o

9.4. Theorem. The equality CI%SE(AT(”))(X) = A;(n) holds for
7 € Aloe and n € N. Therefore, A,y is BED.

Proof. Since AT(n)c is dense in A, () by Theorem A’ we have A.(,,) C
CRep (AT(m)(X) by [14, Proposition 4.1]. We must show the reverse
inclusion. Let o € C3qp (A (n))(X) be arbitrary. By Theorem 9.3,
we have o7F € M(A) (k = 0,...,n). Since |[fllrm) = [If7"]a
(f € Arny,k=0,...,n), we have
(10)

17" p]

Ax = sup{ Z ™ (@)p(a)f(z)|: f € Az 1 fll7m) < 1}

7(n)
reX

sup {| 2 )@ £ € Arie 1l < 1

reX

Sam{Ejmmmm

reX

meAmwAs@

=|pllax (p €span(X), k=0,...,n).

For each K € K(X), we have by (10),

(11) |lo7"||lBsE,x

— sup{ > plx)o(x)r* (z)| : p € span (X \ K), [|p[|a- < 1}
reX
< sup{ Z q(z)o(z)| : ¢ € span (X \ K), ||¢| Ar) S 1}

reX

lollBsE (4,8 (E=0,...,n).
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Since o € C]%SE (4
we have, by (11),

() (X), we have lim e (x) ||JHBSE(AT(,,L))7K =0. So

lim ||7%0|gsp.x =0 (k=0,...,n),
KeR(X)

that is, o7% € C3qp(X) = A (k=0,...,n). This proves o € A, (,). O
9.5. Definition. Let 7 € Ajo.. We define M (A); (o) and || || (o) by

M(A)r(s0) = {UEM(A):UTk e M(A) (k=1,2,3,...),

Z ||07k||M(A) < OO},

k=0

lollrooy = > o™ llarcay (0 € M(A);(s))-
k=0

9.6. Proposition. For 7 € Ajoc, (M(A)r(s0), || I7(s0)) is a Banach
ideal of M(A).

Proof. Tt is easy to see that (M(A); (o), |l [l7(sc)) is @ normed linear
space, and we verify that || ||;(«) is complete. Let {o,} be a Cauchy
sequence in M(A); (). Then lim; joo > ope o [0 — 7% || ar¢a) = 0,
and there exist py € M(A) (k=0,1,2,...) such that lim,_, ||o,7F —
prllarcay = 0. Then po(x) = lim,, o 0i(x) (z € X), and since py(z) =
limy, 00 (0n7F)(2) = limy_yo0 00 (2)7%(2) = po(2)7F(2) (2 € X), we
get pom* = pr € M(A) for k =1,2,3,....

Now we will show that po € M(A); (o) and [[on, — pollr(oc) — O
(n — o00). Since {0y} is a Cauchy sequence in M(A), (), it forms
a bounded set in M(A);(«), that is, there is a C' > 0 such that
Srcollont®laray < C (n = 1,2,3,...). For each kg € N, if we
choose an ny € N so that Z]ZOZO | po7* — 0o || ar(ay < 1, we have

ko ko ko
> Mo larcay < Y lloom = oo arcay+ D llon, ™ llarca) <1+C,
k=0 k=0 k=0

which implies Y 7o, ||p07'k||M(A) <1+ C, and hence pg € M(A);(0)-
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Our next aim is to prove lim, o [|0 — po||+(00) = 0. Given € > 0, let
ny1 € N be such that ||o, — 0y, ||7(o0) < €/3 (n > n1). Choose a k; € N
so that Y207, o lpom laray < e/6 and Y5024 1 llom, 7 [|arcay < /6.
Choose an ny € N (ng > nq) so that ZZ;O pom — 00| arcay < €/3
(n > mg). Then we have

k1

lpo = onllroey = Y oo™ = 0nt[larca)
k=0

o0
+ > e = ontaca)
k=ki1+1
oo

<efs+ )] <||0n7’“—0n17k||M(A>

k=ki1+1

+ oo™ lascay + ||%T’“||M<A>>

Therefore limp, o0 ||po = ol 7(00) = 0, and hence || ||+ () is a complete
norm on M (A);(so)-

Finally, for any p € M(A) and 0 € M(A); (), We get po € M(A);(0)

and ||po |- (s0) < llpllazr¢a)l|lo]l-(s0) by quite a similar way as in the proof
of Proposition 9.2. i

9.7. Theorem. For 7 € Ajoc with ||T||cc < 1/Co, the equalities
CBSE (A, (o)) (X) = M(A)r(00) = M(A, A7 (o)) hold.

Proof. To begin with a proof we note that A, is a Segal algebra
in A by Theorem 6.2 (i). We divide the proof into three parts:
(1) CBSE (A, o)) (X) © M(A)r(0), (i) M(A)r(00) © M(A, Ar()) and
(iii) M (A, Ar(c0)) € OBSE (A, (o0)) (X)-

(i) Let 0 € Cpse (AT(OO))(X). There is a bounded net {f,}ueq in
Ar(s0) and a Cy > 0 such that

(12)  lm fo(z) =o(z) (z€X), |follr=C1 (we)
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Hence,

(13)  o(z)m*(z )—}j1€r1§12fw( o)mh(z) (reX,k=1,2,3,...).

By (12) and (13), we have o7% € Cpsg(X) = M(A) (k =0,1,2,...).

Let ng € N and po, ... ,Pn, € span (X) be chosen such that ||pg||a- <1
(k=0,...,n0). Choose wy € Q such that
(14) Z Y 1(@)llo(@)7* (@) = fu (@)7* (2)] < 1.
k=0zxeX
Since ||fllese < | flla (f € A), it follows that
no no
(15) Dollfemlsse <) Ifumla<C1 (we D).
k=0 k=0
By (14) and (15), we have
no
S| S d@e)rt (@)
k=0"zeX
Z Z 2)(fuo™) ()
k=0'zeX
Z Y u(@)llo(@)7" (@) = fus (@)7" (2)]
k=0zeX

<Cj+1.

This implies that Y2, ||o7*||sse < C1 + 1. Taking ng — oo, we have
Yo llom®|lBsE < Ci+1. Since A is BSE by the condition (v4) there is
a Cy such that ||o||ara) < Callo|lse (0 € M(A)) by [21, Corollary 6].
Therefore, we have Y07 07| a4y < Yopep Collom|lBse < Ca(1 +
Cl), that is, o € M(A)T(DQ)

(ii) If 0 € M(A);(x), we have o7F € M(A) (k = 1,2,3,...) and
E;Q:() ||0'7'kHM(A) = ||o]l7(o0) < 00. Then we have (of)F = f(orh) €
A(k=1,2,3,...) foran f € A and

oM@ a =D 1) a < D o a1 £1la
k=0 k=0 k=0

= [loll- (o) [ /1[4 < 00
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Thus, of € A;(o). We have proved that of € A, () (f € A). Hence,
o€ M(A, A () is observed.

(iii) The proof is the same as that of (iii) in Theorem 9.3, and we
omit the proof. ]

9.8. Theorem. The equality CHqp, (AT<OO))(X) = A () holds for
T € Aloe with ||7]|oe < 1/Co, that is, A, () is BED.

Proof. Since A; (), is dense in A; () from Theorem A’ the relation
C](-D),SE(AT(M>)(X) D Aj(x) follows from [14, Proposition 4.1]. To
show the reverse inclusion, let 0 € CRqp ( AT(M))(X ) be arbitrary.
Then o € M(A); (o) holds by Theorem 9.7, that is, otk € M(A)
(k=0,1,2,...) and E;Q:o HO’TkHM(A) < 00.

In the same way as in the proof of Theorem 9.4 we get
lom*|lBse. < llollBSE (A, )k (B =0,1,2,...)
for every K € K(X). Tt follows that
li i < 1 =0
Kellg(lX) lo7"lbse.x < Kellg(lX) olpsE (Ao 1

(k=0,1,2,...).

Hence, o7% € C%gp(X) = A (k = 0,1,2,...). Since A is BSE and
BED, the identity maps of A to C%¢5(X) and M(A) to Cpsgp(X) are
Banach algebra isomorphisms, and so there exist C7,Cy > 0 such that

[flla < Cillfllese  (f € 4)
and
lollsse < Callollaray (0 € M(A)).
Therefore, we obtain
S llomklla < €Y ot |lsse < CiC2 Y [0 |arca) < oo
k=0 k=0 k=0

This implies that o € A7 (). ]
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9.9. Proposition. (i) Suppose that S is a Segal algebra in A. Then
CisE (s)(X) € Casg (X) = M(A) hold.

(ii) Suppose that a Segal algebra S in A is BSE and BED. Then S
coincides with A.

Proof. (i) Let f € Cpgg(s)(X). There exists a bounded net
{fatrea in & such that f(z) =limyea fa(z) (z € X) by [21, Theorem
4 (i)]). Since a bounded net in § is also a bounded net in A, we have
f € Cpsr(X). Since Cpsg(X) = M(A) by the condition (v4) posed in
the beginning of this section, we get the desired inclusion.

(ii) If a Segal algebra S in A is BSE, then || [|gsg (s) and || [ ar(s) are
equivalent norms in M(S) (cf., [21, page 151, Remark]). If S is BSE
and BED, || |lgse (s) and || ||s are equivalent norms in S. Consequently,
two norms || ||s and || |lop (the multiplication operator norm in S)
are equivalent. This implies that S contains a bounded approximate
identity by Theorem C’ (i). Hence & = A follows from Theorem C’
(i1). o

9.10. Theorem. Let S be a Segal algebra in A. Then the following

are equivalent:

(a) S has a bounded weak approzimate identity in the sense of Jones-
Lahr.

(b) S is BSE, that iS, M(S) = CBSE S) (X)
Moreover, if S satisfies (a) or (b), then M(S) = M(A) holds.

Proof. (a) = (b). By (a) and [21, Corollary 5], we have
(16) M(S) C Cpsg (s)(X).
On the other hand, by Propositions 4.5 and 9.9, we have
(17) Chsg (s)(X) € Cpsp(X) = M(A4) € M(S).

By (16) and (17), we get Cpsg (s)(X) = M(S), which implies (b).

(b) = (a). This implication follows easily from [21, Corollary 5].
Moreover, if S satisfies (a) (or equivalently (b)), M(A) = M(S) holds
by (16) and (17). o



SEGAL ALGEBRAS 581

9.11. Remarks. (a) Sp(G) and A,(G) of Example 2.2 have bounded
weak approximate identities in the sense of Jones-Lahr [13].

(b) If 7 € Ajoe \ M(A) and n € N, then A.(,) is a proper Segal
algebra which is BED by Theorems 5.4 and 9.4. Therefore A, is not
BSE by Proposition 9.9 (ii).

(¢) If 7 € Ajoe With [|7]|ec < 1/Co and A; () S A, then A () is not
BSE. This follows from Theorem 9.8 and Proposition 9.9 (ii).

10. Applications of local A-functions. In this section A stands
for the Fourier algebra on a non-compact LCA group G. For f € A and
y € G the translation of f by y is denoted by f, : fy(z) = f(z—y) (z €
Q).

As an application of Aj,. we show a representation theorem for the
multiplier algebra of the smallest isometrically translation invariant
Segal algebra in A.

10.1. Definition. Let V' be a non-empty open subset of G with
compact closure V. We define two subsets Ay (G) and Ay (G) of A by

Ay (G):={f€A: suppf CV},
KV(G) = {f € A: there exists y € G s.t. supp f C V +y}.

Thus, we have Ay (G) = Uyec A4y (G). One can easily see that Ay (G)
is contained in A., and hence contained in every Segal algebra in A.

Suppose that f, € Ap(GQ), n = 1,2,..., with 3.5 [ fulla < oc.
Then there is an f € A such that |[f — 307 fulla = 0 (N — o).
Here we write f = > 7, f, and call it a V-representation of f.

We put Sy (G) := {f € A : f has at least one V — representation},
and for f € Sy(G), we define [|flly = f{3 )" [[falla : f =

>0 fo(V — representation)}.

Under the above definitions of Sy (G) and || ||y, (S¢(G), || |Iy7) is a
Segal algebra in A, which is isometrically translation invariant in the
sense that, if f € Sy(G) then f, € Si(G) and || f||y = || fyll# hold for
all y € G. Moreover, it is minimal in the sense that Si;(G) is contained
in any isometrically translation invariant Segal algebra in A.
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Actually, it can be easily seen from the definitions of Sy (G) that
the smallest isometrically character invariant Segal algebra S‘l—/(é)
(constructed in [18, Chapter 6]) is isometrically isomorphic to Sy (G)
through the Fourier transform.

10.2. Remark. The smallest isometrically character invariant Segal
algebra in L'(G) was found and constructed in 1981 by Feichtinger [9],
which is also called the Feichtinger Segal algebra.

10.3. Theorem. Put Csp(G) = {r € C(G) : |7V =
suPgec I TlBsE, o\ (V42) < 00} Then the following hold.

(i) (C]g/SE(G), | IIV) is a Banach algebra.

(il) C¥sp(G) = M(Sy(Q)), and (Clep(Q), || ||V) is isomorphic to
(M(Sy(G)), | sy @)-

10.4. Remark. It is known that there are some Wiener amalgam
spaces W (A, £(I)') and W (A, £(I)*) such that W (A, £(I)) is isomor-
phic to Si7(G) and its multiplier algebra is given by W (A, £(1)>°) (cf.,
8, 10, 11]).

10.5. Lemma. |f]l4 < ||/l (f € Sy (G)).

Proof. Let f € Sy(G), and let f =Y f, be a V-representation.
Then ||flla < Yoo, |fulla. Taking the infimum over all the V-
representations of f in this inequality, we get || fl|a < || f]v- O

10.6. Lemma. There exists a constant M > 0 which satisfies the
conditions that, for each T € Ao and xo € G, there is an ez, € A
satisfying

(18)  erug =7 onV +zg and |[e,,lla < M7l gs, e\ (Ft0)-

Proof. Let T € Ajoe and x¢ € G be fixed arbitrarily. Since A/I(V) is
BED by [14, Theorem 5.2], there exists an M7 > 0 such that

(19) lg + IV asrvy < Mallglvllese a/rvy) (9 € A).
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For each g € A, we have

g+ I(V)lajrry = if {llg+ flla: fel(V)}
= inf {{|gzy + faolla: f € I(V)}
= inf {||gay + flla: f € I(V +20) }
= l9ao + IV + 20)ll 4/ 1(V+20)-

(20)

Since [|plla/r(vy)- = llplla= (p € span (V)), by Lemma 7.1 (i), we have

1) lglvllese a/rvy)

- sup{ S Ba)g(a)

%

:p € span (V), ||p]

A <1

——

:p € span (V), ||p||a- < 1}

<1

:sup{ S Ble - z0)gle — o)

zEV+zg

:p € span (V + x0), |Ip|

_ Sup{ S Pla)ge ()

zEV+zo

= Hgﬂﬂo|l7+zo||BSE (A/I(V+z0))"

By (19), (20) and (21), we have

g0 +1(V + ) A/ 1(V420) < MillGaolv4a0 lBSE (4 1(V +20))

&2 (g € A).

By Proposition 7.2, there is an fy € A such that fy = 7 on V__|_ To.
Moreover, we can choose an e, , € A such that e, 5, = fo on V + ¢
and

(23) leraolla < 21 fo + IV + 20)lLayr(v-40)-
By (22) and Lemma 7.1 (ii), we have

[ fo+ I(V +20) || ayr(v4a0) < Mill folgry oo IBSE (A/1(7+20))
(24) = M1l follgse, e\ (V40)

= Mi||7|lBsE,c\ (V+20)-
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From the choices of fy and e; ;,, the equality e; , = 7 on V + o is
observed. Hence, (18) follows from (23) and (24) with M = 2M;. o

Proof of Theorem 10.3. (i) It is easy to see that pgSE(G) is a normed
linear space with respect to || ||V, as well as || ||V is an algebra norm
by Lemma 7.3.

To prove completeness, let {7,} be a Cauchy sequence in C¥sp(Q).
For any y € G, we can choose an z € G so that y € V + z. Then we
have

ITn(y) = T (¥)| < |70 — Tm”BSE,G\(VJr:z) < |lrn — TmHV-

Hence, {7,} is a uniformly convergent sequence in Cy(G). Let 7 €
Cy(G) be the uniform limit of {7, }. Let € > 0. Choose an ng € N such
that |7, — Tm||¥ < & (n,m > ng). Let z € G and p € span(V + z)
with [p[la- < 1. Then we have [} cy. D) (7n(y) — Tm(y))| <
e (n,m > ng). Fixing n and letting m go to infinity we have
|5 10 BO)(Taly) — 7(9))| < & Since z € G, p € span (V + 2)
with [|p]|a+ <1 and n(n > ng) are arbitrarily chosen, we have

77|V = sup suF_ ) > W) (ay)—TW)| < (n=no).
x p€Espan (V+z *
Ipllas<y ~ YEVH"

Thus, we get 7 € CgSE(G) and |7, — 7|V — 0 (n — o0). Therefore,
| IV is complete.

(ii) (€). Let 7 be in C(G) such that sup,cq I7llgsE, o\ (V42) < O°-
Let f € Sp(G), and let f =3""7 | f, be a V-representation such that
supp fn € V 4+ x, for z, € G (n = 1,2,3,...). By Lemma 10.6,
there exists a positive constant M such that, for each n € N, we can
choose an e, ., € A satisfying e, ,, =7 on V 4+, and e, |4 <
M||THBSE,G\(V+zn)v and hence

I7fnlla = llerz, falla < llera,llallfalla < M||T||BSE,G\(V+zn)||fn||A~
Thus, we have

@5) Il < M(sup T ) S [ fulla < oo.

n=1 n=1
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By (25), it is easy to see that there exists a g € A such that ||g —
e fx7lla = 0 (n — o00). Since supp fom C supp fn C V +
for each n € N, g is an element in Sy (G) with a V-representation
g =" faT. Since g = > >° | fuT = f7, we have 7f € Sy (@), and
hence we have 7 € M(Sy (G)).

(2). Choose an element ¢ € A, such that e = 1 on V. Let
T € M(Sy(G)) and zg € G be arbitrary. Since e;, € A. C A;q),
we have (e,,7)(x) = e(z — x0)7(z) = 7(z) for all x € V + zo. Hence,

o<1

. p € span (V + o), [plla- < 1}

(26) HT||BSE,G\(\7+m0)

—sw{| X s

meV+z0
- sup{ S A ewn) @)
< |lex,TlIBsE < [l€x,T]| -

:p € span (V + o), [Ip|

meV+z0

Since ez, 7 € A. C Syp(G), we get [leg,T|la < ez, 7[ly from
Lemma 10.5.

Moreover, |les, |l = |lelly since Sy (G) is isometrically translation-
invariant. Thus, we have from (26) that

27) I lpsmen@aen < lezomlla < lezoTlly < Irllarcsy canlelv-

Since z in (27) is arbitrary in G' we have ||7]|V < 17l azr¢se @y llellv <
Q. a

10.7. Corollary. M(A) & M(Sy(G)).

Proof. By the structure theorem of LCA groups [12, Theorem 24.30],
G is topologically isomorphic to R? x L, where d is a non-negative
integer and L is an LCA group which contains an open compact
subgroup. We divide the proof into two parts: (i) the case d # 0,
where we have G = R x H with H = R?! x L; (ii) the case d = 0,
where G contains an open compact subgroup Gp.

(i) Let 71 be the natural projection of G onto R. For any function
pon R, set ¢ = pom. In this case, we can choose a V', which appears
in the definition of Sy (G), so that 71 (V) C [-1,1]. Let ¢ be a C*°-
function on R such that ¢ = 1 on [1,00) and ¢ = —1 on (—oo, —1].
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Take a C*°-function e in A(R). such that e = 1 on [—3,3]. Then ey is
a C*°-function on R with compact support, and hence ep € A(R) and
so ep € M(A) by Lemma 8.5 (ii).

Let (x0,y0) € G = Rx H be given arbitrarily. By a simple calculation
we have .
€Plv 1 (z0,0) 10l <2,

SZ'VJF(JUO,.UO) =451 xo > 2,
-1 T < —2.
Hence,
(28) (SUP) 1Pl BSE, G\ (V4 (20,50)) < max{|lep|lBsE, [1]|} < oo.
Z0,Yo

If follows that ¢ € M(Sy(G)) from (28) and Theorem 10.3.
)

On the other hand, ¢ ¢ M(A(R)) follows from Lemma 8.7. Hence,
¢ ¢ M(A) follows from Lemma 8.5 (ii). Consequently, the corollary
holds in this case.

(ii) In this case we set V' = G. By Lemma 8.6, there exists a function
¢ € Ajoc which satisfies (i) and (ii) of that lemma. Then it is easy to
see that sup,cq ||¢HBSE,G\(V+90) < oo, and the corollary also holds in
this case. o

10.8. Corollary. Sy (G) is not BSE.
Proof. By Corollary 10.7 and Theorem 9.10, Si-(G) is not BSE. o

10.9. Corollary. Suppose that A = A(G) is the Fourier algebra on
an infinite discrete abelian group G. Let us consider G as a subset of
Ppr(sy (@) tn the natural way. Then ®py(s. (a)) @ homeomorphic to
BG, the Stone-Cech compactification of G. In particular, G is dense in
sy @)

Proof. We take V' = {e}, where e is the identity of G. Then by The-
orem 10.3 (M (Sy(G), || [ ar(sy(cy)) is isomorphic to (Cle(G), || [IV).
For any f € C3(G) and = € G we have

< 1}

5 9010 € span (o). I

I fllBsE,G\{z} = Sup{
ye{z}

= [f(2)].
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Therefore, (Cker(G), || |IV) = (Cb(G), || ||). Since the Gelfand space
of (Co(G),|| |lo) is BG, and the Gelfand transform is the natural
isomorphism of C,(G) onto C(BG), the assertion of this corollary is
observed. m

10.10. Problems. Let G be an LCA group which is neither discrete
nor compact.

(i) Are there any effective representations of ®/(s, (G))?

(ii) Is G dense in @pz (s (a))?

10.11. Proposition. If S is an isometrically translation invariant
Segal algebra in A, we have M(S) C M (S¢(Q)).

Proof. We observe that there is a constant Cy > 0 such that
Ifls < Collflla (f € Ay(@)). Choose an e € A, such that e = 1
on V. Let f € Apy(G) and = € G be such that f, € Ay (G). Then
we have [[flls = [[fells = llefells < llellslfella = llellsl[fll.a. Thus,
the inequality holds with a constant Cy = |le||ls. Let 7 € M(S) be
arbitrary, and let f € Sy (G) with a V-representation f =>"""  f, be
such that supp f, C V +z, for z, € G (n =1,2,3,...). Then we have
from above

I7falla < I7falls < ITllars) fnlls < CollTllas)ll falla
(n=1,2,3,...).

Hence, there is a ¢ € Sy(G) with a V-representation g = > 0 | 7fy.
Since g = Y02 7fn = 7f, we have 7f € Sy(G). Hence 7 €
M(Sy(G)). Thus, M(S) C M(Sy(Q)) follows. O

Acknowledgments. The authors are deeply grateful to the referee,
for a careful reading of the paper and for helpful suggestions and
comments.

ENDNOTES

1. In [14] “BSE” is denoted by “BE.” But this is not preferable and
will cause confusion. In this paper, we use “BSE” as it is originally
defined in [21].
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