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NEGATIVE PISOT AND SALEM NUMBERS
AS ROOTS OF NEWMAN POLYNOMIALS

KEVIN G. HARE AND MICHAEL J. MOSSINGHOFF

ABSTRACT. A Newman polynomial has all its coefficients
in {0, 1} and constant term 1. It is known that every root
of a Newman polynomial lies in the slit annulus {z ∈ C :
τ−1 < |z| < τ} \ R+, where τ denotes the golden ratio, but
not every polynomial having all of its conjugates in this set
divides a Newman polynomial. We show that every negative
Pisot number in (−τ,−1) with no positive conjugates, and
every negative Salem number in the same range obtained by
using Salem’s construction on small negative Pisot numbers,
is satisfied by a Newman polynomial. We also construct a
number of polynomials having all their conjugates in this slit
annulus, but that do not divide any Newman polynomial.
Finally, we determine all negative Salem numbers in (−τ,−1)
with degree at most 20, and verify that every one of these is
satisfied by a Newman polynomial.

1. Introduction. A Newman polynomial is a univariate polynomial
with all its coefficients in {0, 1} and constant term 1. Let N denote
the set of Newman polynomials. In 1993, Odlyzko and Poonen [19]
established a number of facts about Newman polynomials. For a
positive real number ρ, we let Aρ denote the open annulus

Aρ = {z ∈ C : ρ−1 < |z| < ρ}.

Odlyzko and Poonen proved that if α ∈ C is a root of a polynomial
f ∈ N , then α ∈ Aτ , where τ = (1 +

√
5)/2 denotes the golden ratio.

They also demonstrated that the set W of roots of N in the complex
plane has a fractal appearance and showed that its closure W is path-
connected. In addition, they remarked that the set W is unlikely to
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be the full annulus Aτ , as this annulus appears to contain a number of
zero-free regions with positive area.

Certainly, not every algebraic integer α ∈ Aτ is a root of a Newman
polynomial, since α or one of its conjugates may be a positive real
number. Dubickas [11] has shown that an algebraic number has no
positive real conjugates if and only if it is satisfied by a polynomial
having all nonnegative coefficients. However, it follows from recent
work of Drungilas and Dubickas [9] that α may not be the root of a
Newman polynomial, even if α and all of its conjugates lie in Aτ \R+.
In fact, they proved that, for each real number ρ ∈ (1, 2], the set of
algebraic units whose conjugates all lie in the annulus Aρ, but do not
occur as the root of any polynomial with {−1, 0, 1} coefficients, is dense
in Aρ. It is straightforward to modify their construction so that the
algebraic units in question have no positive real conjugates. It follows
that the set of algebraic units whose conjugates all lie in Aτ \R+, but
do not occur as a root of any Newman polynomial, is dense in Aτ .

Next, recall that the Mahler measure of a polynomial

f(z) =
n∑

k=0

akz
k = an

n∏
k=1

(z − αk)

is defined by

M(f) = |an|
n∏

k=1

max{1, |αk|}.

If α is an algebraic number, then we denote by M(α) the Mahler
measure of its minimal polynomial. It is well known (owing to a
classical result of Kronecker) that M(f) = 1 for f(z) ∈ Z[z] if and
only if f(z) is a product of cyclotomic polynomials, and a power of z.
In 1933, Lehmer [13] asked whether there exists a positive number ε
such that if f ∈ Z[z] has M(f) �= 1 then M(f) ≥ 1 + ε. This is known
as Lehmer’s problem, and it remains open. The smallest known value
of the measure greater than 1 is 1.17628 . . . , attained by a polynomial
noted by Lehmer:

(1) �1(z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1.

Several partial results are known in Lehmer’s problem. For example,
if a polynomial f ∈ Z[z] exists with 1 < M(f) < M(�1), then
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deg (f) ≥ 56 [17]. For more information, we refer the reader to the
survey article [23].

It is remarkable that a simple condition involving the Mahler measure
suffices for deducing that an algebraic integer is satisfied by some
polynomial with {−1, 0, 1} coefficients. We say a polynomial with
{−1, 0, 1} coefficients has height 1. Pathiaux [20] and Mignotte [14]
proved that if α is algebraic and M(α) < 2, then there exists a
polynomial F (z) with height 1 such that F (α) = 0. Furthermore,
it follows from Siegel’s lemma that if f(z) ∈ Z[z] has M(f) < 2, then
there exists a polynomial F (z) with height 1 such that f(z) | F (z),
even if f is not irreducible [3].

Since every root of a polynomial with height 1 and nonzero constant
term lies in the annulus A2, one might ask if a similar property may
hold for the set of Newman polynomials. We investigate this question
in this article.

Problem 1. Does there exist a real number σ > 1 such that
if f(z) ∈ Z[z] has no nonnegative real roots and M(f) < σ, then
f(z) | F (z) for some F (z) ∈ N?

By analogy with the known results for height 1 polynomials, one
might surmise that the value of σ could be taken to be τ , the golden
ratio. Certainly this is the largest possible value for σ. However, we
show that this cannot be the case in subsection 2.1, where we construct
a number of polynomials that have all their roots in the slit annulus
Aτ \ R+, exhibit Mahler measure less than τ , and yet do not divide
any Newman polynomial. The smallest Mahler measure in this list is
approximately 1.556 (see Table 1 in Section 2).

Problem 1 certainly requires that if f(z) is a product of cyclotomic
polynomials with (z − 1) � f(z), then f(z) must divide a Newman
polynomial. In 2003, Dubickas [10] proved precisely this statement,
providing an explicit construction, and showing that indeed one may
require the Newman polynomial itself to be a product of cyclotomic
polynomials.

It is natural then to consider the problem of representing other classes
of polynomials by Newman polynomials. Recall that a Pisot number
is a real algebraic integer β > 1 whose conjugates all lie inside the
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open unit disk {z : |z| < 1}. Much is known about this set: it is
closed, its minimal element is the real root of z3 − z − 1 (1.32471 . . . ),
and its smallest limit point is the golden ratio τ . In 1966, Amara [1]
determined all of the limit points of Pisot numbers in (1, 2], along with
all of the associated sequences of Pisot numbers approaching each limit
point. Furthermore, Boyd [6, 8] developed algorithms that can identify
all of the Pisot numbers in [1, 2− δ] for any δ > 0, including the limit
points. Using all of this information, it is well known (see for instance
[2]) that every Pisot number less than the golden ratio is a root of one
of the following polynomials, for some positive integer n:

(2)

p2n(z) = z2n+1 − z2n−1 − z2n−2 − · · · − z − 1,

q2n+1(z) = z2n+1 − z2n − z2n−2 − · · · − z2 − 1,

rn(z) = zn(z2 − z − 1) + z2 − 1,

g(z) = z6 − 2z5 + z4 − z2 + z − 1.

We say β is a negative Pisot number if −β is a Pisot number. It
is convenient to define the following families of polynomials when
analyzing the small negative Pisot numbers:

(3)

Pn(z) = zn(z2 + z − 1) + 1,

Qn(z) = zn(z2 + z − 1)− 1,

Rn(z) = zn(z2 + z − 1) + z2 − 1,

Sn(z) = zn(z2 + z − 1)− z2 + 1,

G(z) = z6 + 2z5 + z4 − z2 − z − 1.

Since (z + 1)p2n(−z) = −P2n(z), (z
2 − 1)q2n+1(−z) = −Q2n+1(z),

r2n(−z) = R2n(z), r2n+1(−z) = −S2n+1(z) and g(−z) = G(z), every
negative Pisot number β > −τ occurs as a root of one of these
polynomials. In addition, each polynomial in each of these families
has a negative Pisot number as a root, although in some cases (such
as P2n+1(z) and Q2n(z)) this number is less than −τ . We need these
negative Pisot numbers as well for the second class of algebraic integers
that we consider.

A Salem number is a real algebraic integer α > 1 having 1/α as
one conjugate, and the rest of its conjugates lying on the unit circle.
The set of Salem numbers is not as well understood as the set of
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Pisot numbers. In particular, it is not known if a minimal Salem
number exists. The smallest one known is 1.17628 . . . , the real root
greater than 1 of the polynomial �1(z) from (1). However, some results
connecting Salem numbers and Pisot numbers are known. If p(z) is the
minimal polynomial of a Pisot number β, we let p∗(z) = zdeg (p)p(1/z)
denote the reciprocal polynomial of p(z). Salem [21] proved that,
for sufficiently large integers m, the polynomials zmp(z) + p∗(z) and
zmp(z) − p∗(z) have a Salem number as a root, and that these two
associated sequences of Salem numbers approach β in the limit, one
sequence from above and one sequence from below. Furthermore, Boyd
[5] showed that every Salem number arises as a member of one of
these sequences associated with some Pisot number in fact, each Salem
number is generated infinitely often through these sequences. More
information on Salem numbers may be found in [2, 4, 22].

We say α is a negative Salem number if −α is a Salem number. It is
natural then to consider all of the negative Salem numbers associated
with each of the negative Pisot numbers from (3) in the context of
Problem 1. We define the families

(4)

P+
m,n(z) = zmPn(z) + P ∗

n(z), P−
m,n(z) = zmPn(z)− P ∗

n(z),

Q+
m,n(z) = zmQn(z) +Q∗

n(z), Q−
m,n(z) = zmQn(z)−Q∗

n(z),

R+
m,n(z) = zmRn(z) +R∗

n(z), R−
m,n(z) = zmRn(z)−R∗

n(z),

S+
m,n(z) = zmSn(z) + S∗

n(z), S−
m,n(z) = zmSn(z)− S∗

n(z),

G+
m(z) = zmG(z) +G∗(z), G−

m(z) = zmG(z)−G∗(z).

We investigate the negative Salem numbers in these sequences and
determine whether every such number α > −τ can be represented by a
Newman polynomial. Note that some of the negative Salem numbers α
from the polynomials in (4) satisfy α > −τ , even when the associated
negative Pisot number β satisfies β < −τ . This occurs, for example,
with the polynomials Q+

m,n(z) when n is even, m is odd and m ≤ n+1.

In this article, we show that the best possible result holds for negative
Pisot and Salem numbers by proving the following results.

Theorem 1. If β is a negative Pisot number with β > −τ and β has
no positive real conjugates, then there exists a Newman polynomial F
with F (β) = 0.
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Theorem 2. If α is a negative Salem number satisfied by one of the
polynomials (4) and α > −τ , then there exists a Newman polynomial
F with F (α) = 0.

It is also interesting that Theorem 2 extends a result of Mukunda
[18] in a natural way. In his article, Mukunda first adapted Boyd’s
algorithm to show that every negative Pisot number whose minimal
polynomial is a Newman polynomial is a root of Qn(z) with n odd.
He then shows that each of these negative Pisot numbers is a limit
point, from below, of negative Salem numbers, each of which is sat-
isfied by some Newman polynomial. Our Theorem 2 then not only
produces a sequence of negative Salem numbers converging to each of
these negative Pisot numbers from above as well, but shows that this
approximation property holds for every small negative Pisot number,
not just those whose minimal polynomial is a Newman polynomial.

This paper is organized in the following way. Section 2 describes some
algorithms for identifying Newman polynomials having a prescribed
factor, and for determining when certain algebraic units are not sat-
isfied by any Newman polynomial. Section 3 constructs the Newman
polynomials for the Pisot case, proving Theorem 1, and Section 4 han-
dles the Salem case and establishes Theorem 2. Section 5 then describes
the determination of every negative Salem number α > −τ with degree
at most 20 and verifies that each of these 502 algebraic numbers occurs
as the root of a Newman polynomial.

2. Algorithms. Let f ∈ Z[z] be a polynomial having all its roots
in Aτ \ R+. If a polynomial F ∈ N exists with f | F , we would like
an effective method for constructing such a polynomial. Certainly, a
trivial method would merely test every Newman polynomial of degree
n ≥ deg (f) until finding a qualifying polynomial. In this section, we
describe two much more efficient methods for finding these polynomials,
one of which can also determine when no such Newman polynomial
exists, at least in certain cases. We then show how these methods may
be employed to determine Newman polynomials representing families
like (3) and (4).

2.1. Values attained in an interval. Given a negative real
algebraic integer β ∈ (−τ,−1), our first method calculates all of the
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values in a certain interval which are attained by the set of Newman
polynomials of bounded degree. It then determines if a Newman
polynomial F with a zero at β exists within this degree range by testing
whether 0 is ever realized. More precisely, let I(β) denote the real
interval

I(β) =

[ −1

β2 − 1
,

−β

β2 − 1

]
.

Next, for a nonnegative integer d, let

N (β, d) = {F (β) : F ∈ N and deg (F ) ≤ d} ∩ I(β),

and let
N (β) =

⋃
d≥0

N (β, d).

It is straightforward to verify that, if F ∈ N and F (β) /∈ I(β), then
βF (β) /∈ I(β) and βF (β) + 1 /∈ I(β). It follows that, for a positive
integer n, the set N (β, n) may be computed by using a simple recursive
strategy. Clearly, N (β, 0) = {1}, and for d > 0, we have that

(5)
N (β, d+ 1) = N (β, d) ∪ ({βω : ω ∈ N (β, d)} ∩ I(β)

)
∪ ({βω + 1 : ω ∈ N (β, d)} ∩ I(β)

)
.

We may therefore determine whether β is satisfied by a Newman
polynomial of degree at most n by checking whether any of the sets
N (β, d) for d ≤ n contain 0.

We also note that, if N (β, d + 1) = N (β, d) for some d, then
N (β) = N (β, d), and in this case the method then determines whether
β is satisfied by any Newman polynomial. While we can only guarantee
that this iteration stabilizes when β is a negative Pisot number, in
practice we find that it often terminates for other algebraic integers.

For β a negative Pisot number, a result of Garsia [12] shows that
there exists a constant c := c(β) > 0, independent of d, such that, for
x, y ∈ N (β), either x = y or |x − y| > c > 0. As a result, we see that
the number of distinct elements of N (β) is finite and bounded, and
hence this algorithm must terminate. Upon termination, we can check
whether N (β) contains 0.

There is a second way that this algorithm may terminate: if 0 is
shown to be in N (β) at some point during the calculation, then we may
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terminate with an affirmative. In this case, it does not matter whether
N (β) is finite or infinite. Most of the Salem numbers discussed in this
paper possess this property.

TABLE 1. Some polynomials with all roots in Aτ \ R+ that do not divide any

Newman polynomial.

Polynomial Mahler measure

z6 − z5 − z3 + z2 + 1 1.556014485

z7 − z6 − z5 + z4 + z3 − z2 + 1 1.558378942

z8 − z7 + z2 + 1 1.604364647

z9 − z8 − z6 + z2 + 1 1.615829244

z8 − z7 − z5 + z2 + 1 1.617538308

z8 + z7 + 2z6 + z5 + z4 + z3 + 2z2 + z + 1 1.618530599

z9 − z8 + z7 + z5 + z4 + z2 + 1 1.621082531

z8 − z7 + z5 + z3 − z + 1 1.624147966

z7 + z5 − z4 − z + 1 1.646642716

z8 + z7 + 2z6 + 2z5 + z4 + z3 + z2 + z + 1 1.652235034

In theory, if 0 ∈ N (β), then this algorithm will terminate. In practice,
it is impossible to distinguish between β where 0 /∈ N (β) and those
where the calculation runs out of memory. An example of this is given
by s1(z) in equation (13) at the end of this paper.

We employ a variation of this algorithm to find a number of polyno-
mials that have all their roots in Aτ \R+ but do not divide any Newman
polynomial. Table 1 exhibits ten such polynomials, four of which have
Mahler measure less than τ . None of these polynomials has a negative
root between −2 and −1, so we cannot use the algorithm described
above directly. We describe here a modified version for polynomials
having no real roots.

Let β be any algebraic integer with |β| > 1. Define

I ′(β) =
{
z ∈ C : |z| ≤ |β|

|β| − 1

}
,

N ′(β, d) = {F (β) : F ∈ N and deg (F ) ≤ d} ∩ I ′(β),
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and

N ′(β) =
⋃
d≥0

N ′(β, d).

It is straightforward to verify that, if F ∈ N and F (β) /∈ I ′(β), then
βF (β) /∈ I ′(β) and βF (β) + 1 /∈ I ′(β). We may thus calculate the sets
N ′(β, d) just as in (5), and if we find that N ′(β, d + 1) = N ′(β, d) for
some d, then N ′(β) is finite. In this case, if 0 /∈ N ′(β), then we may
conclude that β is not the root of a Newman polynomial. This was the
case for each example in Table 1.

2.2. Sieving, and reciprocal polynomials. Our second method
for constructing Newman polynomials with a prescribed factor f ∈ Z[z]
was developed by the second author in 2003 [15]. We briefly describe
the method here.

Clearly we may represent a Newman polynomial F by the integer
F (2). If f | F , then certainly f(2) | F (2), so we need only con-
sider odd multiples of f(2) as initial candidates for F (2). Next, for
a positive integer x =

∑n
i=0 xi2

i, with each xi ∈ {0, 1}, let γ(x) =∑�n/2�
i=0 x2i2

2i −∑�(n−1)/2�
i=0 x2i+12

2i+1, so that γ(F (2)) = F (−2). We
may thus compute F (−2) from F (2) in just three elementary opera-
tions: first use a mask to obtain the even-indexed bits in F (2), then
another mask to obtain the odd-indexed bits and then subtract these
two values. Our method then tests whether f(−2) | γ(u) for each pos-
itive odd integer u that is a multiple of f(2), and on each success we
construct F (z) from u = F (2) and test whether f | F .

In most situations in this research the polynomial f is reciprocal,
that is, f = f∗, so we might expect that many Newman polynomials
having f as a factor will also be reciprocal. As in [15], we adapt
this method to search for reciprocal Newman polynomials having a
prescribed reciprocal factor f . If F ∈ N is reciprocal with degree n,
select k and m so that 2k +m = n+ 1 and f(2) < 2m. Then write

(6) F (2) = 2k+ma∗ + 2kb+ a,

where a is odd, 0 < a < 2k, 0 ≤ b < 2m, and a∗ denotes the integer
obtained by reversing the bits of a, interpreted as a bit string of length
k. The condition that f(2) | F (2) is then equivalent to the requirement
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that

(7) b ≡ −2ma∗ − 2−ka mod f(2),

and if we select m as small as possible so that f(2) < 2m and
m + 2k = n + 1, then for each odd a < 2k there are at most three
values of b that satisfy (7). The requirement that f(−2) | F (−2) can
also be adapted to the reciprocal case. Using (6), it follows that

F (−2) = (−2)k+mγ(a∗) + (−2)kγ(b) + γ(a),

so we require that

(8) γ(b) ≡ −(−2)mγ(a∗)− (−2)−kγ(a) mod f(−2).

Thus, given a reciprocal polynomial f and a target degree n, our
second method first selects m and k so that m + 2k = n + 1 and
2m−2 < f(2) < 2m, and then for each odd integer a ∈ (0, 2k), it
computes all integers b ∈ [0, 2m) satisfying (7) and checks if any of
these satisfies (8). If a and b pass both of these tests, then we construct
F from a and b by using (6) and determine whether f | F . We remark
that the various powers of ±2 modulo f(2) and f(−2) required in (7)
and (8) may be computed at initialization for efficiency. In addition,
using a Gray code to step through the different possible values of a also
greatly improves performance.

We note that this algorithm does not require that the given polyno-
mial f be irreducible, and the adaptation to searching for reciprocal
polynomials greatly extends its reach. We also note that this method
may produce some non-reciprocal multiples of f as well while it guar-
antees that the leading k coefficients match the last k coefficients, the
middle m coefficients need not be symmetric.

2.3. Example. We show how these methods were employed to
determine families of Newman polynomials that represent our negative
Pisot and Salem numbers by presenting some details in one case.

We consider the classQ+
m,n(z) whenm is odd, n is even and n ≥ m−1.

We first note that these polynomials always have (z − 1)2(z + 1) as a
factor in this case, and we remove these factors before applying our
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second algorithm. Some initial experiments with our methods indicated
that Newman representatives for these polynomials could only be found
when m and n were both rather small, suggesting that factors of
sizable degree may be required in general. When (m,n) = (5, 4)
or (7, 6), we find that we can manufacture many examples, but no
patterns were immediately apparent. We might hope, however, that if
(Q+

m,n(z)/(z− 1)2(z+1)) · g(z) is a Newman polynomial, then perhaps
g(z)h(z) has a particularly simple representation, for some auxiliary
polynomial h(z). Multiplying our polynomials g(z) by combinations of
factors of the form zk±1, zk+zk−1+ · · ·+1 and zj±zk+1 for various
values of j and k, we found that the reciprocal Newman polynomial
of minimal degree that is divisible by Q+

5,4(z)/(z − 1)2(z + 1) can be
written as

Q+
5,4(z)(z

24 − 1)(z5 + 1)

(z8 − 1)(z6 − 1)(z2 − 1)
,

and, for the case (m,n) = (7, 6), a reciprocal Newman polynomial of
degree 58 is

Q+
7,6(z)(z

60 − 1)(z7 + 1)

(z12 − 1)(z10 − 1)(z2 − 1)
.

(In this case, examples with degree as small as 50 exist.) We then turn
to the case (m,n) = (9, 8), which is more difficult, but still tractable,
as our algorithm from subsection 2.2 finds that the reciprocal Newman
polynomial with minimal degree that is divisible by Q+

9,8(z)/(z−1)2(z+
1) has degree 80. (The prescribed factor has degree 16 here.) We find
that this Newman polynomial may be written as

Q+
9,8(z)(z

80 − 1)(z9 + 1)

(z16 − 1)(z10 − 1)(z2 − 1)
.

These examples suggested further experiments with polynomials of the
form

(9)
Q+

m,m−1(z)(z
ab/2 − 1)(zm + 1)

(za − 1)(zb − 1)(z2 − 1)
,

with ab even, and we found that selecting a = 3m− 1 and b = m + 1
always appeared to produce a Newman polynomial. Additional work
then demonstrated that, in the general case with m odd, n even, and
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m ≥ n − 1, we should use (9) with a = m + 2n + 1 and b = n + 2,
and that we should write the factor zm + 1 in the numerator of (9) as
zn+1+1. We verify that the resulting polynomial (11) is indeed always
a Newman polynomial in subsection 4.3.

3. Negative Pisot numbers. Using the methods from Section 2,
we may identify families of Newman polynomials having the qualifying
negative Pisot numbers from (3) as roots. We consider each of these
families in turn in the following proof.

Proof of Theorem 1. From (2), we need only consider the polynomials
Pn(z) and Rn(z) when n is even, Qn(z) and Sn(z) when n is odd, and
G(z). Since Rn(0) = −1 and Rn(1) = 1, we see that Rn(z) has a
positive real root for every n, and a direct calculation reveals this to
be the case for G(z) as well. Next, when n is odd, we find that

Qn(z)

z2 − 1
= zn +

(n−1)/2∑
k=0

z2k

and

Sn(z)(z
n + 1)(zn+1− 1)

z2−1
= z3n+1+z2n+1

(n−1)/2∑
k=0

z2k+zn+3

(n−5)/2∑
k=0

z2k+1,

which are both Newman polynomials. Finally, if n is even, then

Pn(z)(z
n+1 − 1)

z2 − 1
= z2n+1 + (zn+2 + 1)

(n/2)−1∑
k=0

z2k,

which is again a Newman polynomial.

4. Negative Salem numbers. In order to prove Theorem 2, we
consider each of the ten families of polynomials from (4) in turn. We
let Φk(z) denote the cyclotomic polynomial with index k throughout
this section.

4.1. The polynomials P+
m,n(z). If m and n are both odd, then it

is straightforward to verify that P+
m,n(−τ) < 0 and P+

m,n(−3) > 0, so
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the Salem number in question is always less than −τ in this case. If m
is odd and n is even, we find that P+

m,n(z) again has a root in (−3,−τ)
when either m ≥ 5 and n ≥ m − 1, or m ≤ 3 and n ≥ m + 1. After
verifying that P+

3,2(z)Φ3(z)Φ6(z)Φ18(z) is a Newman polynomial, we
need only consider odd m ≥ 5 and even n ≤ m − 3 to complete this
case. For this, we note the identity

(10)

P+
m,n(z)(z

m−1 − 1)

z2 − 1
= z2m+n−1 + zn+2

m−2∑
k=0

z2k − zm−1

+ z
m−2∑
k=0

z2k − zm+n + 1,

which is valid for all positive integers m and n, and we see that
if m is odd, n is even, m ≥ 5, and n ≤ m − 3, then the two
negative terms in (10) cancel with positive ones in the sums, producing
a Newman polynomial. If m is even and n is odd, the fact that
P+
m,n(z) = P+

n+2,m−2(z) reduces this problem to the prior case except

when m = 2, and P+
2,n(z) = (zn+3 + 1)(z + 1) is cyclotomic (and a

Newman polynomial). Last, if m and n are both even, then by using
the symmetry we need only consider the case m ≥ n + 2, and in this
case the two negative terms in (10) cancel with positive ones in the
sums, producing a Newman polynomial.

We remark that Lehmer’s polynomial �1(z) from (1) is a factor of
P+
4,6(−z), and thus the identity (10) produces the Newman polynomial

z13 + z12 + z8 + z5 + z + 1 that represents the smallest (in absolute
value) known negative Salem number.

4.2. The polynomials P−
m,n(z). We find that P−

m,n(z)/(z
2 − 1) is

a Newman polynomial precisely when P−
m,n(z) has no real roots less

than −τ . More precisely, it is straightforward to verify that P−
m,n(z)

has a real root in (−3,−τ) in the following cases: m and n both odd
and n ≤ m − 4; m is even and n is odd; and m and n are both even
and n ≥ m. For the remaining cases, if m is odd, and either n is even,
or n is odd and n ≥ m− 2, then

P−
m,n(z)

z2 − 1
= zm+n + z(zn+1 + 1)

(m−3)/2∑
k=0

z2k + 1
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is a Newman polynomial. If m and n are both even and n ≤ m − 2,
then

P−
m,n(z)

z2 − 1
= zm+n + z

[(m+n)/2]−1∑
k=0

z2k + zn+2

[(m−n)/2]−2∑
k=0

z2k + 1

is again in N .

4.3. The polynomials Q+
m,n(z). Using the intermediate value

theorem, one may verify that Q+
m,n(z) has a real root in (−3,−τ)

when m and n are both even, and also when m is odd, n is even,
and n ≤ m− 3. Further, the symmetry Q+

m,n(z) = Q+
n+2,m−2(z) allows

us to ignore the case when m is even, n is odd, and m ≥ 4, and it is
easy to check that Q+

2,n(z) has a real root in (−2,−τ) for odd n ≥ 3.

The polynomial Q+
2,1(z) = (z − 1)2(z + 1)3 is cyclotomic. This leaves

two recalcitrant cases. If m and n are both odd, some considerable
experimentation and lengthy algebra reveals that

Q+
m,n(z)

(
z(m+n)(m−1)/2 − 1

)
(zm+n − 1)(zm−1 − 1)(z2 − 1)

=

[(m+n)/2]−1∑
k=0

zk(m−1) + z

( (n−3)/2∑
k=0

z2k
)( (m−3)/2∑

k=0

zk(m+n)

)

is a Newman polynomial, and if m is odd, n is even, and n ≥ m − 1,
then with more experimentation (summarized in subsection 2.3) we
find that

(11)
Q+

m,n(z)
(
z(m+2n+1)(n+2)/2 − 1

) (
zn+1 + 1

)
(zm+2n+1 − 1)(zn+2 − 1)(z2 − 1)

= z(zn + 1)

( (m−3)/2∑
k=0

z2k
)( n/2∑

k=0

zk(m+2n+1)

)
+

n+[(m−1)/2]∑
k=0

zk(n+2)

is again in N .

4.4. The polynomials Q−
m,n(z). Since Q−

m,n(z) = P−
n+2,m−2(z), we

need only check the cases with m ≤ 2. Using the intermediate value
theorem, we find that Q−

1,n(z) has a real root in (−3,−τ) for n ≥ 2,
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and Q−
1,1(z) = (z− 1)(z+1)3 and Q−

2,n(z) = (zn+3− 1)(z+1) are both
cyclotomic.

4.5. The polynomials R+
m,n(z) and S+

m,n(z). We consider both of
these families simultaneously since R+

m,n(z) = S+
n,m(z). We first verify

that R+
m,n(z) has a real root in (−3,−τ) when m is even and n is odd,

when both are odd and n ≤ m, and when both are even and n ≥ m. If
m is odd and n is even, then

R+
m,n(z)(z

m+n+1 − 1)

z2 − 1
= z2m+2n+1

+ (z2m+2n + z2m+2n−2 + · · ·+ zm+n+3)

− zm+2n+1 + z2m+n+1

+ (zm+n−2+ zm+n−4+ · · ·+ z)− zm+zn+1,

and the two terms with coefficient −1 each cancel with a term in the
prior sum. If m and n are both odd and n > m ≥ 3, then

R+
m,n(z)(z

m+1 − 1)(zm + 1)

z2 − 1
= z3m+n+1

+ (z3m+n + z3m+n−2 + · · ·+ z2m+n+1) + z3m+1 + zn

+ (z2m+n−2 + z2m+n−4 + · · ·+ zm+n+3)

+ (z2m−2 + z2m−4 + · · ·+ zm+3) + (zm + zm−2 + · · ·+ z) + 1,

a Newman polynomial. To complete this case, we note that

R+
1,n(z)Φ3(z) = zn+5 + zn+4 + zn + z5 + z + 1.

Finally, suppose m and n are both even and m > n. For this case, we
first find that

R+
m,n(z)(z

n − 1)(zn+1 + 1)

z2 − 1
= zm+3n+1 − z3n+1 − zm

+ (zm+3n + zm+3n−2 + · · ·+ zm+2n)

+ (zm+2n−1 + zm+2n−3 + · · ·+ zm+n+3)

+ (z2n−2 + z2n−4 + · · ·+ zn+2) + (zn+1 + zn−1 + · · ·+ z) + 1,
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and the two negative terms cancel with positive ones if n < m < 2n.
Suppose then that m ≥ 2n. We compute that

(12)
R+

m,n(z)(z
n − 1)(z2n−1 + 1)(zm + 1)

z2 − 1
= z2m+4n−1

+ (z2m+4n−2 + z2m+4n−4 + · · ·+ z2m+3n)

+ z2m+2n

+ (z2m+2n−3 + z2m+2n−5 + · · ·+ z2m+n+1)

+ (zm+4n−2 + zm+4n−4 + · · ·+ zm+2n)− z2m

+ (zm+2n−1 + zm+2n−3 + · · ·+ zm+1)− z4n−1

+ (z3n−2 + z3n−4 + · · ·+ z2n+2) + z2n−1

+ (zn−1 + zn−3 + · · ·+ z) + 1,

and this is a Newman polynomial provided that 2n ≤ m < 4n. For
m ≥ 4n, note that if we multiply (12) by z2n + 1, then the resulting
product still has height 1, the z4n−1 and z2m+2n terms both cancel, and
the result is a Newman polynomial if 4n ≤ m < 6n. For 6n ≤ m < 8n, a
similar argument shows that multiplying (12) by the factor z4n+z2n+1
suffices, and in general, if m > 2n then

R+
m,n(z)(z

n − 1)(z2n−1 + 1)(zm + 1)(z2n�m/2n� − 1)

(z2 − 1)(z2n − 1)

is a Newman polynomial.

4.6. The polynomials R−
m,n(z). Since R−

m,n(z) = R−
n,m(z), we

need only consider the case n ≥ m. We first note that R−
m,n(z) has a

real root in (−3,−τ) when m is odd and n ≥ m. If m and n are both
even, then

R−
m,n(z)

z2 − 1
= zm+n + zm + zn + 1 + z

[(m+n)/2]−1∑
k=0

z2k

is a Newman polynomial unless m = n. For this case, since R−
m,m(z) =

(zm + 1)(zm+2 + zm+1 − zm + z2 − z − 1), we find that

R−
m,m(z)

(zm + 1)(z2 − 1)
= zm + 1 + z

m/2−1∑
k=0

z2k.



NEGATIVE PISOT AND SALEM NUMBERS 129

Suppose then that m is even, n is odd and n > m. Let k < m/2 be a
positive integer. We compute

R−
m,n(z)

(
z3m+n+2 − z2m+n+2 + z2m+n+1−2k + zm+2k+1 − zm + 1

)
z2 − 1

= z4m+2n+2 + (z4m+2n+1 + z4m+2n−1 + · · ·+ z3m+2n+3)

+ z3m+2n−2k+1 + (z3m+2n−2k+3 + z3m+2n−2k+1 + · · ·+ z3m+n+3)

− z2m+2n+2 + z2m+2n−2k+1 + z4m+n+2 + z3m+n−2k+1

+ z2m+n+2k+1 + z2m+n+1 − z2m+n+2 − z2m+n

+ (z2m+n+2k + z2m+n+2k−2 + · · ·+ z2m+n−2k+2) + z2m+n−2k+1

+ zm+n+2k+1 + (zm+n−1 + zm+n−3 + · · ·+ zm+2k+2)− z2m + zn

+ z2m+2k+1 + zm+2k+1 + (zm−1 + zm−3 + · · ·+ z) + 1.

There are four terms with coefficient −1, but each one cancels with
another term since 2k+2 ≤ m < n. In addition, we determine that all of
these monomials are distinct if m �= 4k, n �= m+2k+1, n �= 2m+2k+1
and n > 4k − 1. If k = 1, we find that this is therefore a Newman
polynomial provided that m ≥ 6, n �= m + 3 and n �= 2m + 3, and if
k = 2, it is a Newman polynomial provided that m = 6 or m ≥ 10,
n > 7, and n /∈ {m + 5, 2m + 5}. These two cases therefore cover all
pairs (m,n) with m even, n odd and n > m ≥ 6, except for (8, 11) and
(8, 19). For these, we find that

R−
8,11(z)Φ6(z)Φ10(z)Φ30(z)Φ48(z)/Φ1(z),

R−
8,19(z)Φ4(z)Φ8(z)Φ75(z)/Φ1(z)Φ5(z)

are both Newman polynomials.

We treat the case m = 4 by considering the residue of n modulo 10.
If n ≡ 1 mod 10, then

R−
4,n(z)

(
z2n−4+ z2n−6+ zn+4− zn−1+ zn−2− zn−3+ zn−8+ z2 + 1

)
z5 − 1

= (z3n−3 + z3n−8 + · · ·+ 1)− z2n+3 + z3n−6

+ (z3n−4 + z3n−9 + · · ·+ z2n+2) + z2n+5 + z2n+4 + z2n−1

+ z2n−4 + z2n−5 + z2n−8 + zn+5 + zn+2 + zn−4 + zn−7 + zn−8

+ (zn−5 + zn−10 + · · ·+ z) + z3,
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and here the lone negative term cancels with a term in the prior
sum. Also, all the terms are distinct provided n > 11, so this is a
Newman polynomial except when n = 11. For this case, we note that
R−

4,11(z)Φ14(z)Φ24(z)Φ48(z)/Φ1(z) ∈ N . If n ≡ 3 mod 10, then

R−
4,n(z)

(
z2n−2 + z2n−4 + zn+3 − zn−1 + zn−5 + z2 + 1

)
z5 − 1

= (z3n−1 + z3n−6 + · · ·+ z2n+7)

+ (z3n−2 + z3n−7 + · · ·+ z2n−4)

+ z3n−4 + z2n+4

+ (z2n+3 + z2n−2 + · · ·+ zn−4) + z2n−1 + z2n−5

+ (z2n+3 + z2n−2 + · · ·+ zn−4) + zn+4 + zn + zn−5

+ (zn+3 + zn−2 + · · ·+ z)

+ (zn−8 + zn−13 + · · ·+ 1) + z3,

and this is a Newman polynomial for all n > m in this class. If
n ≡ 5 mod 10, then

R−
4,n(z)

(
z2n−4 + z2n−6 + zn−2 + z2 + 1

)
z5 − 1

= (z3n−4 + z3n−9 + · · ·+ z) + z3n−6

+ (z3n−3 + z3n−8 + · · ·+ z2n−3) + z2n−1

+ z2n−2 + z2n−5 + z2n−6 + zn+3 + zn+2 + zn−1

+ zn−2 + (zn + zn−5 + · · ·+ 1) + z3

suffices except when n = 5, and we find that R−
4,5(z)Φ14Φ24(z)/Φ1(z) ∈

N . If n ≡ 7 mod 10, then

R−
4,n(z)

(
z2n+14 + z2n+12 + zn+7 + z2 + 1

)
z5 − 1

= z3n+12 + (z3n+15 + z3n+10 + · · ·+ z2n+7)

+ (z3n+14 + z3n+9 + · · ·+ z2n+11) + z2n+15

+ (z2n+4 + z2n−1 + · · ·+ zn+11) + (zn+8 + zn+3 + · · ·+ 1)

+ (zn+4 + zn−1 + · · ·+ z) + zn + z3
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is a Newman polynomial. Last, if n ≡ 9 mod 10, then

R−
4,n(z)

(
z2n+8 + z2n+6 + zn+4 + z2 + 1

)
z5 − 1

= z3n+6 + z2n+9 + z2n+4 + (z3n+9 + z3n+4 + · · ·+ z2n+8)

+ (z3n+8 + z3n+3 + · · ·+ z2n+7)

+ (z2n+5 + z2n + · · ·+ zn+4) + (zn+2 + zn−3 + · · ·+ z)

+ zn+5 + (zn+1 + zn−4 + · · ·+ 1) + zn + z3

is a Newman polynomial.

Finally, we establish the case m = 2 by considering the residue of n
modulo 6. If n ≡ 1 mod 6, then

R−
2,n(z)

(
z2n+4 + zn+3 − zn+2 + zn+1 + 1

)
z3 − 1

= (z3n+5 + z3n+2 + · · ·+ z2n+3) + z3n+4 + z2n+5

+ z2n+4 + z2n+1 + (z2n−1 + z2n−4 + · · ·+ zn+6)

+ zn+4 + (zn+2 + zn−1 + · · ·+ 1) + zn+1 + zn + z

is a Newman polynomial when n > 2. If n ≡ 3 mod 6, then

R−
2,n(z)

(
z2n + zn+2 − zn + zn−2 + 1

)
z3 − 1

= (z3n+1 + z3n−2 + · · ·+ z2n−2)

+ z3n + z2n+3

+ (z2n+2 + z2n−1 + · · ·+ zn−1) + zn−2

+ (zn+3 + zn + · · ·+ 1) + z

is a Newman polynomial except when n = 3, and R−
2,3(z) has a real

root at −1.63557 · · · < −τ . Last, if n ≡ 5 mod 6, then

R−
2,n(z)

(
z2n−2 + zn+2 − zn−1 + zn+4 + 1

)
z3 − 1

= (z3n−1 + z3n−4 + · · ·+ z2n−2)

+ z3n−2 + z2n+3 + z2n+2

+ (z2n−3 + z2n−6 + · · ·+ zn+2) + z2n−4 + zn+3

+ (zn+1 + zn−2 + · · ·+ 1) + zn−3 + zn−4 + z
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is Newman for n > 5, and R−
2,5(z)Φ6(z)Φ12(z)Φ24(z)/Φ1(z) ∈ N .

4.7. The polynomials S−
m,n(z). Since S−

m,n(z) = S−
n,m(z), we need

only consider the case n ≥ m. When m is even, a short computation
reveals that S−

m,n(z) has a real root in (−3,−τ). When m is odd, we
compute that

S−
m,n(z)(z

m + 1)

z2 − 1
= z2m+n − z2m − zn + 1 +

z(zm + 1)(zm+n − 1)

z2 − 1
.

If n is odd, this reduces to

z2m+n − z2m − zn + 1 + z(zm + 1)

[(m+n)/2]−1∑
k=0

z2k,

and it is straightforward to check that this is a Newman polynomial
for n ≥ m. If n is even, the same expression becomes

z2m+n − z2m − zn + 1 + zm+1

n/2−1∑
k=0

z2k + z

m+n/2−1∑
k=0

z2k,

which is a Newman polynomial for all n ≥ m except when n = 2m. In
this case, we see that S−

m,2m(z) = (zm − 1)(z2m(z2 + z − 1) + zm+1 −
z2 + z + 1), and determine that

S−
m,2m(z)(zm+1 − 1)

(zm − 1)(z2 − 1)
= z3m+1 + z(z2m + 1)

(m−1)/2∑
k=0

z2k

+ zm+3

(m−5)/2∑
k=0

z2k + 1

for m ≥ 3, a Newman polynomial. The lone remaining case is S−
1,2(z),

and this polynomial has a real root at −1.72208 · · · < −τ .
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4.8. The polynomials G+
m(z). If m is odd and m ≥ 3, we find that

G+
m(z)Φ15(z)(z

2m+10 − 1)

z2 − 1
= z3m+22

+ z3m+16 + z3m+12 + z3m+10

+ (z3m+21 + z3m+19 + · · ·+ z2m+24) + z2m+18

+ z2m+14 + z2m+12

+ (z2m+9 + z2m+7 + · · ·+ zm+14)

+ zm+10 + zm+8 + zm+4

+ (z2m+8 + z2m+6 + · · ·+ zm+13)

+ (zm−2 + zm−4 + · · ·+ z)

+ z12 + z10 + z6 + 1,

which is a Newman polynomial. For the casem = 1, the same multiplier
suffices, but produces the Newman polynomial z25 + z20 + z19 + z16 +
z15 + z14 + z11 + z10 + z9 + z6 + z5 + 1. If m is even, then

G+
m(z)

(
zm+1 + 1

) (
zm+14 + zm+9 + zm+1 − z13 − z5 − 1

)
(z + 1)(z3 − 1)

= z3m+17 + z3m+16 + z3m+14 + z3m+12

+ z3m+11 + z3m+10 + z3m+8 + z3m+4 + z3m+2

+ (z3m+5 + z3m+3 + · · ·+ z2m+19) + z2m+13 + z2m+11

+ z2m+10 + z2m+9 + z2m+7 + z2m+4 + zm+13 + zm+10 + zm+8

+ (z2m+1 + z2m−1 + · · ·+ zm+17)

+ (z2m + z2m−2 + · · ·+ zm+16)

+ zm+7 + zm+6 + zm+4

+ (zm−2 + zm−4 + · · ·+ z12) + z15 + z13

+ z9 + z7 + z6 + z5 + z3 + z + 1

for m ≥ 14. A direct computation reveals that the cases m = 2, m = 4
and m = 6 all exhibit a real root less than −τ , and for the remaining
cases, we find that the following are all Newman polynomials:

G+
8 (z)Φ6(z)Φ16(z)Φ25(z),

G+
10(z)Φ2(z)Φ6(z)Φ22(z)Φ25(z),

G+
12(z)Φ2(z)Φ5(z)Φ10(z)Φ15(z)Φ22(z).
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4.9. The polynomials G−
m(z). If m is odd and m ≥ 19, then

G−
m(z)

(
zm+13(z15 + z10 + z5 − z3 + 1) + z15 − z12 + z10 + z5 + 1

)
(z + 1)(z3 − 1)

= z2m+30 + (z2m+29 + z2m+27 + · · ·+ z2m+19)

+ z2m+24 + z2m+20

+ z2m+15 + z2m+13 + (z2m+14 + z2m+12 + · · ·+ z16) + zm+30

+ zm+28 + zm+24 + zm+6 + zm+2 + zm + z17 + z15 + z11 + z10

+ z9 + z7 + z6 + z5 + z3 + z + 1

is a Newman polynomial. When m = 1, m = 3 or m = 5, the
polynomial G−

m(z) has a real root less than −τ . For the remaining
cases, we verify that

G−
7 (z)Φ6(z)Φ15(z)/Φ1(z),

G−
9 (z)Φ15(z)Φ26(z)(z

48 − z38 + z28 − z22 + z16 − z6 + 1)/Φ1(z),

G−
11(z)Φ10(z)Φ57(z)/Φ1(z), G−

13(z)Φ15(z)Φ34(z)Φ72(z)/Φ1(z),

G−
15(z)Φ10(z)Φ39(z)Φ72(z)/Φ1(z), G−

17(z)Φ6(z)Φ55(z)/Φ1(z)

are all Newman polynomials. If m is even, then

G−
m(z)Φ15(z)

z2 − 1
= zm+12 + (zm+11 + zm+9 + · · ·+ z)

+ zm+6 + zm+2 + zm + z12 + z10 + z6 + 1,

which is a Newman polynomial when m = 2 or m ≥ 14, and for the
remaining cases we find that

G−
4 (z)Φ6(z)Φ18(z)/Φ1(z)Φ2(z),

G−
6 (z)Φ6(z)Φ20(z)/Φ1(z)Φ2(z),

G−
8 (z)Φ33(z)/Φ1(z)Φ2(z),

G−
12(z)Φ6(z)Φ10(z)Φ20(z)Φ40(z)/Φ1(z),

G−
10(z)Φ6(z)Φ10(z)Φ12(z)Φ24(z)Φ54(z)/Φ1(z)

are all Newman polynomials, completing the proof of Theorem 2.
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5. Negative Salem numbers with small degree. Theorem 2
demonstrates that every negative Salem number α > −τ arising from
one of the families (4) is satisfied by a Newman polynomial. However,
some negative Salem numbers in (−τ,−1) may not be represented by
one of these families. For example, it appears that neither −α2 nor
−α3, the second- and third-smallest known negative Salem numbers, is
satisfied by any of the families (4). Here, α2 = 1.18836 . . . and α3 =
1.20002 . . . , and these numbers have respective minimal polynomials

�2(z) = z18 − z17 + z16 − z15 − z12 + z11 − z10

+ z9 − z8 + z7 − z6 − z3 + z2 − z + 1,

and

�3(z) = z14 − z11 − z10 + z7 − z4 − z3 + 1.

It is natural then to test whether small negative Salem numbers like
these occur as the root of a Newman polynomial. To check this, we
determined the complete list of negative Salem numbers α > −τ whose
minimal polynomial has degree at most 20. This list was constructed
by using Boyd’s algorithm [7] to determine all reciprocal polynomials
f ∈ Z[z] with M(f) ≤ τ , and then selecting the minimal polynomials
for Salem numbers from this list. This last filter was implemented by
using a change of variable. If f(z) is a reciprocal polynomial of degree
2n, let g(y) be the polynomial obtained by substituting y for z + z−1

in z−nf(z). (Note that zk+z−k = 2Tk(y/2), where Tk denotes the kth
Chebyshev polynomial, defined by Tk(cos θ) = cos(kθ).) Since each
pair of conjugate roots of f on the unit circle corresponds to a real root
of g in (−2, 2), we can determine whether f is the minimal polynomial
for a Salem number by testing whether it is irreducible and checking
that the corresponding polynomial g has exactly n − 1 real roots in
(−2, 2).

We find that there are exactly 502 negative Salem numbers α >
−τ having degree at most 20. This list is available at the website
http://www.cecm.sfu.ca/∼mjm/Lehmer [16]. By checking the families (4)
with max{m,n} ≤ 50, we observe that Theorem 2 covers at least 272
of them. The minimal polynomials of nine of the remaining numbers are
already Newman polynomials. This leaves 221 negative Salem numbers
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to check, including −α2 and −α3. We use the sieving algorithm for
reciprocal polynomials of subsection 2.2 to check these numbers. This
algorithm discovers a Newman polynomial with degree at most 97 (and
k ≤ 37 in the algorithm) for each of these negative Salem numbers,
except for two of degree 18. For example, we find that

�2(−z)Φ2(z)Φ4(z)Φ8(z)Φ14(z)Φ20(z)Φ32(z)

and
�3(−z)Φ3(z)Φ8(z)Φ15(z)

are the reciprocal Newman polynomials of minimal degree (respectively,
55 and 28) that satisfy −α2 and −α3.

The remaining two negative Salem numbers are γ1 = −1.49604 . . .
and γ2 = −1.57574 . . . , with respective minimal polynomials

(13)

s1(z) = z18 + 3z17 + 4z16 + 4z15 + 4z14 + 5z13 + 6z12

+ 7z11 + 7z10 + 7z9 + 7z8 + 7z7 + 6z6 + 5z5

+ 4z4 + 4z3 + 4z2 + 3z + 1

and
s2(z) = z18 + 2z17 + 2z16 + 3z15 + 2z14 + z13 − z12

− 3z11 − 4z10 − 5z9 − 4z8 − 3z7 − z6

+ z5 + 2z4 + 3z3 + 2z2 + 2z + 1.

For γ1, since s1(1) = 89, certainly any Newman polynomial having
s1(z) as a factor must have 89k monomials, for some integer k. By
using this observation in concert with the algorithm of subsection 2.2
for reciprocal polynomials, we find that

s1(z)Φ24(z)(z
90 − 2z89 + 2z88 − z87 + z83 − 2z82 + 2z81 − z80

+ z79 − 2z78 + 2z77 − z76 + z72 − 2z71 + 3z70 − 3z69 + 2z68 − z67

+ z65 − 2z64 + 3z63 − 3z62 + 2z61 − z60 + z59 − z58

+ z56 − z55 + z54 − z53 + z52 − z51 + z50 − z49

+ z47 − z46 + z45 − z44 + z43 − z41 + z40 − z39

+ z38 − z37 + z36 − z35 + z34 − z32 + z31 − z30

+ 2z29 − 3z28 + 3z27 − 2z26 + z25 − z23 + 2z22

− 3z21 + 3z20 − 2z19 + z18 − z14 + 2z13

− 2z12 + z11 − z10 + 2z9 − 2z8 + z7

− z3 + 2z2 − 2z + 1)
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is a Newman polynomial of degree 116. In fact, this is the minimal
degree of a reciprocal Newman polynomial having s1(z) as a factor.

Finally, we determine a Newman polynomial for γ2 by employing an
auxiliary polynomial. We first construct 30 multiples of s2(z) having
height 1, degree at most 60, and no positive real roots, and then we
use our sieving method to search for a Newman multiple of each of
these polynomials. With the auxiliary factor Φ14(z)Φ21(z)Φ42(z), our
method discovers the Newman polynomial

s2(z)Φ2(z)Φ
2
3(z)Φ

2
6(z)Φ9(z)Φ12(z)Φ14(z)Φ18(z)Φ21(z)Φ42(z)Φ55(z)

with degree 113.
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