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SOME REMARKS CONCERNING THE ATTRACTORS
OF ITERATED FUNCTION SYSTEMS

DAN DUMITRU AND ALEXANDRU MIHAIL

ABSTRACT. The aim of this article is to establish some
conditions under which the attractors of iterated function
systems become dendrites. We associate to an attractor of
an iterated function system a graph and we prove that, for
a large class of iterated function systems, their attractors are
dendrites if and only if the associated graph is a tree. We
also give some examples of such sets.

1. Introduction. We start with a brief presentation of iterated
function systems. Iterated function systems were conceived in the
present form by John Hutchinson in [8], popularized by Michael Barns-
ley in [2] and are one of the most common and general ways to generate
fractals. Many of the important examples of functions and sets with
special and unusual properties turn out to be fractal sets or functions
whose graphs are fractal sets and a great part of them are attractors
of iterated function systems.

There is a current effort to extend the classical Hutchinson’s frame-
work to more general spaces and infinite iterated function systems or,
more generally, to multifunction systems and to study them [4, 10–16,
20–22]. A recent such example can be found in [11], where Lipscomb’s
space, which is an important example in dimension theory, can be ob-
tained as an attractor of an infinite iterated function system defined in
very general settings. In those settings, the attractor can be a closed
and bounded set, in contrast with the classical theory where only com-
pact sets are considered.

Although fractal sets are defined with measure theory, being sets
with noninteger Hausdorff dimension [5, 6], it turns out that they have
interesting topological properties [3, 9]. The topological properties of
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fractal sets have a great importance in analysis on fractals as we can
see in [3, 9]. One of the most important results in this direction, which
states when the attractor of an iterated function system is a connected
set, is given in [9, 15]. Other results on this problem can be found in
[4, 16].

In this article, we intend to find sufficient and necessary conditions
for an attractor of an iterated function system to be a dendrite. These
conditions are necessary for a large class of iterated function systems.
The paper is divided into four sections. The first section is the
introduction. In the second section the description of the shift space of
an iterated function system is given. The main result, Theorem 3.1, is
contained in the third section. The last section contains some examples:
Hata’s tree-like set, the Cross set and others.

For a metric space (X, d), we denote by K(X) the set of nonempty
compact subsets of X. For a set A ⊂ X, we denote by d(A) the
diameter of A, that is d(A) = supx,y∈A d(x, y).

Definition 1.1. Let (X, d) be a metric space. The function h :
K(X)×K(X) → [0,+∞) defined by h(A,B) = max(d(A,B), d(B,A)),
where d(A,B) = supx∈A d(x,B) = supx∈A( inf

y∈B
d(x, y)) is called the

Hausdorff-Pompeiu metric.

The definition of the metric in the present form was introduced by
Hausdorff [6, page 463] in 1914, where he indicates Pompeiu as the
author of the notion. Pompeiu developed his ideas about this metric in
his thesis [17] in 1905, where he needed to measure distance between
compact sets in the complex plane.

Remark 1.1. [1, 2, 11, 19]. (K(X), h) is a complete metric space
if (X, d) is a complete metric space, compact if (X, d) is compact and
separable if (X, d) is separable.

Definition 1.2. Let (X, d) be a metric space. For a function f : X →
X, let us denote by Lip (f) ∈ [0,+∞] the Lipschitz constant associated
with f , which is Lip (f) = supx,y∈X; x ̸=y[d(f(x), f(y))]/d(x, y). We say
that f is a Lipschitz function if Lip (f) < +∞ and a contraction if
Lip (f) < 1.
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Definition 1.3. An iterated function system on a metric space (X, d)
consists of a finite family of contractions (fk)k=1,n on X, and it is

denoted by S = (X, (fk)k=1,n).

Definition 1.4. For an iterated function system S = (X, (fk)k=1,n),

the function FS : K(X) → K(X) defined by FS(B) = ∪n
k=1fk(B)

is called the fractal operator associated with the iterated function
system S.

Remark 1.2. [1, 2, 5, 6, 19]. The function FS is a contraction
satisfying Lip (FS) ≤ maxk=1,n Lip (fk).

Using Banach’s contraction theorem there exists, for an iterated
function system S = (X, (fk)k=1,n), a unique set A(S) such that

FS(A(S)) = A(S), which is called the attractor of the iterated function
system S. More precisely, we have the following well-known result.

Theorem 1.1. [1, 2, 5, 6, 19]. Let (X, d)be a complete metric
space and S = (X, (fk)k=1,n) an iterated function system with c =

maxk=1,n Lip (fk) < 1. Then there exists a unique set A(S) ∈ K(X)

such that FS(A(S)) = A(S). Moreover, for any H0 ∈ K(X), the
sequence (Hn)n≥1 defined by Hn+1 = FS(Hn) is convergent to A(S).
For the speed of the convergence we have the following estimate

h(Hn, A(S)) ≤
cn

1− c
h(H0,H1).

Definition 1.5. 1) By a graph we understand a pair (I,G), where I is
a nonempty set and G is a subset of the set {{i, j} | i, j ∈ I and i ̸= j}.

2) A graph (I,G) is called connected if, for every i, j ∈ I, there
exists (ik)k=1,n ⊂ I such that i1 = i, in = j and {ik, ik+1} ∈ G for

every k ∈ {1, 2, . . . , n− 1}.
3) Let (I,G) be a graph. A family of vertices (i1, . . . , im) is a cycle

if {ik, ik+1} ∈ G for every k ∈ {1, . . . , n} and ik /∈ {ik+1, ik+2} for
every k ∈ {1, . . . , n}, where by im+1 we understand i1, by im+2 we
understand i2, and so on.

4) A graph (I,G) is called a tree if it is connected and has no cycles.
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Remark 1.3. We remark that a cycle has at least three elements.

Definition 1.6. Let X be a nonempty set and (Ai)i∈I a family of
nonempty subsets of X. Then:

1) The graph (I,G), where G = {{i, j} | i, j ∈ I such that
Ai ∩ Aj ̸= ∅ and i ̸= j} is called the graph of intersections
associated with the family (Ai)i∈I .

2) The family (Ai)i∈I is said to be connected if, for every i, j ∈
I, there exists (ik)k=1,n ⊂ I such that i1 = i, in = j

and Aik ∩ Aik+1
̸= ∅ for every k ∈ {1, 2, . . . , n − 1}. If a

family (Ai)i∈I is not connected, we say that it is disconnected.
The family (Ai)i∈I is connected if and only if the graph of
intersections (I,G) is connected.

3) The family (Ai)i∈I is said to be a tree of sets if, for every
i, j ∈ I such that i ̸= j, there exists a unique sequence
(ik)k=1,n ⊂ I with i1, i2, . . . , in different such that i1 = i, in = j

and Aik ∩Aik+1
̸= ∅ for every k ∈ {1, 2, . . . , n− 1}. The family

(Ai)i∈I is a tree of sets if and only if the graph of intersections
(I,G) is a tree.

4) On the family of sets (Ai)i∈I , we consider the following equiva-
lence relation: Ai ∼ Aj if and only if there exists (ik)k=1,n ⊂ I

such that i1 = i, in = j and Aik ∩ Aik+1
̸= ∅ for every

k ∈ {1, 2, ] . . . , n−1}. A component of the family of sets (Ai)i∈I

is a class of equivalence which corresponds to a connected sub-
graph of the graph of intersections of the family (Ai)i∈I .

Remark 1.4. If the family (Ai)i∈I is a tree of sets then the intersection
of three different sets of the family is empty.

Definition 1.7. A metric space (X, d) is arcwise connected if, for
every x, y ∈ X, there exists a continuous function φ : [0, 1] → X
such that φ(0) = x and φ(1) = y. A continuous function φ as
above is called a path between x and y. We say that two continuous,
injective functions φ,ψ : [0, 1] → X are equivalent if there exists a
function u : [0, 1] → [0, 1] continuous, bijective and increasing such
that φ ◦ u = ψ. A class of equivalence is named a curve.
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Remark 1.5. We remark that two equivalent, continuous, injective
functions have the same images.

Concerning the connectedness of the attractor of an iterated function
system we have the following theorem.

Theorem 1.2. [9, 23]. Let (X, d) be a complete metric space, S =
(X, (fk)k=1,n) an iterated function system with c = maxk=1,n Lip (fk) <

1 and A(S) the attractor of S.Then the following are equivalent :

1) The family (Ai)i=1,n is connected, where Ai = fi(A(S)) for

every i ∈ {1, . . . , n}.
2) A(S) is arcwise connected.
3) A(S) is connected.

Definition 1.8. A metric space (X, d) is called totally disconnected if
its only connected subspaces are one-point sets.

2. The shift space of an iterated function systems. In this
section we briefly present the shift space of an iterated function system.
For more details, one can see [2, 14, 19]. We start with some
set notations: N denotes the natural numbers, N∗ = N − {0},
N∗

n = {1, 2, . . . , n}. For two nonempty sets A and B, BA denotes
the set of functions from A to B. By Λ = Λ(B) we will understand
the set BN∗

and by Λn = Λn(B) we will understand the set BN∗
n .

The elements of Λ = Λ(B) = BN∗
will be written as infinite words

ω = ω1ω2 · · ·ωmωm+1 · · · , where ωm ∈ B and the elements of Λn =
Λn(B) = BN∗

n will be written as finite words ω = ω1ω2 · · ·ωn. By
λ, we will understand the empty word. Let us remark that Λ0(B)
= {λ}. By Λ∗ = Λ∗(B), we will understand the set of all finite words
Λ∗ = Λ∗(B) = ∪n≥0Λn(B). We denote by |ω| the length of the word
ω. An element of Λ = Λ(B) is said to have length +∞.

If ω = ω1ω2 · · ·ωmωm+1 · · · or if ω = ω1ω2 · · ·ωn and n ≥ m, then
[ω]m := ω1ω2 · · ·ωm. More generally if l < m, [ω]lm = ωl+1ωl+2 · · ·ωm

and we have [ω]m = [ω]l[ω]
l
m for ω ∈ Λn(B), if n ≥ m > l ≥ 1 and

for ω ∈ Λ(B), if m > l ≥ 1. For two words α, β ∈ Λ∗(B) ∪ Λ(B),
α ≺ β means |α| ≤ |β| and [β]|α| = α. For α ∈ Λn(B) and
β ∈ Λm(B) or β ∈ Λ(B) by αβ we will understand the joining of the



484 DAN DUMITRU AND ALEXANDRU MIHAIL

words α and β, namely, αβ = α1α2 · · ·αnβ1β2 · · ·βm and, respectively,
αβ = α1α2 · · ·αnβ1β2 · · ·βmβm+1 · · · .

On Λ = Λ(N∗
n) = (N∗

n)
N∗

, we can consider the metric ds(α, β) =∑∞
k=1(1− δβk

αk
)/3k, where

δyx =

{
1 if x = y
0 if x ̸= y

, α = α1α2 · · · and β = β1β2 · · · .

Let (X, d) be a complete metric space, S = (X, (fk)k=1,n) an iterated

function system on X and A = A(S) the attractor of the iterated
function system S. For ω = ω1ω2 · · ·ωm ∈ Λm(N∗

n), fω denotes
fω1 ◦ fω2 ◦ · · · ◦ fωm and Hω denotes fω(H) for a subset H ⊂ X. By
Hλ, we will understand the set H. In particular, Aω = fω(A).

The main results concerning the relation between the attractor of
an iterated function system and the shift space is contained in the
following theorem.

Theorem 2.1. [2, 19]. Let (X, d) be a complete metric space. If A =
A(S) is the attractor of the iterated function system S = (X, (fk)k=1,n),
then:

1) For ω ∈ Λ = Λ(N∗
n), s we have A[ω]m+1

⊂ A[ω]m and
d(A[ω]m) → 0 when m → ∞; more precisely, d(A[ω]m) ≤
cmd(A).

2) If aω is defined by {aω} = ∩m≥1A[ω]m , then d(e[ω]m , aω) → 0
when m→ ∞, where e[ω]m is the unique fixed point of f[ω]m .

3) A = A(S) = ∪ω∈Λ{aω}, Aα = ∪ω∈Λ{aαω} for every α ∈ Λ∗,
A = ∪ω∈ΛmAω for every m ∈ N∗ and more general Aα =
∪ω∈Λm∪Aαω for every α ∈ Λ∗ and every m ∈ N∗.

4) The set {e[ω]m | ω ∈ Λ and m ∈ N∗} is dense in A.
5) The function π : Λ → A defined by π(ω) = aω is continuous

and surjective.

Definition 2.1. The function π : Λ → A = A(S) from Theorem 2.1.
is called the canonical projection from the shift space on the attractor
of the iterated function system S.

3. Main results. The aim of this article is to establish necessary
and sufficient conditions under which the attractor of an iterated
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function system becomes a dendrite. We will start with some general
properties of the dendrites.

Definition 3.1. The metric space (X, d) is called a dendrite if, for any
x, y ∈ X, there exists a unique equivalence class of continuous, injective
functions φ : [0, 1] → X such that φ(0) = x and φ(1) = y (i.e., there
exists a unique injective curve joining x with y). We also consider that
the empty set is a dendrite.

Lemma 3.1. Let (X, d) be a dendrite and B a subset of X. Then B
is a dendrite if and only if B is arcwise connected.

Lemma 3.2. Let (X, d) be a dendrite and A1, A2, . . . , An subsets of
X such that A1, A2, . . . , An are dendrites. Then A1 ∩ A2 ∩ · · · ∩ An is
a dendrite.

Proof. If ∩n
i=1Ai = ∅, then it is a dendrite. If ∩n

i=1Ai ̸= ∅, then we
denote the set A1∩A2∩· · ·∩An by B, and we consider x, y ∈ B. Thus,
x, y ∈ Aj , for every j ∈ {1, . . . , n}. So, for all j ∈ {1, . . . , n}, there exist
the continuous, injective functions φj : [0, 1] → Aij such that φj(0) = x
and φj(1) = y. Since X is a dendrite, φ1, . . . , φm must be equivalent,
which means that φ1([0, 1]) = · · · = φm([0, 1]) ⊂ B. It follows that B
is arcwise connected and, from Lemma 3.1, B is a dendrite. �

Corollary 3.1. Let (X, d) be a complete metric space and S = (X,
(fk)k=1,n) an iterated function system. We denote by A the attractor

of S and by Ak the set fk(A) for every k ∈ {1, . . . , n}. We suppose
that fk is an injective function on A for every k ∈ {1, . . . , n} and
A is a dendrite. Then Ai1 ∩ Ai2 ∩ · · · ∩ Aim is a dendrite for every
i1, . . . , im ∈ {1, . . . , n}.

Proof. Let us suppose that A is a dendrite. Since fk is injective
on A, it follows that Ak = fk(A) is also a dendrite. If ∩m

j=1Aij = ∅,
then it is a dendrite by definition and, if ∩m

j=1Aij ̸= ∅, we can apply
Lemma 3.2 to (A, d|A) and Ai1 , Ai2 , . . . , Aim . �

Lemma 3.3. Let (X, d) be a complete metric space such that X =
∪n
i=1Ai with Ai compact sets satisfying card (Ai ∩ Aj) ∈ {0, 1} for

every i, j ∈ {1, . . . , n} different. We suppose that ({1, . . . , n}, G), the
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graph of intersections associated with the family (Ai)i=1,n, is a tree.

Then for any continuous, injective function φ : [0, 1] → X such that
there exists an l ∈ {1, . . . , n} for which φ(0) ∈ Al and φ(1) ∈ Al, we
have that φ([0, 1]) ⊂ Al.

Proof. Let φ : [0, 1] → X be an injective path such that φ(0) ∈ Al

and φ(1) ∈ Al, where l ∈ {1, . . . , n}. We remark first that Al has at
least two elements since φ is injective. If one of the sets, namely Aj ,
has one element, it follows that Aj ⊂ ∪n

i=1;i ̸=jAi, since the family of

sets (Ai)i=1,n is connected and so Aj ∩ (∪n
i=1;i ̸=jAi) ̸= ∅. Therefore,

we can suppose that the sets Ai have at least two elements for all
i ∈ {1, . . . , n}.

Let us suppose that there exists a t ∈ (0, 1) such that φ(t) /∈ Al. It
results that t ∈ Aj for j ∈ {1, . . . , n}\{l}. Then there exists a unique
sequence (ik)k=1,m ⊂ I such that i1 = l, im = j, Aik ∩ Aik+1

̸= ∅,
k ∈ {1, . . . ,m − 1} and i1, . . . , im are different. Let a be such that
{a} = Ai1 ∩ Ai2 . Then there exists t1 ∈ (0, t) such that φ(t1) = a.
Indeed, if we suppose that a /∈ φ([0, t]), then φ([0, t]) ⊂ ∪n

i=1Ai\{a}.
We consider the sets Ãi = Ai\{a} for i ∈ {1, . . . , n}. Since the family
of sets (Ai)i=1,n is a tree, it results from Remark 1.4. that the family

of sets (Ãi)i=1,n is disconnected and the sets Ãl and Ãj belong to

different connected components of the family of sets (Ãi)i=1,n. Let

(Ãi)i∈J be the connected component which contains the set Ãj . We

consider B = ∪i∈J Ãi and C = ∪n
i=1;i/∈J Ãi. Then φ(0) ∈ Ãl ⊂ C,

φ(1) ∈ Ãj ⊂ B, φ([0, t]) ⊂ B ∪ C and B ∩ C = B ∩ C = ∅. This
is in contradiction with the fact that φ([0, t]) is a connected set. In
a similar way there exists t2 ∈ (t, 1) such that φ(t2) = a. Hence
φ(t1) = φ(t2) = a and t1 < t2 which is a contradiction with the fact
that φ is injective. �

Lemma 3.4. Let [a, b] and [a1, b1]be two intervals of real numbers,
A ⊂ [a, b] and A1 ⊂ [a1, b1] two dense sets and v : A → A1 a bijective
and increasing function. Then there exists a unique, continuous,
increasing and bijective function u : [a, b] → [a1, b1] such that u|A = v.

Proof. We define the function u by u(a)=a1 and u(x)=supy∈A;y≤x

v(y) for every x ∈ [a, b]. Then we have the following:
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1) If x ∈ A, then u(x) = supy∈A;y≤x v(y) = v(x) and so u|A = v.
2) Let c, d ∈ [a, b], c < d. Then there exist c′, d′ ∈ A such that

c < c′ < d′ < d. We have that u(c) ≤ u(c′) = v(c′) < v(d′) =
u(d′) ≤ u(d), and thus u is increasing and injective.

3) Let d ∈ [a1, b1]. If d = a1, then d = u(a) and, if d ̸= a1, then
d = supy∈A1;y≤d y = supz∈A;v(z)≤d v(z) = u(supz∈A;v(z)≤d z).
Therefore, u is surjective.

4) u is continuous since every bijective and increasing function
between two closed intervals is continuous. �

Lemma 3.5. Let (X, d) be a metric space and φ, φ′ : [0, 1] → X
continuous, injective functions such that there exist two sequences
of divisions of the interval [0, 1], (∆l)l∈N ∈ D([0, 1]) and (∆′

l)l∈N ∈
D([0, 1]), with the following properties:

a) ∆l ⊂ ∆l+1 and ∆′
l ⊂ ∆′

l+1 for every l ∈ N,

b) ∆l = (0 = yl0 < yl1 < · · · < ylnl
= 1)and ∆′

l = (0 = zl0 < zl1 <

· · · < zlnl
= 1) have the same number of elements for every

l ∈ N,

c) ∥∆l∥
l→∞→ 0 and ∥∆′

l∥
l→∞→ 0, where ∥∆∥=maxk=0,n−1 |yk+1 −

yk|, if ∆ = (a = y0 < y1 < · · · < y
l
= b) is a division of some

interval [a, b], a, b ∈ R, a < b,
d) φ(ylk) = φ′(zlk) for every l ∈ N and k ∈ {0, 1, . . . , nl}.

Then there exists a unique, continuous, bijective and increasing func-
tion u : [0, 1] → [0, 1] such that φ′◦u = φ (i.e., φ and φ′ are equivalent).

Proof. Let ∆ = ∪l≥1∆l and ∆′ = ∪l≥1∆
′
l. Then ∆ and ∆′ are dense

in [0, 1]. Let v : ∆ → ∆′ be defined by v(ylk) = zlk for every k, l ∈ N.
Then v is well defined, increasing, bijective, φ′|∆′ ◦ v = φ|∆ and, from
Lemma 3.4, there exists a unique function u : [0, 1] → [0, 1] continuous,
bijective and increasing such that u|∆ = v. From the continuity of the
functions φ′, φ and u we have φ′ ◦ u = φ. �

Theorem 3.1. Let (X, d) be a complete metric space and S = (X,
(fk)k=1,n) an iterated function system. We denote by A the attractor

of S, by Ak the set fk(A) for every k ∈ {1, . . . , n} and by ({1, . . . , n}, G)
the graph of intersections associated with the family of sets (Ak)k=1,n.
We suppose that the following conditions are true:
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a) Ai ∩ Aj is totally disconnected for every i, j ∈ {1, 2, . . ., n}
different,

b) Ai ∩Aj ∩Ak = ∅ for every i, j, k ∈ {1, 2, . . . , n} different,
c) fk is an injective function on A for every k ∈ {1, 2, . . . , n}.

Then the following statements are equivalent :

1) A is a dendrite.
2) The graph ({1, . . . , n}, G) is a tree and card (Ai ∩ Aj) ∈ {0, 1}

for every i, j ∈ {1, 2, . . . , n} different.

Proof. 1) ⇒ 2). We know that A is a dendrite and therefore A is
connected. From Theorem 1.2 it follows that G is connected. From
Corollary 3.1 it follows that Ai ∩ Aj is a dendrite if Ai ∩ Aj ̸= ∅ and
i, j ∈ {1, . . . , n} different. Since Ai ∩Aj is also totally disconnected we
have that card (Ai ∩ Aj) ∈ {0, 1} for every i, j ∈ {1, . . . , n} different.
To prove that ({1, . . . , n}, G) is a tree, it is enough to prove that
({1, . . . , n}, G) has no cycles.

If Ai ∩ Aj ̸= ∅ and i ̸= j, then we denote by aij the element of A
defined by {aij} = Ai ∩ Aj . Let us suppose that there exists a cycle
(i1, . . . , im) in ({1, . . . , n}, G). We can choosem to be minimal with this
property. This involves m ≥ 3, i1, . . . , im do not repeat, Aij ∩Aij+1 ̸= ∅
and Aij ∩ Ail = ∅ for every l, j ∈ {1, . . . ,m} such that l ̸= j − 1 and
l ̸= j + 1, where im+1 = i1, im+2 = i2 and so on. If Aij ∩ Ail ̸= ∅ for
j < l and l ̸= j+1, it follows that (il, . . . , ij−1) is a cycle and therefore
m is not minimal, which is a contradiction.

We denote by b1 = ai1i2 , b2 = ai2i3 , . . . , bm = aimim+1 , where
im+1 = i1. We remark that the elements b1, b2, . . . , bm are different
because Ai∩Aj∩Ak = ∅ for every i, j, k ∈ {1, . . . , n} different. Since A
is a dendrite and the functions fk are injective for every k ∈ {1, . . . , n},
it follows that Aij is a dendrite for every j ∈ {1, . . . ,m}. Thus, there
exist the continuous, injective functions φj : [0, 1] → Aij such that
φj(0) = bj−1 and φj(1) = bj for every j ∈ {2, . . . ,m}.

We consider now the function φ : [0, 1] → Ai2 ∪ Ai3 ∪ · · · ∪ Aim

defined by:
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φ(x) =


φi2((m− 1)x), x ∈ [0, 1

m−1 ),

φi3((m− 1)x− 1), x ∈ [ 1
m−1 ,

2
m−1 ),

φi4((m− 1)x− 2), x ∈ [ 2
m−1 ,

3
m−1 ),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
φim((m− 1)x− (m− 2)), x ∈ [m−2

m−1 , 1].

We will prove that φ is a continuous and injective function on [0, 1].
i) Continuity. φ is obviously continuous on [0, 1]\{i/(m− 1) | i ∈
{1, . . . ,m− 2}}. But

lim
x↗k/(m−1)

φ(x) = lim
x↗k/(m−1)

φik((m− 1)x− k + 1) = φik(1) = bk

and

φ

(
k

m− 1

)
= lim

x↘k/(m−1)
φ(x)

= lim
x↘k/(m−1)

φik+1
((m− 1)x− k + 2)

= φik+1
(0) = bk.

So φ is continuous in the points x = k/(m− 1) for every k ∈ {1, . . . ,m−
2}, and thus it is continuous on [0, 1].

ii) Injectivity. Let us remark that φ(k/(m− 1)) = bk = φik+1
(0) =

φik(1) and

φ−1
ii

(Aij ) =


[0, 1], if i = j
0, if i = j + 1,
1, if i = j − 1,
∅, otherwise.

Hence, φ−1(Aii) = [(i− 2)/(m− 1), (i− 1)/(m− 1)]. We suppose that
there exist two points x, y ∈ [0, 1] such that φ(x) = φ(y). Since
φ(x) ∈ Ai2∪Ai3∪· · ·∪Aim , there exists k ∈ {2, . . . ,m} such that φ(x) =
φ(y) ∈ Aik , which implies x, y ∈ [(k − 2)/(m− 1), (k − 1)/(m− 1)].
Then φ(x) = φik((m−1)x− (k−2)) = φ(y) = φik((m−1)y− (k−2)),
which implies x = y, since φik is injective.

We return now to our proof. On one side we have φ([0, 1]) ∩ Ai1 =
{b1, bm} and on the other side, since Ai1 is a dendrite, there exists a
continuous, injective function ψ : [0, 1] → Ai1 such that ψ(0) = b1
and ψ(1) = bm.. It follows that there are two continuous, injective
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functions φ and ψ joining b1 to bm. Since A is a dendrite, φ([0, 1]) ⊂ A
and ψ([0, 1]) ⊂ A, we have φ([0, 1]) = ψ([0, 1]). It results that
φ([0, 1]) = ψ([0, 1]) ⊂ Ai1 ∩ (Ai2 ∪ Ai3 ∪ · · · ∪ Aim) = {b1, bm}, which
is a contradiction. It follows that ({1, . . . , n}, G) does not contain any
cycles and therefore it is a tree.

2) ⇒ 1). Since ({1, . . . , n}, G) is a tree, it results that ({1, . . . , n}, G)
is connected. From Theorem 2.1 it follows that A is arcwise connected.
We will prove that A is a dendrite.

Let x, y ∈ A, x ̸= y. We suppose that there exist two continuous,
injective functions φ,ψ : [0, 1] → A such that φ(0) = ψ(0) = x and
φ(1) = ψ(1) = y. To prove that A is a dendrite, it is enough to prove
that φ and ψ are equivalent. We intend to use Lemma 3.5 to prove the
equivalence. For that, we will construct inductively after l ∈ N two
sequences (∆l)l≥0 and (∆′

l)l≥0 of divisions of the unit interval [0, 1]
such that:

I) ∆l ⊂ ∆l+1 and ∆′
l ⊂ ∆′

l+1 for every l ∈ N,

II) ∆l = (0 = yl0 < yl1 < · · · < ylnl
= 1) and ∆′

l = (0 = zl0 <

zl1 < · · · < zlnl
= 1) (i.e., ∆l and ∆′

l have the same number of
elements for every l ∈ N),

III) φ(ylk) = ψ(zlk) for every l ∈ N and k ∈ {0, . . . , nl},
IV) For every l ∈ N and k ∈ {0, . . . , nl − 1}, there exists an

ωl
k ∈ Λml

k
(N∗

n) such that:

i) ml
k ≥ l,

ii) ωl
k ≺ ωl+1

k′ , if yl+1
k′ ∈ [ylk, y

l
k+1),

iii) φ(ylk), φ(y
l
k+1) ∈ Aωl

k
for every l ∈ N and k ∈ {0, . . . , nl − 1}.

We remark that IV) ii) implies ωl
k ≺ ωl′

k′ , if l′ ≥ l and yl
′

k′ ∈ [ylk, y
l
k+1)

for every l, l′ ∈ N, k ∈ {0, . . . , nl − 1} and the points I)–IV) imply that

∥∆l∥
l→∞−→ 0 and ∥∆′

l∥
l→∞−→ 0.

Indeed, we have that ∥∆l∥ ≥ ∥∆l+1||. Let ε = liml→∞ ∥∆l∥ ≥ 0. We
suppose by contradiction that ε > 0. Let δµ = inf

x,y∈[0,1];|x−y|≥µ
d(φ(x),

φ(y)) for every µ ∈ [0, 1). Since φ is injective and [0, 1] is a
compact set, we have that δµ > 0 for every µ > 0. We de-
note cl = maxk=0,nl−1 d(φ(y

l
k+1), φ(y

l
k)). On the one hand, since
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φ(ylk), φ(y
l
k+1)∈ Aωl

k
and |ωl

k| = ml
k ≥ l, we have that

cl = max
k=0,nl−1

d(φ(ylk+1), φ(y
l
k)) ≤ max

k=0,nl−1
d(Aωl

k
)

≤ max
k=0,nl−1

(cm
l
kd(A)) ≤ cld(A),

where c = maxk=1,n Lip (fk) < 1. On the other hand,

cl = max
k=0,nl−1

d(φ(ylk+1), φ(y
l
k)) ≥ δ∥∆l∥ ≥ δε.

Therefore, 0 < δε ≤ liml→∞ cld(A) = 0, which is a contradiction. It
follows that ε = 0.

We return now to the construction of the divisions (∆l)l≥0, (∆
′
l)l≥0

with the properties I)–IV). We will do that by induction, in three steps.

First step. Let ∆0 = (y00 = 0 < y01 = 1) and ∆′
0 = (z00 = 0 < z01 = 1).

We have φ(y00) = φ(0) = ψ(0) = ψ(z00) = x and φ(y01) = φ(1) = ψ(1) =
ψ(z01) = y. We take ω0

0 = λ.

Second step. We know that A = ∪n
k=1fk(A) = ∪n

k=1Ak. Since
x, y ∈ A, it follows that there exist i(x), i(y) ∈ {1, . . . , n} such that
x ∈ Ai(x) and y ∈ Ai(y). We have two cases:

1) For every i, j ∈ {1, . . . , n} such that x ∈ Ai and y ∈ Aj , we
have i ̸= j.

In this case we choose i(x), i(y) ∈ {1, . . . , n} such that x ∈ Ai(x) and
y ∈ Ai(y). Since ({1, . . . , n}, G) is a tree and card (Ai ∩Aj) ∈ {0, 1} for
every i, j different, the sets Ai(x) and Ai(y) are joined by a unique chain
of sets {Aij}j=1,m such that i(x) = i1, i(y) = im, Aij ∩ Aij+1 = {aj}
for every j ∈ {1, . . . ,m − 1} and i1, i2, . . . , im are different. From
hypothesis b), it results that Aij ∩ Aik ∩ Ail = ∅ for every j, k, l ∈
{1, . . . ,m} different and that ai1 , ai2 , . . . , aim−1 are different.

We first suppose that x ̸= ai1 and y ̸= aim−1
. The functions φ

and ψ, which are joining x and y, have to pass through {aj} for every
j ∈ {1, . . . ,m − 1}. Thus, there exist y1j ∈ (0, 1) and z1j ∈ (0, 1)

such that φ(y1j ) = ψ(z1j ) = aj . We remark that, since φ and ψ are

injective, the points y1j and z1j are uniquely determined. We also

remark that y1j < y1j+1 and z1j < z1j+1 for every j ∈ {1, . . . ,m − 2}
and that the families of points {y1j | j ∈ {1, . . . ,m − 1}} ∪ {0, 1}
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and {z1j | j ∈ {1, . . . ,m − 1}} ∪ {0, 1} form divisions of the interval

[0, 1], namely, ∆1 = (0 = y10 < y11 < · · · < y1m−1 < y1m = 1) and
∆′

1 = (0 = z10 < z11 < · · · < z1m−1 < z1m = 1). We take ω1
k = ik ∈ Λ1 for

every k ∈ {0, . . . ,m− 1}.

If x ̸= ai1 and y = ain1−1 , then y1m−1 = z1m−1 = 1, and we take

∆1 = (0 = y10 < y11 < · · · < y1m−1 = 1) and ∆′
1 = (0 = z10 < z11 <

· · · < z1m−1 = 1). The case x = ai1 , y = ain1−1 and the case x = ai1 ,
y ̸= ain1−1 can be treated in a similar way.

2) There exists i ∈ {1, . . . , n} such that x ∈ Ai and y ∈ Ai.

Let p = sup{j ∈ N∗ | there exist α, β ∈ Λ(N∗
n) such that α1 = β1,

α2 = β2, . . . , αj−1 = βj−1, αj ̸= βj and π(α) = x, π(β) = y},
where π : Λ → A is the canonical projection. We remark first that
p ∈ N. If not, for every l ∈ N there exist α, β ∈ Λ(N∗

n) such that
α1 = β1, α2 = β2, . . . , αl = βl, π(α) = x and π(β) = y. It follows
that x, y ∈ Aα1α2···αl

and so d(x, y) ≤ d(Aα1α2···αl
) ≤ cld(A) for every

l ∈ N, where c = maxk=1,n Lip (fk) < 1. Therefore, x = y, which is a
contradiction.

Hence, there exist α1, . . . , αp−1 ∈ {1, . . ., n} such that x, y ∈
Aα1···αp−1 . Moreover x ∈ Aα1···αp−1αp and y ∈ Aα1···αp−1βp . It follows
that αp ̸= βp and there exist x′, y′ ∈ A such that fα1···αp−1(x

′) = x and

fα1···αp−1(y
′) = y, where x′ ∈ Aαp and y′ ∈ Aβp . Let φ

′ = f−1
α1···αp−1

◦φ
and ψ′ = f−1

α1···αp−1
◦ ψ. Then x′ and y′ fulfill the conditions from

case 1), and we can apply the same reasoning for φ′ and ψ′. Thus,
there exist ∆1 = (0 = y10 < y11 < · · · < y1n1−1 < y1n1

= 1) and

∆′
1 = (0 = z10 < z11 < · · · < z1n1−1 < z1n1

= 1) two divisions of [0, 1] such

that φ′(y1i ) = ψ′(z1i ) for every i ∈ {0, . . . , n1}. There also exists ω̃1
k ∈

Λ1(N
∗
n) such that φ′(y1k), φ

′(y1k+1) ∈ Aω̃1
k
for every k ∈ {0, . . . , n1 − 1}.

Then φ(y1i ) = fα1···αp−1 ◦ φ′(y1i ) = fα1···αp−1 ◦ ψ′(z1i ) = ψ(z1i ) for every

i ∈ {0, . . . , n1}. Let ω1
k = α1 · · ·αp−1ω̃

1
k ∈ Λp(N

∗
n) and m1

k = p. We
have that φ(y1k), φ(y

1
k+1) ∈ Aω1

k
for every i ∈ {0, . . . , n1 − 1}.

Third step (The induction step). Let us suppose that we have defined
∆j and ∆′

j with the properties I)–IV), ∆l = (0 = yl0 < yl1 < · · · < ylnl
=

1) and ∆′
l = (0 = zl0 < zl1 < · · · < zlnl

= 1) for every j ∈ {1, . . . , l},
and let i ∈ {0, . . . , nl − 1} be fixed. Then we have ωl

i ∈ Λml
i
(N∗

n),
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φ(yli) = ψ(zli), φ(y
l
i+1) = ψ(zli+1) ∈ Aωl

i
= fωl

i
(A) and ml

i ≥ l. Let

x′, y′ ∈ A be such that fωl
i
(x′) = φ(yli) and fωl

i
(y′) = φ(yli+1).

We set φl
i = f−1

ωl
i

◦ φ|[yl
i,y

l
i+1]

and ψl
i = f−1

ωl
i

◦ ψ|[yl
i,y

l
i+1]

. Then

x′ and y′ fulfill the conditions of the second step, case 1), the only
difference is that the interval [0, 1] is replaced by [yli, y

l
i+1] and by

[zli, z
l
i+1]. As in the second step one can find divisions ∆l+1

i = (yli =

yl+1
i,0 < yl+1

i,1 < · · · < yl+1
i,nl,i

= yli+1) of the interval [yli, y
l
i+1] and

∆′l+1
i = (zli = zl+1

i,0 < zl+1
i,1 < · · · < zl+1

i,nl,i
= zli+1) of the interval

[zli, z
l
i+1] such that φl

i(y
l+1
i,k ) = ψl

i(z
l+1
i,k ) for every k ∈ {0, . . . , nl,i} and,

for every k ∈ {0, . . . , nl,i − 1}, there exists an ωl,i
k ∈ Λml,i

k
(N∗

n) such

that ml,i
k ≥ 1 and φl

i(y
l+1
i,k ), φl

i(y
l+1
i,k+1) ∈ Aωl,i

k
.

We have that φ(yl+1
i,k ) = fωl

i
◦ φl

i(y
l+1
i,k ) = fωl

i
◦ ψl

i(z
l+1
i,k ) = ψ(zl+1

i,k ) ∈
fωl

i
(Aωl,i

k
) = Aωl

kω
l,i
k

and φ(yl+1
i,k+1) = fωl

i
◦φl

i(y
l+1
i,k+1) = fωl

i
◦ψl

i(z
l+1
i,k+1) =

ψ(zl+1
i,k+1) ∈ fωl

i
(Aωl,i

k
) = Aωl

kω
l,i
k
, where ωl,i

k ω
l,i
k ∈ Λml

k+ml,i
k
(N∗

n) and

ml
k +ml,i

k ≥ l+ 1 for every k ∈ {0, . . . , nl,i − 1}. Let ∆l+1 = ∪i∆
l
i and

∆′
l+1 = ∪i∆

′l
i . It is easy to see that the divisions (∆l)l≥0 and (∆

′

l)l≥0 of
[0, 1] constructed in this way have the desired properties. Thus, from
Lemma 3.5, it results that φ and φ′ are equivalent and the proof is
fulfilled. �

4. Examples.

Example 4.1. (Hata’s tree-like set). Let X = C. We set f1(z) = cz
and f2(z) = (1− |c|2)z + |c|2, where c ∈ C and |c|, |1− c| ∈ (0, 1). The
attractor of the iterated function system formed with these functions is
called Hata’s tree-like set, and it is denoted by K. We put A1 = f1(K)
and A2 = f2(K). To prove that the conditions of Theorem 3.1 are
fulfilled, we can easily observe that:

a) A1 ∩A2 = f1(K) ∩ f2(K) = {|c|2},
b) Ai∩Aj ∩Aj = ∅ for i, j, k ∈ {1, 2} different, because we cannot

choose such indices.
c) f1 and f2 are one-to-one functions.

Also the graph ({1, 2}, G), where G = {(i, j) ∈ {1, 2} × {1, 2} |
Ai ∩ Aj ̸= ∅} consists of a single edge (1, 2), thus it is a tree and
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A1∩A2 = {|c|2} implies card (A1∩A2) = 1. Hence, using Theorem 3.1,
K is a dendrite.

Example 4.2. (The cross set). Let X = C and A = {z = x + iy ∈
C | |x| + |y| ≤ 1}. We consider the functions fj : C → C,
where j ∈ {0, . . . , 4} defined by f0(z) = z/3, f1(z) = (z/3) + (2/3),
f2(z) = (z/3)+(2i)/3, f3(z) = (z/3)−(2/3) and f4(z) = (z/3)−(2i)/3.
The attractor of the iterated function system S = (C, (f0, f1, f2, f3, f4))
is called the cross, and it is denoted by A(S). The fixed points of
the functions f0, f1f2, f3, f4 are 0, 1, i,−1,−i and so 0, 1, i,−1,−i ∈
A(S). We remark that f0(A) = A/3, f1(A) = A/3 + 2/3 ⊂ A,
f2(A) = A/3 + (2i)/3 ⊂ A, f3(A) = (A/3) − (2/3) ⊂ A and
f4(A) = (A/3) − (2i)/3 ⊂ A. Therefore, FS(A) ⊂ A and A(S) ⊂ A.
Also, f1(A(S))∩ f3(A(S)) ⊂ ((A/3) + (2/3))∩ ((A/3)− (2/3)) = ∅. In
a similar way, one can obtain that fl(A(S)) ∩ fj(A(S)) = ∅ for every
l, j ∈ {1, 2, 3, 4} such that l ̸= j.

We also remark that, on one side, we have f0(A(S)) ∩ f1(A(S)) ⊂
(A/3) ∩ ((A/3) + (2/3)) = {(1/3)} and, on the other side, (1/3) =
f0(1) = f1(−1). Thus, f0(A(S)) ∩ f1(A(S)) = {1/3}.

In a similar way, one can obtain that f0(A(S))∩f2(A(S)) = {(2i)/3},
f0(A(S)) ∩ f3(A(S)) = {−2/3} and f0(A(S)) ∩ f4(A(S)) = {−(2i)/3}.
From the above remarks, we can see that the iterated function system
S = (C, (f0, f1, f2, f3, f4)) fulfills the conditions from Theorem 3.1 and
the graph ({1, 2, 3, 4, }, G) = {(0, 1), (0, 2), (0, 3), (0, 4)}. Thus, A(S) is
a dendrite.

Example 4.3. Let X = R. We consider the iterated function system
S = (R, (fk)k=1,2), where f1(x) = (2/3)x and f2(x) = (2/3)x + 1/3.

Then the attractor of S is A(S) = [0, 1], A1 = f1(A) = [0, (2/3)],
A2 = f2(A) = [(1/3), 1] and A1 ∩ A2 = [(1/3), (2/3)]. We remark
that A(S) is a dendrite but the iterated function system S does not
fulfill the conditions from Theorem 3.1, since A1 ∩ A2 is not a totally
disconnected set.

Example 4.4. We consider the following set in the plane R2 en-
dowed with the Euclidian metric A = ([0, 1] × {0}) ∪ ∪n≥1({1/2n} ×
[0, (1/2n)]). Then A is the attractor of the iterated function system
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S = (A, (f1, f2, f3, f4)), where fi : A→ A for i ∈ {1, 2, 3, 4} are defined
by:

f1(x, y) =

(
x

2
,
y

2

)
, f2(x, y) =

(
x+ 1

2
, 0

)
,

f3(x, y) =

(
1,
y

2

)
, f4(x, y) =

(
1,
y + 1

2

)
.

In this way, we obtain that A1∩A2 = {((1/2), 0)}, A2∩A3 = {(1, 0)},
A3∩A4 = {(1, (1/2))} and A1∩A3 = A1∩A4 = A2∩A4 = A3∩A4 = ∅.
Also, Ai ∩ Aj ∩ Aj = ∅ for every i, j, k ∈ {1, 2, 3, 4} different, and
the functions f1, f2, f3, f4 are injective. The graph of intersections
associated with the family of sets (Ai)i=1,4 is ({1, 2, 3, 4}, G) = {(i, j) ∈
{1, 2, 3, 4} × {1, 2, 3, 4} | Ai ∩ Aj ̸= ∅} = {(1, 2), (2, 3), (3, 4)}. Thus,
({1, 2, 3, 4}, G) is a tree and therefore, by Theorem 3.1, it results that
A is a dendrite.
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