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QUASI-ONE-FIBERED IDEALS OF ORDER ONE
IN DIMENSION TWO

RAYMOND DEBREMAEKER

ABSTRACT. Simple complete M-primary ideals are fun-
damental in the Zariski-Lipman theory of complete ideals in
a two-dimensional regular local ring (R,M). Complete M-
primary ideals of order one constitute a particular class of
such ideals containing, for example, all the first neighborhood
ideals of R. A number of interesting properties of complete
M-primary ideals of order one have been proved by several
authors. For example, these ideals have only one Rees valua-
tion (and hence are one-fibered) and they have the very simple
form (xn

1 , x2)R, n ∈ N+, with x1, x2 a minimal ideal basis of
M.

In the present paper we investigate how far some results con-
cerning these complete M-primary ideals of order one can be
extended to complete quasi-one-fibered M-primary ideals of
order one in a natural generalization of R: a two-dimensional
normal Noetherian local domain with algebraically closed
residue field and the associated graded ring an integrally
closed domain.

1. Introduction. Let (R,M) be a two-dimensional normal Noethe-
rian local domain with algebraically closed residue field and with the
associated graded ring grM(R) an integrally closed domain. It follows
that the M-adic order function ordR is a valuation (mostly denoted by
vM) and the blowup BlM(R) of R at M is a desingularization of R.

These local rings have been studied by Muhly (jointly with Sakuma)
in the early 1960s and have therefore been called two-dimensional
Muhly local domains in [1, 2].

This paper is about quasi-one-fibered complete M-primary ideals of
order one in R. Let us explain what we mean by “quasi-one-fibered”
by describing briefly the motivation for introducing this notion. To do
so, we need to recall a few facts from the theory of complete ideals in
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58 RAYMOND DEBREMAEKER

the special case where (R,M) is regular. Let I �= M denote a complete
M-primary ideal of order one in R. It follows that I is simple (i.e., not
a product of proper ideals of R) and hence has a unique Rees valuation,
say w (see [6]). So T (I) = {w}, where T (I) denotes the set of Rees
valuations of I and I is said to be one-fibered (cf., [14]). This implies
that I has a unique immediate base point, namely, the unique two-
dimensional local ring (R′,M′) of the blowup BlM(R) that is dominated
by the valuation ring (W,MW ) of w. Moreover, the transform IR

′
of I

in R′ is again a complete ideal of order one.

By contrast, if the two-dimensional Muhly local domain (R,M) is
not regular, then a complete M-primary ideal I of order one is not
necessarily one-fibered. Indeed, it has been proved in [1] that, if
I is a complete M-primary ideal adjacent from below to M (i.e.,
length (M/I) = 1), then T (I) = {vM, w} with w �= vM a prime
divisor of R. This was one of the reasons for introducing the notion
of quasi-one-fibered complete M-primary ideals in R. Here a complete
M-primary ideal I is said to be quasi-one-fibered if

T (I) ⊆ {vM, w} and w ∈ T (I),

for some prime divisor w �= vM of R. Note that vM may or may not
belong to T (I). More information concerning this sort of ideal can be
found in [4].

In this paper we will study the simplest such ideals, that is, those of
order one. So let I be any quasi-one-fibered complete M-primary ideal
of order one in R (hence, T (I) ⊆ {vM, w} and w ∈ T (I) for some prime
divisor w �= vM of R). Then, just as in the regular case, I has precisely
one immediate base point, say (R′,M′). But, in contrast to the regular
case, the transform IR

′
does not necessarily have order one (IR

′
is not

even necessarily simple). See [3, Example 3.4].

We therefore begin Section 3 by investigating when ordR(I) = 1
implies ordR′(IR

′
) = 1, and under what conditions the converse holds.

An answer is given in Proposition 3.2 if I satisfies the additional
conditions of being normal and minimally generated. A stronger result
is obtained if R is regular (see Proposition 3.6).

A special class of quasi-one-fibered complete M-primary ideals of
order one are the first neighborhood complete ideals of R. In [1] it has
been shown that some properties of R (for example being a rational
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singularity in case embdimR = 3) are reflected in a certain behavior
of its first neighborhood complete ideals. Further, it has been proved
in [2] that the first neighborhood complete ideals of R are projectively
full. The proofs of these results rely on the fact that these complete
quasi-one-fibered M-primary ideals of order one have the very simple
form

(x2
1, x2, . . . , xd),

where x1, x2, . . . , xd denotes a minimal ideal basis of M. So the natural
question arises whether any complete quasi-one-fibered M-primary
ideal of order one has the form

(xn
1 , x2, . . . , xd),

for a suitable minimal ideal basis x1, x2, . . . , xd of M. (Note that this
is trivially true if (R,M) is two-dimensional regular).

In order to answer this question we have in Proposition 3.7 of Sec-
tion 3 derived necessary and sufficient conditions for a given com-
plete quasi-one-fibered M-primary I of order one to be of the form
(xn

1 , x2, . . . , xd), n ∈ N+, for some minimal ideal basis (x1, x2, . . . , xd)
of M such that x1 /∈ rad (x2, . . . , xd). Using this result we have found
an example (see Example 3.8) that shows the answer to the above ques-
tion is negative. Concerning complete M-primary ideals of order one in
a two-dimensional Muhly local domain (R,M), one can ask the natural
question whether there exists an example of such an ideal that is not
quasi-one-fibered. The author does not know any such example. The
reader will find the necessary background material in Section 2.

2. Background. We begin with a brief review of some facts from
the theory of degree functions. Degree functions have been defined by
Rees in [12], and their theory has been developed by Rees and Sharp in
[13]. With an M-primary ideal I of Noetherian local domain (R,M),
Rees has associated an integer-valued function on M \ {0}:

dI(x) = e

(
I + xR

xR

)
,

where e(I + xR/xR) denotes the multiplicity of I + xR/xR. The
function dI is called the degree function defined by I. In [12], it is
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shown that, with every prime divisor v of R, there is associated a non-
negative integer d(I, v), with d(I, v) = 0 for all except finitely many
prime divisors, such that

dI(x) =
∑
v

d(I, v)v(x)

for all 0 �= x ∈ M and the sum is over all the prime divisors of R. Here,
by a prime divisor v of R, we mean a discrete valuation v of the quotient
field K of R with value group Z, whose valuation ring dominates R and
the transcendence degree of the residue field of the valuation ring over
R/M is dimR− 1 (see [13, pages 454 455]).

In [13] Rees and Sharp have proved that the integers d(I, v) occurring
in the above sum are uniquely determined, i.e., if d(I ′, v) are non-
negative integers such that dI(x) =

∑
v d

′(I, v)v(x) for all 0 �= x ∈ M,
then d′(I, v) = d(I, v) for all prime divisors v of R. The integers d(I, v)
will be called the degree function coefficients of I.

If R is analytically unramified, then d(I, v) �= 0 for each prime divisor
v of R that is a Rees valuation of I, while d(I, v′) = 0 for all other prime
divisors v′ of R (see [12, Theorem 2.3]). If in addition R is normal and
quasi-unmixed, then all the Rees valuations of I are prime divisors of
R (cf., [14]); hence, d(I, v) �= 0 if and only if v is a Rees valuation of I.
For the definition of the Rees valuation rings and the Rees valuations
of an ideal I of a Noetherian local domain, the reader is referred to [14,
page 437] or [15, Chapter 10]. Throughout this paper, the set of Rees
valuations of I will be denoted by T (I).

In order to recall some other results from the theory of degree func-
tions, let us suppose that (R,M) is a two-dimensional normal Noethe-
rian local domain that is analytically unramified and with infinite
residue field Then we have the following results (see Rees and Sharp
[13]).

• The multiplicity e(I) of an M-primary ideal I of R is given by

e(I) =
∑

v∈T (I)

d(I, v)v(I).

• If I and J are M-primary ideals of R, then

d(IJ, v) = d(I, v) + d(J, v)
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for all prime divisors of R. It follows that

T (IJ) = T (I) ∪ T (J).

• If I and J are M-primary ideals of R, then Rees and Sharp define

dI(J) = min{dI(x) | 0 �= x ∈ J},

and they prove that

dI(J) =
∑

v∈T (I)

d(I, v)v(J)

and
dI(J) = dJ(I) = e1(I|J).

Here e1(I|J) denotes the mixed multiplicity of I and J , and it is defined
by e(IJ) = e(I) + 2e1(I|J) + e(J).

Next we present some backgroundmaterial concerning two-dimensional
Muhly local domains. We begin by recalling the definition. By a two-
dimensional Muhly local domain (R,M) we mean a two-dimensional
integrally closed Noetherian local domain (R,M) with algebraically
closed residue field and with the associated graded ring an integrally
closed domain. From this definition if follows that

• the M-adic order function ordR is a valuation (mostly denoted by
vM),

• Mn is an integrally closed M-primary ideal for every n ∈ N+.

A two-dimensional Muhly local domain (R,M) can be desingularized
by blowing up R at M. Here the blowup of R at M, denoted BlM(R),
is the following set of local rings lying between R and its quotient field
K {

R

[
M

x

]
P

∣∣∣ x ∈ M \M2, P ∈ Spec

(
R

[
M

x

])}
.

For any x ∈ M \ M2 and any maximal ideal N of R[M/x] lying over
M (i.e., N ∩R = M), the local ring

R′ := R

[
M

x

]
N
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is called a first (or an immediate) quadratic transform of R. Since
BlM(R) is a desingularization, we know that (R′,M′) is a two-
dimensional regular local ring and the M′-adic order function ordR′

is a prime divisor of R, called an immediate prime divisor of R.

If I is an M-primary ideal of R with ordR(I) = r, then we have in R′

IR′ = xrI ′

with I ′ an ideal of R′. This ideal I ′ is called the transform of I in R′.
If I ′ �= R′ (equivalently, IR′ is not a principal ideal), then (R′,M′) is
called an immediate base point of I.

Let I be anM-primary ideal in a two-dimensional Muhly local domain
(R,M), and suppose that T (I) �= {vM} (equivalently I is not a power
of M). Then in [4, Proposition 1.1], the following characterization of
the immediate base points of I has been proved.

Every immediate base point of I is a local ring ∈ BlM(R) that is
dominated by a Rees valuation ring of I. Conversely, a two-dimensional
local ring ∈ BlM(R) dominated by a Rees valuation ring of I is an
immediate base point of I, if T (I) = {vM, w} (respectively T (I) = {w}),
where w is a prime divisor of R with w �= vM.

Since the residue field of a two-dimensional Muhly local domain
(R,M) is infinite, it follows from the preceding characterization of the
immediate base points of an M-primary ideal I, that there exists an
element x ∈ M \M2 such that all the immediate base points of I are
lying on the chart R[M/x] (because one can choose an x ∈ M \ M2

such that R[M/x] is contained in every Rees valuation ring of I).

Finally, we recall the notion of the characteristic ideal of an M-
primary ideal I in a two-dimensional Muhly local domain (R,M) (cf.,
[10, page 214]). Suppose ordR(I) = r, and let x1, x2, . . . , xn denote
an ideal basis of I. Then, for at least one i, the order of xi is r
and ordR(xj) ≥ r for all j. Let x∗

j be the zero element of grM(R) if
ordR(xj) > r, and let x∗

j be the leading form of xj if ordR(xj) = r. The
elements x∗

1, x
∗
2, . . . , x

∗
n generate a homogeneous ideal c(I) in grM(R),

which is called the characteristic ideal of I. If x ∈ I, then either
ordR(x) > r, and thus x∗ is zero by definition or else ordR(x) = r and
then x∗ is a linear combination of x∗

1, x
∗
2, . . . , x

∗
n with coefficients in

k = R/M.
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3. Quasi-one-fibered ideals of order one. Let us begin by
recalling briefly some facts concerning quasi-one-fibered M-primary
ideals in a two-dimensional Muhly local domain (R,M).

Let I be a quasi-one-fibered M-primary ideal of R, i.e.,

T (I) ⊆ {vM, w} and w ∈ T (I),

where w denotes some prime divisor �= vM of R (see the introduction).
Then the following assertions hold (see [4, Section 1] for details).

• I has only one immediate base point, say (R′,M′), and the integral

closure IR′ of the transform of I in R′ is some power of a simple
complete M′-primary ideal of R′. Hence, T (IR

′
) = {w} and w is the

unique Rees valuation of that simple complete ideal.

• There corresponds to I a unique finite quadratic sequence starting
from (R,M)

(R,M) < (R1,M1) < (R2,M2) < · · · < (Rs,Ms)

such that IRs = Mn
s for some n ∈ N+, and R1 is the unique immediate

base point R′ of I. The length s of this sequence is called the rank of
I.

• The local rings occurring in this sequence are the base points of I.
(Recall that an iterated quadratic transform (S,M) of (R,M) is said
to be a base point of I if IS is not a principal ideal).

• Since T (I) ⊆ {vM, w}, it follows that almost all degree function
coefficients of I are zero; more precisely, d(I, v) = 0 for all prime
divisors v of R such that v /∈ {vM, w}. Thus, we have to consider
only two degree function coefficients of I, namely,

d(I, vM) and d(I, w).

Note that d(I, w) �= 0 (since w ∈ T (I)), while d(I, vM) is non-zero or
zero according to the fact whether or not vM ∈ T (I).

Our first aim in this section is to answer the question when ordR(I) =
1 will imply that ordR′(IR

′
) = 1 and under what conditions the

converse will hold. The answer (see Proposition 3.2) is based essentially
on the following lemma giving the effect of the quadratic transformation
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(R,M) → (R′,M′) on the degree function coefficient d(I, w). Before
stating this lemma, we briefly recall the notion of a minimally generated
complete M-primary ideal in R.

A complete M-primary ideal a of order r in R is said to be minimally
generated if

μ(a) = dimk

(
Mr

Mr+1

)
,

where k = R/M and μ(a) denotes the number of elements in a minimal
ideal basis of I.

In [4, Section 3] the following facts concerning a minimally generated
complete M-primary ideal a have been proved:

• a is minimally generated if and only if Mr+1 = aM + xMr where
x ∈ M is such that xV = MV for every valuation ring V of a.

• The natural morphism

ϕ:
Mr

a
−→ MrR[M/x]

aR[M/x]

is an isomorphism.

• Mna is complete for all n ≥ 0.

Lemma 3.1. Let (R,M) be a two-dimensional Muhly local domain,
and let I be a quasi-one-fibered M-primary ideal of R. Let (R′,M′)
denote the unique immediate base point of I, and let w be the unique
Rees valuation of IR

′
(so, T (I) ⊆ {vM, w} and w ∈ T (I)). Then we

have

(i) If I is normal, then d(I, w) ≤ d(IR
′
, w).

(ii) If I is normal and minimally generated, then d(I, w) = d(IR, w).

Proof. (i) As we have observed at the beginning of this section, there
corresponds to I a unique finite quadratic sequence

(R,M) < (R1,M1) < (R2,M2) < · · · < (Rs,Ms)

with IRs = Mn
s for some n ∈ N+, and with R1 the unique immediate

base point R′ of I. Since the residue field R/M is algebraically closed,
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a minimal ideal basis x1, x2, . . . , xd of M can be chosen such that R′

is of the form

R′ = R

[
M

x1

]
M1

with M1 =

(
x1,

x2

x1
, . . . ,

xd

x1

)

and such that

MW = x1W and MVM = x1VM.

Here (W,MW ) denotes the valuation ring of the unique Rees valuation
w of IR

′
, while (VM,MVM

) is the valuation ring of vM = ordR. This
shows that (R′,M′), and hence R[M/x1], is contained in every Rees
valuation ring of I. Since In is complete for every n ∈ N+, this implies
that In is contracted from R[M/x1] for all n ∈ N+. If r := ordR(I), it
follows that the natural morphism

Mrn

In
−→ MrnR[M/x1]

InR[Mx1
]

is injective for all n ∈ N+. Hence,

length

(
Mrn

In

)
≤ length

(
MrnR[M/x1]

InR[M/x1]

)
= length

(
R′

(IR′)n

)
.

Consequently,

length

(
R

In

)
≤ length

(
R

Mrn

)
+ length

(
R′

(IR′)n

)

for all n ∈ N+. This implies that

(1) e(I) ≤ e(M)ordR(I)
2 + e(IR

′
).

Next, we recall that we have proved in [4, Proposition 2.1] the following
formula for d(I, w) using the quadratic sequence corresponding to I:

(2) d(I, w) =
e(I)− e(M)ordR(I)

2∑s
j=1 ordRj (I

Rj )w(Mj)
.
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Using an adaption of Lipman’s lemma [7, Lemma 1.11] to our situation,
we have that

(3)

s∑
j=1

ordRj (I
Rj )w(Mj) = w(IR

′
).

From (1) (3), it follows that

d(I, w) ≤ e(IR
′
)

w(IR′ )
.

Since T (IR
′
) = {w}, we have by the theory of degree functions (see the

background section) that

e(IR
′
)

w(IR′ )
= d(IR

′
, w),

which proves (i).

(ii) Since I is normal we have, with the same notations and conven-
tions as in the proof of (i), that the natural morphism

Mrn

In
−→ MrnR[M/x1]

InR[M/x1]

is injective for all n ∈ N+. Moreover, I is minimally generated (i.e.,
μ(I) = dimk(M

r/Mr+1). Observing that

dimk

(
Mr

Mr+1

)
= μ(I)− lengthR

(
Mr+1

IM+ x1Mr

)
,

this is equivalent with

Mr+1 = IM+ x1M
r.

Since I is normal, using this characterization of “minimally gener-
ated,” we have that In is minimally generated for all n ∈ N+. Because
of the observation just before Lemma 3.1, this means that the natural
morphism

Mrn

In
→ MrnR[M/x1]

InR[M/x1]
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is an isomorphism. This implies (see proof of (i)) that

(1′) e(I) = e(M)ordR(I)
2 + e(IR

′
).

By the same reasoning as in the proof of (i), it follows from (1′), (2)
and (3) that

d(I, w) = d(IR
′
, w).

For a given quasi-one-fibered complete M-primary ideal I of order
one in R, the above lemma together with results from the theory of
degree functions (see the background section) will be used to prove
that the transform IR

′
in the unique immediate base point R′ of I also

has order one, provided I is normal and minimally generated and two
additional conditions are satisfied. We will also investigate when the
converse holds.

Proposition 3.2. Let (R,M) be a two-dimensional Muhly local
domain, and let I be a quasi-one-fibered M-primary ideal of R with
unique immediate base point (R′,M′). Let w denote the unique Rees
valuation of IR

′
. Suppose that w(M) = w(M′) and d(I, vM) =

e(M)− 1. Then

(i) If I is normal, then the implication ordR′(IR
′
) = 1 ⇒ ordR(I) = 1

holds.

(ii) If I is normal and minimally generated, then we have

ordR(I) = 1 ⇐⇒ ordR′(IR
′
) = 1.

Proof. (i) We have to prove that ordR(I) = 1. To do so, we observe
that the reciprocity relation

dM(I) = dI(M)

implies that

(�) d(M, vM)vM(I) = d(I, vM)vM(M) + d(I, w)w(M),
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since T (I) ⊆ {vM, w}. Further, we know from the theory of degree
functions that

e(M) = d(M, vM)vM(M),

and thus
d(M, vM) = e(M)

since vM(M) = 1.

Next, the assumption ordR′(IR
′
) = 1 will imply that w(M′) = 1 and

d(IR
′
, w) = 1. Indeed, from the reciprocity relation

dM′(IR
′
) = dIR′ (M′)

we get
d(M′, vM′)ordR′(IR

′
) = d(IR

′
, w)w(M′)

since T (M′) = {vM′}, T (IR
′
) = {w}, and vM′ is by definition the

ordR′ -valuation. Since ordR′(IR
′
) = 1 and d(M′, vM′) = e(M′) = 1,

we have
w(M′) = 1 and d(IR

′
, w) = 1.

This implies
w(M) = 1,

since we have assumed that w(M) = w(M′). By Lemma 3.1, we have
that

d(I, w) ≤ d(IR
′
, w).

Since d(IR
′
, w) = 1 and d(I, w) > 0 (because w ∈ T (I)), it follows that

d(I, w) = 1.

So the relation (�) becomes

e(M)ordR(I) = d(I, vM) + 1.

Using the assumption d(I, vM) = e(M)− 1, this implies that

ordR(I) = 1,

thereby completing the proof of (i).
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(ii) It only remains to prove that the implication ordR(I) = 1 ⇒
ordR′(IR

′
) = 1 holds. Again we start from the reciprocity relation (∗).

Since ordR(I) = 1 and d(I, vM) = e(M)− 1, we have

e(M) = e(M)− 1 + d(I, w)w(M).

Hence,
d(I, w)w(M) = 1,

implying that d(I, w) = 1 and w(M) = 1. Since the quasi-one-fibered
M-primary ideal I is supposed to be normal and minimally generated,
we have by Lemma 3.1 (ii) that

d(I, w) = d(IR
′
, w).

Hence,
d(IR

′
, w) = 1.

From the reciprocity relation dM′(IR
′
) = dIR′ (M′), it follows that

ordR′(IR
′
) = d(IR

′
, w)w(M′),

and hence
ordR′(IR

′
) = 1,

since w(M′) = w(M) (by assumption) and w(M) = 1.

The examples given below illustrate the hypotheses in the previous
proposition.

Example 3.3. Let (R,M) be a two-dimensional regular local ring
with algebraically closed residue field (thus, R is certainly a two-
dimensional Muhly local domain).

We consider the following immediate quadratic transform (R′,M′) of
(R,M):

R′ = R

[
M

x

]
M

with M =

(
x,

y

x

)
,

where x, y is a minimal ideal basis of M. Thus,

M′ =
(
x,

y

x

)
R′,
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and the ideal

I ′ :=
(
x,

(
y

x

)2)
R′

is a complete M′-primary ideal of order 1 in R′. This ideal I ′ has a
unique immediate base point (R′′,M′′) given by

R′′ = R′
[
M′

y/x

]
M ′

with M ′ =
(
y

x
,

x

y/x

)
,

and

M′′ =
(
y

x
,
x2

y

)
R′′.

In R′′, we have that

I ′R′′ =
y

x

(
y

x
,
x2

y

)
R′′ =

y

x
M′′.

Thus, the transform I ′R
′′
of I ′ in R′′ is the maximal ideal M′′. This

means that the unique quadratic sequence associated with the simple
complete M′-primary ideal I ′ is as follows

(R′,M′) < (R′′,M′′).

Hence, the unique Rees valuation w of I ′ is

w = ordR′′-valuation.

Thus, the corresponding valuation ring W is given by

W = R′′
[
M′′

y/x

]
(y/x)R′′[M′′/y/x]

,

and the maximal ideal of W is

MW =

(
y

x

)
W.

Now, let us consider the inverse transform I of I ′ in R, i.e.,

I = x2I ′ ∩R.
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We claim that
I = (x3, y2, x2y).

Indeed, let J := (x3, y2, x2y)R. Since μ(J) = ordR(J) + 1, we have
that J is contracted from R[M/x] by [6, Proposition 2.3]. Further,
JR[M/x] = x2(x, (y/x)2), which shows that JR[M/x] is complete.
Thus,

J = JR

[
M

x

]
∩R

is also complete. (Note also that J has (R′,M′) as a unique immediate
base point and that JR′ = x2I ′).

Now we have

x2I ′ ∩R ⊆ (x2I ′ ∩R)R′ = x2I ′ = JR′.

Thus,
x2I ′ ∩R ⊆ JR′ ∩R = J.

It is clear that J = (x3, y2, x2y) ⊆ x2I ′ ∩R, hence

J = x2I ′ ∩R.

So the inverse transform I of I ′ in R is given by

I = (x3, y2, x2y).

Thus, I = (x3, y2, x2y)R is a simple (and thus one-fibered) complete
M-primary ideal of order 2 with unique immediate base point (R′,M′)
and whose transform IR

′
is the complete M′-primary ideal I ′ =

(x, (y/x)2)R′ of order 1.

Since the implication ordR′(I
′R) = 1 ⇒ ordR(I) = 1 does not hold,

at least one of the conditions in Proposition 3.2 is not satisfied in this
example. To make this clear, we now summarize what we know about
the ideal I.

• I is normal, since I is complete and R is two-dimensional regular.

• I is minimally generated since μ(I) = 3 = dimk(M
2/M3).

• I is quasi-one-fibered since I has only one immediate base point,
namely (R′,M′), and IR

′
= I ′ is a simple complete M′-primary ideal
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with T (I ′) = {w} where w = ordR′′ -valuation. Thus, T (I) ⊆ {vM, w}
and w ∈ T (I).

• d(I, w) = d(IR
′
, w) = 1, since I is the inverse transform of I ′ in R

and IR
′
is a simple complete M′-primary ideal in the two-dimensional

regular local ring (R′,M′) (see [5, Proposition 3.4 and Corollary 3.6]).

• From the reciprocity relation dI(M) = dM(I) (see the background
section) it then follows that

d(I, vM) + w(M) = 2.

• Since w = ordR′′-valuation and M′′ = ((y/x), (x2/y))R′′, it follows
that w(y/x) = w(x2/y) = 1. Using x = (y/x)(x2/y) and y = x(y/x),
we have that

w(M) = 2.

Thus,
d(I, vM) = 0,

and this shows that the condition d(I, vM) = e(M)−1 is satisfied, since
e(M) = 1.

• Since M′ = (x, (y/x))R′, we have that

w(M′) = 1.

Hence, the condition w(M) = w(M′) is not satisfied in this example,
while the other conditions hold.

So, this example shows that the assumption “w(M) = w(M′)” is
indispensable for Proposition 3.2.

Example 3.4. Let (R,M) be a two-dimensional Muhly local domain
with embedding dimension 3. Suppose R has minimal multiplicity;
thus, (R,M) is a rational singularity (see, for example, [4]). Let us
consider an immediate quadratic transform (R′,M′) of (R,M). Then

R′ = R

[
M

x1

]
M1

with M1 =

(
x1,

x2

x1
,
x3

x1

)

and

M′ =
(
x1,

x2

x1

)
R′,
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for a suitable minimal ideal basis x1, x2, x3 of M. In R we consider the
ideal I being defined as the integral closure of the ideal

J = (x4
1, x1x2, x

2
2, x

2
3).

Then I is a complete (and hence normal) M-primary ideal of order 2.

It can readily be seen that J has (R′,M′) as its unique immediate
base point and the transform JR′

of J in R′ is given by

JR′
=

(
x2
1,

x2

x1

)
R′.

It follows that JR′
is a complete M′-primary ideal of order 1 in R′;

thus, JR′
has a unique Rees valuation, which we denote by w.

Consequently,

T (J) ⊆ {vM, w} and w ∈ T (J).

Since JR′
has base points only on the chartR′[M′/x1] and JR′

R′[M′/x1]
= x1(x1, (x2/x

2
1)), the unique quadratic sequence corresponding to JR′

is as follows:
(R′,M′) < (R′′,M′′),

where R′′ = R′[M′/x1]M ′
1
with M ′

1 = (x1, (x1/x
2
1)) and the maximal

ideal M′′ = (x1, (x2/x
2
1))R

′′. It follows that

w = ordR′′ -valuation

(see, for example, [11, page 608]). Since I = J , we have that

T (I) = T (J);

hence,
T (I) ⊆ {vM, w} and w ∈ T (I).

This shows that I is quasi-one-fibered with (R′,M′) as its unique
immediate base point. Moreover,

IR
′
= JR′

,
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implying that ordR′(IR
′
) = 1. As ordR(I) = 2, it follows that the impli-

cation “ordR′(IR
′
) = 1 ⇒ ordR(I) = 1” does not hold in this example

and thus at least one of the hypotheses in Proposition 3.2 is not satis-
fied. We already know that I is a quasi-one-fibered normal M-primary
ideal of order 2, and the unique quadratic sequence corresponding to I
is

(R,M) < (R′,M′) < (R′′,M′′),

and IR
′′
= M′′. Hence,

T (I) ⊆ {vM, w} and w ∈ T (I),

where w = ordR′′ -valuation.

Now, it is readily seen that w(M) = 1 and w(M′) = 1, and thus the
condition “w(M) = w(M′)” is satisfied.

Using this and the fact that e(M) = 2, it follows from the reciprocity
relation

dI(M) = dM(I),

that
d(I, vM) + d(I, w) = 4.

Further, in the two-dimensional regular local ring (R′,M′) we have the
reciprocity relation

dIR′ (M′) = dM′(IR
′
).

Since ordR′(IR
′
) = 1 and e(M′) = 1, this implies

d(IR
′
, w) = 1.

Since I is a normal quasi-one-fibered M-primary ideal with unique
immediate base point (R′,M′), we have by Lemma 3.1 (i) that

d(I, w) ≤ d(IR
′
, w).

As w ∈ T (I), and hence d(I, w) > 0, this implies

d(I, w) = 1.

So
d(I, vM) = 3,
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and this shows that the condition “d(I, vM) = e(M)−1” is not satisfied
here, since e(M) = 2.

Summarizing, this example shows that the condition “d(I, vM) =
e(M)− 1” cannot be omitted from Proposition 3.2.

Example 3.5. Let (R,M) be a two-dimensional Muhly local domain
with minimal multiplicity. Suppose there exists a minimal ideal basis

x1, x2, . . . , xd

of M such that x1 /∈ rad (x2, . . . , xd). We then consider the immediate
quadratic transform

(R1,M1)

where R1 = R[M/x1]M1 with M1 = (x1, x2/x1, . . . , xd/x1), and
(possibly after renumbering x2, . . . , xd)

M1 =

(
x1,

x2

x1

)
R1.

Let
(V,MV )

denote the valuation ring of the ordR-valuation vM. For any natural
number s there exists a unique quadratic sequence

(R,M) < (R1,M1) < (R2,M2) < · · · < (Rs,Ms),

such that (Ri,Mi) is contained in (V,MV ) (i.e., (Ri,Mi) is proximate
to (R,M)) for i = 1, 2, . . . , s. Following Lipman in [8, page 240], we
then have

Ri = Ri−1

[
Mi−1

x2/x1

]
(

x1

x2/x
i−1
1

,
x2
x1

)

for i = 2, . . . , s.

In particular,

Rs = Rs−1

[
Ms−1

x2/x1

]
(

x1

x2/x
s−1
1

,
x2
x1

)
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and

Ms =

(
x1

x2/x1
s−1

,
x2

x1

)
.

Let Is−1 denote the inverse transform of Ms in Rs−1 (i.e., Is−1 =
(x2/x1)Ms ∩Rs−1). Then we have

Is−1 =

(
x1

x2/x1
s−2

,

(
x2

x1

)2)
Rs−1.

Descending the quadratic sequence step by step, we find that the inverse
transform I1 of Ms in R1 is given by

I1 =

(
x1,

(
x2

x1

)s)
R1.

Note that I1 is the simple complete M1-primary ideal in the two-
dimensional regular local ring (R1,M1) that corresponds to the prime
divisor w := ordRs-valuation of R1 under Zariski’s one-to-one corre-
spondence. It follows that w is the unique Rees valuation of I1, hence

T (I1) = {w}.

Now let us consider the following ideal I in R:

I := xs
1I1 ∩R.

Then we have

• I is a complete M-primary ideal,

• ordR(I) = s,

• the transform of I in R1 is I1,

• (R1,M1) is the unique immediate base point of I.

It follows that the complete M-primary ideal I is quasi-one-fibered and
T (I) ⊆ {vM, w} with w ∈ T (I).

Since w = ordRs-valuation and M = (x1, x2, . . . , xd), M′ =
(x1, x2/x1)R1, we have that

w(M) = s
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and

w(M′) = 1.

Next we determine the degree function coefficients d(I, w) and
d(I, vM) of I.

The two-dimensional Muhly local domain (R,M) has minimal mul-
tiplicity, so it is a rational singularity (see [3, Theorem 3.1]). This
implies that the complete M-primary ideal I is in fact normal. Thus,

d(I, w) ≤ d(IR1 , w),

by Lemma 3.1 (i).

Since IR1 = I1 is a simple complete M1-primary ideal in the two-
dimensional regular local ring (R1,M1), we have

d(IR1 , w) = 1,

by [5, Corollary 3.6].

Since w ∈ T (I), we have d(I, w) > 0, and thus

d(I, w) = 1.

In order to determine d(I, vM), we consider the reciprocity relation

dI(M) = dM(I).

Since T (I) ⊆ {vM, w}, this becomes

d(I, vM)vM(M) + d(I, w)w(M) = d(M, vM)vM(I).

We already know that

• vM(I) = ordR(I) = s,

• w(M) = s,

• d(I, w) = 1.

Using this together with the fact that d(M, vM) = e(M) and vM(M) =
ordR(M) = 1, the reciprocity relation becomes

d(I, vM) + s = se(M).
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Hence,
d(I, vM) = s(e(M)− 1).

Note, if (R,M) is not regular (thus e(M) > 1), then this shows that
d(I, vM) > 0, which means that vM ∈ T (I), and hence T (I) = {vM, w}
in that case.

From the previous discussion, we can conclude:

• If s = 1, then both the conditions “w(M) = w(M′)” and
“d(I, vM) = e(M)− 1” are satisfied.

• If s > 1, then neither of these conditions is satisfied.

In the next result a stronger version of Proposition 3.2 will be given
in the case that the two-dimensional Muhly local domain (R,M) is
regular and the quasi-one-fibered complete M-primary ideal I is simple
(and hence one-fibered).

Proposition 3.6. Let I �= M be a simple, complete M-primary
ideal of the two-dimensional regular local ring (R,M) with algebraically
closed residue field. Let (R′,M′) denote the unique immediate base
point of I, and let w be the unique Rees valuation of I (so that
T (I) = {w}). Then the following assertions are equivalent:

(i) ordR(I) = 1.

(ii) ordR′(IR
′
) = 1 and w(M) = w(M′).

(iii) There exists a height-one prime p′ in R′ such that p′ ⊂ IR
′
and

R/p′ ∩R is a DVR.

Proof. (i) ⇒ (ii). Since I �= M is an M-primary ideal of order 1, we
have that

I = (xn
1 , x2)

for some integer n > 1 and with x1, x2 an ideal basis of M. It follows
that I has immediate base points only on the chart R[M/x1], since
IR[M/x2] = (x2)R[M/x2]. Hence, the unique immediate base point
(R′,M′) of I is given by

R′ = R

[
M

x1

]
M1

with M1 =

(
x1,

x2

x1

)
,
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since IR[M/x1] = x1(x
n−1
1 , (x2/x1)). Thus, we have in R′ that

M′ =
(
x1,

x2

x1

)
R′ and IR

′
=

(
xn−1
1 ,

x2

x1

)
R′.

Hence,

ordR′(IR
′
) = 1.

So it remains to show that w(M) = w(M′).

• If n = 2, then IR
′
= M′, and this implies that the unique Rees

valuation w of IR
′
is ordR′ . So it is readily seen that w(M) = w(M′) =

1.

• If n > 2, then IR
′
= (xn−1

1 , (x2/x1)) has its unique immediate base
point lying on the chart R′[M′/x1]. Since this immediate base point of
IR

′
is dominated by the valuation ring W of w (see Section 2 and the

Background section), it follows that

x2

x2
1

∈ W.

This implies that w(M) = w(M′).

(ii) ⇒ (iii). In order to prove this implication, we begin by recalling
the following properties of the ideal I.

• I is one-fibered since T (I) = {w},
• I is normal because, in a two-dimensional regular local ring, any

product of complete ideals is complete (see [6, Theorem 3.7]).

• Since I �= M, we have that

w �= vM

because of Zariski’s one-to-one correspondence between the simple com-
plete M-primary ideals of R and the prime divisors of R. Hence,
vM /∈ T (I), implying that d(I, vM) = 0. Thus, the condition
“d(I, vM) = e(M)− 1” is satisfied since e(M) = 1.

Because of assumption (ii) we also know that the condition “w(M) =
w(M′)” is satisfied. Hence, the ideal I satisfies all the conditions of
Proposition 3.2, and thus there exists an element x2 ∈ I such that
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x2 /∈ M2. It follows that there exists an ideal basis x1, x2 of M such
that

I = (xn
1 , x2)R

for some n > 1.

This implies that I has a unique immediate base point (R′,M′) given
by

R′ = R

[
M

x1

]
M′

with M ′ =
(
x1,

x2

x1

)
,

and thus

M′ =
(
x1,

x2

x1

)
R′.

Further, the transform IR
′
of I in R′ is given by

IR
′
=

(
xn−1
1 ,

x2

x1

)
R′.

Hence,

p′ :=
(
x2

x1

)
R′

is a height-one prime ideal that is contained in IR
′
.

Moreover, we have

p′ ∩R = (x2)R,

implying that R/p′ ∩R is a one-dimensional regular local ring (i.e., a
DVR). This proves the implication (ii) ⇒ (iii).

(iii) ⇒ (i). Let p′ be a height-one prime in R′ such that p′ ⊂ IR
′
and

R/p′ ∩R is a DVR. It follows that there exists a minimal ideal basis
x1, x2 of M such that

x2 ∈ p′ ∩R,

and thus

p′ ∩R = (x2)R.

This implies that the unique immediate base point (R′,M′) of I cannot
be lying on the chart R[M/x2] (since otherwise x1/x2 would be an
element of R′, implying that x1 ∈ p′∩R = (x2)R, which is impossible).
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So R′ is a localization of R[M/x1], and thus x2/x1 is an element of R′.
It follows that

x1
x2

x1
= x2 ∈ p′,

and since x1 /∈ p′, we have that x2/x1 ∈ p′ ⊂ IR
′
.

As we have already observed, R′ is of the form

R′ = R

[
M

x1

]
M1

with M1 a maximal ideal of R[M/x1] lying over M. Now x2/x1 ∈ M1

(since x2/x1 ∈ IR
′ ⊂ M′) and x1 ∈ M1 (since M1 is lying over M);

thus, (
x1,

x2

x1

)
R

[
M

x1

]
⊆ M1.

Since (x1, x2/x1)R[M/x1] is a maximal ideal, we have that

M1 =

(
x1,

x2

x1

)
R

[
M

x1

]
.

This shows that the immediate base point (R′,M′) of I is given by

R′ = R

[
M

x1

]
M1

and M′ =
(
x1,

x2

x1

)
R′.

Since x2/x1 ∈ IR
′
and R′/[(x2/x1)R

′] is a DVR, we have that

IR
′
=

(
xn
1 ,

x2

x1

)
R′

for some n ∈ N+.

From the Zariski-Lipman theory of complete ideals in two-dimensional
regular local rings, we know that a simple complete M-primary ideal I
is the inverse transform of its transform IR

′
in the unique immediate

base point (R′,M′) of I. Hence,

I = x1I
R′ ∩R = (xn+1

1 , x2)R
′ ∩R.
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So x2 ∈ I, and thus ordR(I) = 1, which completes the proof of (iii) ⇒
(i).

If a two-dimensional Muhly local domain (R,M) is regular, then it
is easily seen that any complete M-primary ideal I of order one has
the very simple form (xn

1 , x2) with n ∈ N+ and x1, x2 a minimal ideal
basis of M.

By contrast, if (R,M) is not regular, then this does not hold in general
as we will see in Example 3.8 below.

But, first, we will prove a result (partly inspired by the previous
proposition) giving necessary and sufficient conditions for a quasi one-
fibered complete M-primary ideal of order one in a two-dimensional
Muhly local domain (R,M), to be of the form (xn

1 , x2, . . . , xd) with
x1, x2, . . . , xd a minimal ideal basis ofM such that x1 /∈ rad (x2, . . ., xn).
We therefore begin by recalling some facts needed in what follows.

• The above condition “x1 /∈ rad (x2, . . . , xn)” is equivalent to
“(x2, . . . , xn) is a prime ideal ofR”, and is also equivalent to “R/(x2, . . .,
xd) is a one-dimensional regular local ring.” It implies that(

x2

x1
, . . . ,

xd

x1

)
R

[
M

x1

]
∩R = (x2, . . . , xd).

It follows that

M1 :=

(
x1,

x2

x1
, . . . ,

xd

x1

)
R

[
M

x1

]

is a maximal ideal of R[M/x1] lying over M (i.e., M1 ∩ R = M), and
the ring

R1 := R

[
M

x1

]
M1

is an immediate quadratic transform of R that is a two-dimensional
regular local ring.

• Let I := (xn
1 , x2, . . . , xd) with n > 1 and x1, x2, . . . , xd a minimal

ideal basis of M such that x1 /∈ rad (x2, . . . , xd). Since the transform
IR1 �= R1, we see that (R1,M1) is an immediate base point of I. In
fact it is the only immediate base point of I.

• IR1 is a simple complete M1-primary ideal, so I = (xn
1 , x2, . . . , xd)

is quasi one-fibered (see [4, Proposition 1.5]). Hence,

T (I) ⊆ {vM, w} and w ∈ T (I),
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where vM = ordR-valuation and w denotes the unique Rees valuation
of IR1 .

• I is contracted from R[M/x1] (i.e., IR[M/x1] ∩ R = I), implying
that I is complete.

Now we are ready to state and prove our result.

Proposition 3.7. Let I �= M be a quasi one-fibered complete M-
primary ideal of order one of the two-dimensional Muhly local domain
(R,M). Then the following assertions are equivalent:

(i) I = (xn
1 , x2, . . . , xd) with n > 1 and x1, x2, . . . , xd a minimal

ideal basis of M such that x1 /∈ rad (x2, . . . , xd).

(ii) There exists a height-one prime p1 in the unique immediate base
point R1 of I such that

p1 ⊂ IR1 and
R

p1 ∩R
is a DVR.

(iii) There exists a prime ideal p in R such that p ⊂ I with μ(p) =
embdimR− 1 and with R/p a DVR.

(iv) There exists a height-one ideal I0 in R such that I0 ⊂ I and
c(I0) = c(I) = P , with P a homogeneous prime ideal of height one in
grM(R).

Proof. (i) ⇒ (ii). It is clear that ordR(I) = 1 and, as we have
recalled above, I is a quasi one-fibered complete M-primary ideal
having a unique immediate base point (R1,M1) and T (I) ⊆ {vM, w}
with w ∈ T (I), where vM = ordR and w denotes the unique Rees
valuation of IR1 .

Since R1 = R[M/x1]M1 with M1 = (x1, x2/x1, . . . , xd/x1), we have
that the transform IR1 of I in R1 is given by

IR1 =

(
xn−1
1 ,

x2

x1
, . . . ,

xd

x1

)
R1.

As we have observed earlier, it follows from the condition x1 /∈
rad (x2, . . . , xd) that(

x2

x1
, . . . ,

xd

x1

)
R

[
M

x1

]
∩R = (x2, . . . , xd).



84 RAYMOND DEBREMAEKER

This implies that

R[M/x1]

(x2/x1, . . . , xd/x1)
∼= R

(x2, . . . , xd)
,

and it follows that (x2/x1, . . . , xd/x1)R[M/x1] is a prime ideal of height
one in R[M/x1]. Hence,

p1 :=

(
x2

x1
, . . . ,

xd

x1

)
R1

is a height-one prime in R1 such that p1 ⊂ IR1 and p1 ∩ R =
(x2, . . . , xd). Thus, R/p1 ∩R is a DVR.

(ii) ⇒ (iii). Since R/p1 ∩R is a DVR, there exists a minimal ideal
basis x1, x2, . . . , xd ofM such that (x2, . . . , xd) ⊆ p1∩R. It follows that
R/(x2, . . . , xd) is a one-dimensional regular local ring. This implies
that p1∩R = (x2, . . . , xd) and thus the prime ideal p := p1∩R satisfies
the following conditions from (iii):

μ(p) = embdimR− 1 and
R

p
is a DVR.

So, in order to show that (iii) holds, it only remains to prove that p ⊂ I.

Since R1 is the unique immediate base point of I and I is complete,
we have that I is contracted from R1, i.e.,

IR1 ∩R = I.

It therefore suffices to show that p = (x2, . . . , xd) ⊂ IR1. Since
x1 /∈ p1, we see that (R1,M1) cannot be lying on the chart R[M/xi]
for i = 2, . . . , d. Hence, (R1,M1) is lying on R[M/x1], implying that

x2

x1
, . . . ,

xd

x1
∈ R1.

Using this, together with the fact that x2, . . . , xd ∈ p1 and x1 /∈ p1, we
have

x2

x1
, . . . ,

xd

x1
∈ p1.
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Since p1 ⊂ IR1 and IR1 = x1I
R1 , it follows that

p = (x2, . . . , xd) ⊂ IR1.

This completes the proof of the implication (ii) ⇒ (iii).

(iii) ⇒ (i). Now, there is given a prime ideal p of R such that p ⊂ I
with μ(p) = embdimR − 1 and R/p is a DVR. It follows that there
exist d− 1 elements in R

x2, . . . , xd

such that
p = (x2, . . . , xd).

Since R/p is a DVR, the maximal ideal M/p is generated by a single
element, say x1 := x1 + p. Consequently,

M = (x1, x2, . . . , xd),

and the minimal ideal basis x1, x2, . . . , xd of M certainly satisfies the
condition x1 /∈ rad (x2, . . . , xd) since (x2, . . . , xd) is the prime ideal p.

Finally, I/(x2, . . . , xd) is some power of M/(x2, . . . , xd), and thus

I = (xn
1 , x2, . . . , xd),

with n > 1 (since I �= M). So (iii) ⇒ (i) holds.

(i) ⇒ (iv). Assume (i) holds, i.e., the ideal I �= M is of the form
I = (xn

1 , x2, . . . , xd), where x1, x2, . . . , xd is a minimal ideal basis of M
such that x1 /∈ rad (x2, . . . , xd). Let I0 := (x2, . . . , xd)R. Then I0 is
an ideal of height one such that I0 ⊂ I. It follows from [10, page 214]
that

c(I0) = c(I) = (x∗
2, . . . , x

∗
d),

where x∗
2, . . . , x

∗
d denote the leading forms of x2, . . . , xd and c(I0)

(respectively, c(I)) is the characteristic ideal of I0 (respectively, I).
In order to prove that (iv) holds, we only have to show that the
homogeneous ideal (x∗

2, . . . , x
∗
d) is a prime ideal of the associated graded

ring grM(R).

Since (x∗
2, . . . , x

∗
d) is a homogeneous ideal of grM(R), it suffices to

prove that if the product of two homogeneous elements belongs to
(x∗

2, . . . , x
∗
d). Then at least one of the factors belongs to this ideal.
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Therefore, let α∗ := α +Mr with α ∈ Mr \Mr+1 and β∗ := β +Ms

with β ∈ Ms \Ms+1 be homogeneous elements of orders r and s, and
suppose that

α∗β∗ ∈ (x∗
2, . . . , x

∗
d).

Then we have to show that α∗ or β∗ belongs to (x∗
2, . . . , x

∗
d). Suppose

not; then we have to show that this leads to a contradiction.

First, we make the following observation. Let y∗ := y+Mr with y ∈
Mr \Mr+1 a homogeneous element of order r in grM(R). The assertion
that y∗ ∈ (x∗

2, . . . , x
∗
d) amounts to the same thing as saying that the

natural image y of y in R/(x2, . . . , xd) belongs to (x
r+1
1 )R/(x2, . . . , xd).

Let us briefly explain this claim.

If y∗ ∈ (x∗
2, . . . , x

∗
d), then y − (a2x2 + . . . + adxd) ∈ Mr+1 for some

elements a2, . . . , ad of R. It follows that y − (a′2x2 + . . . + a′dxd) ∈
(xr+1

1 )R, where a′2, . . . , a′d denote certain elements of R. This implies
that y ∈ (xr+1

1 )R/(x2, . . . , xd).

Conversely, suppose that y ∈ (xr+1
1 )R/(x2, . . . , xd). Then y−(a2x2+

. . .+ adxd) ∈ (xr+1
1 )R for some a2, . . . , ad ∈ R. Hence,

y∗ = (a2x2 + . . .+ adxd) +Mr+1.

This implies that a2x2+. . .+adxd is an element of the ideal (x2, . . . , xd)
of order r. From [10, page 214], we then know that its leading
form (a2x2 + · · · + adxd) + Mr+1 belongs to the characteristic ideal
c(x2, . . . , xd) = (x∗

2, . . . , x
∗
d). Thus, y∗ ∈ (x∗

2, . . . , x
∗
d), and this proves

our observation.

Because of this observation, the assumption that α∗ and β∗ do not
belong to (x∗

2, . . . , x
∗
d), means that α /∈ (xr+1

1 )R/(x2, . . . , xd) and
β /∈ (xs+1

1 )R/(x2, . . . , xd). On the other hand, α∗β∗ ∈ (x∗
2, . . . , x

∗
d)

means that αβ ∈ (xr+s+1
1 )R/(x2, . . . , xd). Since R/(x2, . . . , xd) is a

UFD and x1 is a prime element, the desired contradiction follows.

(iv) ⇒ (i). Now we assume that there exists a height-one ideal I0 in
R such that I0 ⊂ I and c(I0) = c(I) is a homogeneous prime ideal P in
grM(R) of height one.

Since the residue field k = R/M is algebraically closed, there exists
a minimal ideal basis x1, x2, . . . , xd of M such that

x∗
1 /∈ P and P = (x∗

2, . . . , x
∗
d).
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(See, for example, [9, page 100].)

Using the fact that P is contained in c(I0), this minimal ideal basis
x1, x2, . . . , xd of M can be modified so that a new minimal ideal basis

x1 := x1, x
′
2, . . . , x

′
d

of M is obtained such that

(x′
2, . . . , x

′
d) ⊆ I0 and P = (x′∗

2 , . . . , x
′∗
d ).

In other words, we may suppose that the minimal ideal basis of M
above (thus with x∗

1 /∈ P and P = (x∗
2, . . . , x

∗
d)), satisfies the additional

condition
x2, . . . , xd ∈ I0.

Since height I0 is one and (x2, . . . , xd) ⊆ I0, no power of x1 belongs to
the ideal (x2, . . . , xd), i.e.,

x1 /∈ rad (x2, . . . , xd).

As we have already observed, this means that R/(x2, . . . , xd) is a DVR.
So, the ideal I/(x2, . . . , xd) ofR/(x2, . . . , xd) is some power of the max-
imal ideal M/(x2, . . . , xd), say, I/(x2, . . . , xd) = (M/(x2, . . . , xd))

n

with n > 1 (since I �= M). It follows that I = (xn
1 , x2, . . . , xd) with

n > 1, and this completes the proof of the proposition.

In the two-dimensional regular case, every complete M-primary ideal
of order one has the very simple form (xn

1 , x2), n ∈ N+, for a suitable
ideal basis x1, x2 of M. By contrast, if a two-dimensional Muhly local
domain (R,M) is not regular, then it does not hold in general that any
quasi-one-fibered complete M-primary ideal of order one is of the form
(xn

1 , x2, . . . , xd), n ∈ N+, with x1, x2, . . . , xd a minimal ideal basis of
M such that x1 /∈ rad (x2, . . . , xd).

In fact, using Proposition 3.7 we will see in Example 3.8 below that
this can occur in a two-dimensional Muhly local domain (R,M) that
is the local ring at the vertex of the affine cone over a projective curve
in projective 3-space over an algebraically closed field k.

Example 3.8. Let

R =
k[X1, X2, X3](X1,X2,X3)

(X3
1 +X2

1X2 −X2
2 −X1X3)(X1,X2,X3)
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with k an algebraically closed field.

Then
R = k[x1, x2, x3](x1,x2,x3)

with x3
1 = (x2−x2

1)x2+x1x3, where x1, x2, x3 denote the natural images
X1, X2, X3. It follows that

M :=

(
x1,

x2

x1
,
x3

x1

)
R

[
M

x1

]

is a maximal ideal of R[M/x1] lying over M, and

R′ := R

[
M

x1

]
M

is an immediate quadratic transform of R with maximal ideal

M′ =
(
x1,

x2

x1

)
R′.

We now consider the following M-primary ideal of order one in R

I := (x2
1, x1x2, x3).

In R′ we have

IR′ = x1

(
x1,

(
x2

x1

)2)
.

Thus, the transform IR
′
of I in (R′,M′) is given by

IR
′
=

(
x1,

(
x2

x1

)2)
,

which is a complete M′-primary ideal or order one in the two-
dimensional regular local ring (R′,M′)

In particular, this shows that (R′,M′) is an immediate base point
of I. In fact, it is the only immediate base point of I. To see this,
note that since (x1, x3) is a minimal reduction of M, all immediate
base points of I are lying on R[M/x1] or R[M/x3]. Since IR[M/x3] =
(x3)R[M/x3], I has no immediate base points on R[M/x3]. Further,
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IR[M/x1] = x1(x1, x2, (x3/x1))R[M/x1]. Thus, the transform of I in
R[M/x1] is contained in only one maximal ideal of R[M/x1], namely,
M = (x1, (x2/x1), (x3/x1)). Hence, R′ = R[M/x1]M is the unique
immediate base point of I. This, together with the fact that IR

′
is an

M′-primary ideal of order one, implies that I is quasi-one-fibered.

Next, we claim that I is complete. To see this, consider the following
inclusion

I = (x2
1, x1x2, x3) ⊆ (x2

1, x2, x3).

Since (x2
1, x2, x3) = x1M

′ ∩ R, we have that (x2
1, x2, x3) is complete.

Hence,

I = (x2
1, x1x2, x3) ⊆ I ⊆ (x2

1, x2, x3).

Since (x2
1, x1x2, x3) ⊆ (x2

1, x2, x3) are adjacent ideals, we have I = I or
I = (x2

1, x2, x3). If follows that I = I, for otherwise (x2
1, x1x2, x3) would

be a reduction of (x2
1, x2, x3) and thus the transform of (x2

1, x1x2, x3)
in R′ would also be a reduction of the transform of (x2

1, x2, x3) in R′

(that is, M′ = (x1, (x2/x1))R
′), which is impossible.

So, I = (x2
1, x1x2, x3) is a quasi-one-fibered completeM-primary ideal

of order one in the two-dimensional Muhly local domain (R,M).

We now show that I cannot have the simple form (x′n
1 , x′

2, x
′
3),

where x′
1, x

′
2, x

′
3 denotes a minimal ideal basis of M such that x′

1 /∈
rad (x′

2, x
′
3). It therefore suffices to show that I does not satisfy

condition (iv) of Proposition 3.7. To do so, we begin by observing that
the characteristic ideal c(I) of I = (x2

1, x1x2, x3) is the homogeneous
ideal (x∗

3) in grM(R) = k[X1, X2, X3]/(X
2
2 +X1X3), where x∗

3 denotes
the leading form of x3 in grM(R). Using the fact that grM(R) =
k[X1, X2, X3]/(X

2
2 +X1X3), it is easily seen that P := (x∗

2, x
∗
3) is

the only homogeneous prime ideal of height one in grM(R) containing
c(I) = (x∗

3). So c(I) cannot be a homogeneous prime ideal of height
one in grM(R). Thus, I does not satisfy Proposition 3.7 (iv), which
proves our claim.
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