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ON THE NUMBER OF ISOLATED VERTICES
IN A GROWING RANDOM GRAPH

ANATOLII A. PUHALSKII

ABSTRACT. This paper studies the properties of the num-
ber of isolated vertices in a random graph where vertices arrive
one-by-one at times 1, 2, . . . . They are connected by edges to
the previous vertices independently with the same probabil-
ity. Assuming that the probability of an edge tends to zero,
we establish the asymptotics of large, normal, and moderate
deviations for the stochastic process of the number of the iso-
lated vertices considered at times inversely proportional to
that probability. In addition, we identify the most likely tra-
jectory for that stochastic process to follow conditioned on
the event that at a large time the graph is found with a large
number of isolated vertices.

1. A problem formulation and main results. The random
graph G(n, p), first studied by Gilbert [6], is defined as an undirected
graph on n vertices where the vertices are linked by edges independently
with probability p. A great deal of attention has been paid to the
asymptotic properties of the sparse graph G(n, c/n) as n → ∞, see,
e.g., Bollobás [2], Janson, �Luczak and Ruciński [10] and Kolchin [12].
In this paper, we investigate the dynamic of the number of the isolated
vertices in a growing version of the random graph G(n, cn/n) where new
vertices are added one-by-one. At time 0 no vertices are present and
the ith vertex, where i = 1, 2, . . . , arrives at time i. It is connected to
each of the i−1 previous vertices independently with probability cn/n.
Assuming that cn → c > 0 as n → ∞, we obtain the asymptotics of
normal, moderate and large deviations for the suitably time-scaled and
normalised stochastic process of the number of the isolated vertices. In
addition, we find the most probable trajectory for the process of the
number of the isolated vertices to follow before time n conditioned on
the event that the number of the isolated vertices at time n is close to
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a multiple of n. As a byproduct, new derivations of the asymptotics of
normal and large deviations for the number of the isolated vertices of
G(n, c/n) are provided.

Let V
(n)
k represent the number of the isolated vertices on the arrival

of the kth vertex in the graph with edge probability cn/n. Let α
(n)
ik , for

k > i, represent a Bernoulli random variable which equals one if the kth

vertex connects with the ith present vertex. The α
(n)
ik are independent

with P(α
(n)
ik = 1) = cn/n. As mentioned, V

(n)
0 = 0 and V

(n)
1 = 1, so

adopting the conventions that
∏
∅

= 1 and
∑
∅

= 0, we can write that

(1.1) V
(n)
k = V

(n)
k−1 +

k−1∏
i=1

(1 − α
(n)
ik ) −

k−1∑
i=1

α
(n)
ik ξ

(n)
i,k−1, k ∈ N,

where ξ
(n)
i,k−1 represents the indicator random variable of the event that

the ith vertex out of k − 1 present is isolated:

(1.2) ξ
(n)
i,k−1 =

i−1∏
j=1

(1 − α
(n)
ji )

k−1∏
j=i+1

(1 − α
(n)
ij ).

These equations are used to derive our main results.

Let us introduce the stochastic process X(n)(t) = V
(n)
�nt�/n, where t ∈

R+ and �·� denotes the integer part. Evidently, 0 ≤ X(n)(t) ≤ �nt�/n.
Observing that the process (X(n)(t), t ∈ R+) has a separable range,
we may and will consider it as a random element of the (nonseparable)
Fréchet space Dco(R+,R) of R-valued rightcontinuous functions with
lefthand limits defined on R+ which is endowed with the compact open
topology and Borel σ-algebra.

We say that a [0,∞]-valued function I on a metric space M is
a large deviation rate function if it is lower compact, i.e., the sets
{z ∈ M : I(z) ≤ q} are compact for all q ∈ R+, and infz∈MI(z) = 0.
Suppose {X(n), n = 1, 2, . . .} is a sequence of random elements of M
endowed with the Borel σ-algebra which have distributions P(n). Let
an → ∞ as n → ∞. The sequence {X(n), n = 1, 2, . . . } is said to obey
the large deviation principle (LDP, for short) for rate an with large
deviation rate function I if

lim sup
n→∞

1

an
logP(n)(F ) ≤ −infz∈F I(z)
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for all closed sets F ⊂ M and

lim inf
n→∞

1

an
logP(n)(G) ≥ − inf

z∈G
I(z)

for all open sets G ⊂ M. Convergence in distribution of the X(n) to an
M-valued random element X is defined similarly, see, e.g., Jacod and
Shiryaev [7].

For an R-valued absolutely continuous function x(·) defined on R+,
we denote by ẋ(·) a version of the Radon-Nikodym derivative of the
associated signed measure with respect to Lebesgue measure, so that
ẋ(t) exists for all t, is Borel measurable and is specified uniquely almost
everywhere with respect to Lebesgue measure.

Theorem 1.1. Let cn → c > 0 as n → ∞. The processes
(X(n)(t), t ∈ R+) obey the LDP in Dco(R+,R) for rate n with large
deviation rate function

I(x(·)) =

∫ ∞

0

sup
λ∈R

(
λẋ(t) − log

(
(eλ − 1)e−ct + ec(e

−λ−1)x(t)
))

dt,

provided the function (x(t), t ∈ R+) ∈ Dco(R+,R) is absolutely
continuous, x(0) = 0, x(t) ≥ 0 for all t ∈ R+, and ẋ(t) ≤ 1 for
almost all t ∈ R+ with respect to Lebesgue measure. If any of these
conditions is not met, then I(x(·)) = ∞. The large deviation rate
function attains zero at the only function (te−ct, t ∈ R+). It represents
a law-of-large-numbers-limit of the X(n)(·), meaning that, for all ε > 0
and T > 0,

lim
n→∞P

(
sup

t∈[0,T ]

|X(n)(t) − te−ct| > ε
)

= 0.

Remark 1.1. The theorem asserts, in particular, that I is a lower
compact function on Dco(R+,R) and on the subspace of continuous
functions with the subspace topology.

Corollary 1.1. Assume the hypotheses of Theorem 1.1. Given
T > 0, the random variables X(n)(T ) obey the LDP in [0, T ] for rate n
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with large deviation rate function

IT (a) =
cT 2

2
(α− 1)2 + (T − a) logα + a

(
log

a

T
+ cTα

)
,

α being the unique nonnegative solution of the equation (1 +α(e−cTα−
1))T = a.

Given a ∈ [0, T ], for arbitrary ε > 0,

lim
γ→0

lim inf
n→∞ P

(
sup

t∈[0,T ]

|X(n)(t) − xa,T (t)| ≤ ε
∣∣∣ |X(n)(T ) − a| ≤ γ

)
= 1,

where xa,T (t) = (1 + α(e−ctα − 1))t.

Remark 1.2. One can see that α = 1 if a = Te−cT which corresponds
to the law of large numbers so that IT (Te−cT ) = 0. Also, α < 1 if
a > Te−cT , in particular, α = 0 if a = T , and α > 1 if a < Te−cT .

Remark 1.3. If we indicate explicitly dependence on c in IT (a) by

writing I
(c)
T (a), then we have the following scaling property I

(c)
T (a) =

T I
(cT )
1 (a/T ). Similarly, x

(c)
a,T (tT ) = T x

(cT )
a/T,1(t). These properties are

consequences of scaling properties of the prelimiting sequences.

Theorem 1.2. Let
√
n(cn − c) → θ ∈ R as n → ∞, where

c > 0. Then the processes (Y (n)(t), t ∈ R+), where Y (n)(t) =√
n(X(n)(t) − te−ct), converge in distribution in Dco(R+,R) to the

diffusion process (Y (t), t ∈ R+) given by the equation

Y (t) =

∫ t

0

−2θse−cs ds− c

∫ t

0

Y (s) ds

+

∫ t

0

√
(1 + cs)e−cs + (2cs− 1)e−2cs dW (s),

where (W (t), t ∈ R+) is a standard Wiener process. In particular,
for T > 0, the Y (n)(T ) converge in distribution in R to the normally
distributed random variable N(−θT 2e−cT , (cT 2 − T )e−2cT + Te−cT ).
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Remark 1.4. The process (Y (t), t ∈ R+) can be explicitly written as

Y (t) = −θt2e−ct + e−ct

∫ t

0

ecs
√

(1 + cs)e−cs + (2cs− 1)e−2cs dW (s).

It is a Gaussian process with EY (t) = −θt2e−ct and cov (Y (s), Y (t)) =
(cmin(s, t)2 − min(s, t))e−c(s+t) + min(s, t)e−cmax(s,t).

Theorem 1.3. Let (
√
n/bn)(cn−c) → θ̂ ∈ R as n → ∞, where c > 0,

bn → ∞, and bn/
√
n → 0. Then the processes (Ŷ (n)(t), t ∈ R+), where

Ŷ (n)(t) = (
√
n/bn)(X(n)(t) − te−ct), obey the LDP in Dco(R+,R) for

rate b2n with large deviation rate function

Î(y(·)) =
1

2

∫ ∞

0

(ẏ(t) + cy(t) + 2θ̂ te−ct)2

(1 + ct)e−ct + (2ct− 1)e−2ct
dt

if y(·) is absolutely continuous with y(0) = 0 and Î(y(·)) = ∞ otherwise.
In particular, for T > 0 and ε > 0,

lim
n→∞P

(
sup

t∈[0,T ]

|Ŷ (n)(t) + θ̂t2e−ct| > ε
)

= 0.

Corollary 1.2. Under the hypotheses of Theorem 1.3, for T > 0,
the Ŷ (n)(T ) obey the LDP in R for rate b2n with large deviation rate
function

ÎT (z) =
1

2

(z + θ̂T 2e−cT )2

(cT 2 − T )e−2cT + Te−cT
.

Given z ∈ R, for arbitrary ε > 0,

lim
γ→0

lim inf
n→∞ P

(
sup

t∈[0,T ]

|Ŷ (n)(t)−yz,T (t)|≤ε
∣∣∣|Ŷ (n)(T ) − z|≤γ

)
=1,

where

yz,T (t) = −θ̂t2e−ct +
z + θ̂T 2e−cT

(cT 2 − T )e−cT + T

(
(ct2 − t)e−ct + t

)
.

Now we give an overview of the related results and describe our
methods of proof. The LDP for the X(n)(1) asserted in Corollary 1.1,
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for the case where cn = c, has been obtained in O’Connell [15] who
uses combinatorial arguments and gives a different form of the large
deviation rate function. The central limit theorem contained in the
statement of Theorem 1.2 is a special case of the results in Barbour,
Karoński and Ruciński [1] who proved that a central limit theorem
holds for the number of the isolated vertices of G(n, p) if and only if
n2p → ∞ and np− logn → −∞ as n → ∞. Kordecki [13] and Punkla
and Chaidee [18] give the rates of convergence. Pittel [16] establishes
a central limit theorem for the number of the isolated trees of size
k = 1, 2, . . . considered as a stochastic process in k. It is also known
that if p = (cn + logn)/n, where cn → c > 0, then the number of the
isolated vertices of G(n, p) is distributed asymptotically according to
the Poisson law with parameter e−c, see Janson, �Luczak and Ruciński
[10, page 80].

Janson [8, 9] provides a functional central limit theorem, akin to
Theorem 1.2, for the numbers of the isolated trees of various sizes in
the “graph process” where there are n vertices and the edges appear
independently at times distributed uniformly on [0, n]. In particular,
the limit for the process of the number of the isolated vertices is
a continuous path zero-mean Gaussian process (Ỹ (t), t ∈ R+) with

cov (Ỹ (s), Ỹ (t)) = e−s−t(min(s, t) − 1) + e−max(s,t). It can also be

written as dỸ (t) = −Ỹ (t) dt +
√
e−t + e−2t dW (t). One can see

certain similarities with the process Y . For instance, if c = 1, then
cov (Y (s), Y (t)) = min(s, t)cov (Ỹ (s), Ỹ (t)).

For the proofs, we apply general results on the LDP and convergence
in distribution for semimartingales from Puhalskii [17] and Jacod and
Shiryaev [7], respectively. An application of the results from [7] to
equation (1.1) is fairly straightforward and enables us to establish
Theorem 1.2. The proof of Theorem 1.3 is more technically involved
but is, in essence, also a routine exercise on applying the results
from Puhalskii [17]. Corollary 1.2 is obtained as an application of
standard methods of the calculus of variations. Significantly more
effort is required to prove Theorem 1.1 and Corollary 1.1. The general
approach is to apply the results in Puhalskii [17] to the set-up of
Theorem 1.1 and “project” to obtain Corollary 1.1. However, checking
the requirements turns out to be difficult. The main problem is the
presence of boundaries as described next.
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An LDP like the one in Theorem 1.1 is not too difficult to establish
provided the supremum in the integrand is attained and the associated
λ represents a bounded function of t. However, having x(t) in the
double exponential complicates things. If x(t) tends to zero and ẋ(t)
is negative, then the optimizing λ tends to −∞. Another source
of difficulties is a linear rather than a superlinear growth of the log
function in the supremum as λ → +∞. Because of that, when ẋ(t) = 1,
the supremum is “attained” at λ = +∞. A recipe for tackling situations
where the supremum in the expression for the large deviation rate
function either is not attained or is attained at unbounded functions
is to approximate the values of I at “bad” x(·) with the values at
“good” x(·). The implementation of this step is complicated by the fact
that the integrand in the expression for I cannot be found explicitly.
The approximation is accomplished in several steps and necessitates a
detailed study of the properties of I.

Once a trajectorial LDP has been established, a finite-dimensional
LDP such as in Corollary 1.1 follows by the continuous mapping
principle. It thus requires solving the variational problem of minimizing
I over x(·) with x(0) = 0 and x(T ) = a. By the scaling properties
mentioned in Remark 1.3, it suffices to consider the case where T = 1.
At first sight, this variational problem is a classical Lagrange problem
and one can hope to find an optimal trajectory by solving the Euler-
Lagrange equation. However, the Lagrangian (i.e., the integrand) is
not of class C1 up to the boundary of its domain of definition. It
is not even a Carathéodory function which seems to be a standing
hypothesis in the calculus of variations. Therefore, standard results
for the Lagrange problem are not applicable, cf. [3, page 30] and
[4, Section 3.4.2]. In addition, due to the constraint ẋ(t) ≤ 1 this
is in effect a problem of optimal control. Furthermore, since x(t) is
restricted to being between 0 and t, it is a problem with state space
constraints, so an optimal trajectory may lie on the boundary. In fact,
when x(1) = 1, the optimal trajectory is x(t) = t. In settings with
state-space constraints the necessary conditions for a trajectory to be
optimal such as Pontryagin’s maximum principle are quite involved,
see, e.g., [20]. Our approach to tackling the case where x(1) < 1 is to
begin with finding an optimal trajectory which belongs to the interior
of the set of constraints between times 0 and 1 by using a standard
form of Pontryagin’s maximum principle, see, e.g., [3]. This is possible
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because on the interior of the set of constraints the Lagrangian is of
class C1. We succeed in finding an explicit solution of the associated
Hamiltonian system of equations. After that we show that trajectories
that reach the boundary between times 0 and 1 cannot be optimal. The
latter step is required because in order to prove the second assertion of
Corollary 1.1 it is essential that there be a unique optimal trajectory,
cf. [5]. In the absence of nice convexity properties, no general tools
for ascertaining the uniqueness of an optimizer seem to be available.
Therefore, we need to use fairly intricate arguments to show that any
trajectory that does not belong to the interior of the constraint set
yields a greater value of the objective function.

This paper is organized as follows. Sections 2 and 3 lay a foundation
for the proofs of the main results. Section 2 is concerned with the study
of the properties of the large deviation rate function I. In Section 3,
the above described variational problem is solved. Theorem 1.1 and
Corollary 1.1 are proved in Section 4, Theorem 1.2 is proved in Section 5
and Theorem 1.3 and Corollary 1.2 are proved in Section 6.

We conclude this section with a list of notation and conventions
adopted in the paper. We define 1A(x) to equal one if x ∈ A and
to equal zero otherwise, if x is an element of the sample space Ω, it is
usually omitted; B(R) represents the Borel σ-algebra on R. Subscripts
are used in order to denote partial derivatives with respect to the
variable(s) represented in the subscript. The pieces of notation f(v−)
and f(v+) refer to limits on the left and on the right, respectively.
For real numbers x and y, x ∨ y = max(x, y) and x ∧ y = min(x, y),
0 log 0 = 0. Infima over the empty set are understood to equal infinity.
The abbreviation a.e. refers to Lebesgue measure. It is assumed that all
random entities are defined on a common complete probability space
(Ω,F ,P). All stochastic processes have rightcontinuous trajectories
with lefthand limits.

2. Technical preliminaries. This section collects the properties of
the integrand in the expression for I needed in the proofs of Theorem 1.1
and Corollary 1.1. Let c > 0. We introduce, for t ∈ R+, x ∈ R and
λ ∈ R,

(2.1) H(t, x, λ) = log((eλ − 1)e−ct + ec(e
−λ−1)(x∨0∧t)).
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FIGURE 1. The large deviation rate function I1(·).
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FIGURE 2. Optimal trajectories xa,1(·) for a = 0.1.
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Since

(2.2) (eλ − 1)e−ct + ec(e
−λ−1)(x∨0∧t) > (1 − e−ct) ∧ e−ct,

this function is well defined. It is also infinitely differentiable in λ, the
first derivative being given by

(2.3) Hλ(t, x, λ) =
eλe−ct − ce−λ(x ∨ 0 ∧ t)ec(e

−λ−1)(x∨0∧t)

(eλ − 1)e−ct + ec(e−λ−1)(x∨0∧t)
.

Lemma 2.1. The following properties hold.

1. The function H(t, x, λ) is infinitely differentiable in (t, x, λ) on
the domain {(t, x, λ) : 0 < x < t, λ ∈ R}. It is strictly convex
in λ ∈ R for (t, x) ∈ (0,∞) × R. Moreover, Hλλ(t, x, λ) > 0 for
(t, x, λ) ∈ (0,∞) ×R×R.

2. For t > 0, x ∈ R and λ ∈ R, the function Hλ(t, x, λ) is
continuous in (t, x, λ), strictly increasing in λ, Hλ(t, x, 0) = e−ct −
c(x ∨ 0 ∧ t), and limλ→∞ Hλ(t, x, λ) = 1. If, in addition, x > 0, then
limλ→−∞ Hλ(t, x, λ) = −∞ and, if x ≤ 0, then limλ→−∞ Hλ(t, x, λ) =
0. For t > 0 and x ∈ R, the equation u = Hλ(t, x, λ) has at most one
solution for λ. The solution exists if and only if either x > 0 and u < 1
or x ≤ 0 and 0 < u < 1.

3. The function Hλ(t, x, λ) is Lipshitz continuous in x ∈ R uniformly
over λ ≥ −
 and 0 ≤ t ≤ T for arbitrary 
 > 0 and T > 0.

Proof. The differentiability properties of H(t, x, λ) asserted in part 1
follow by (2.1) and (2.2). Also by (2.1),

H(t, x, λ) = log

∫
R

eλym(t, x, dy),

where, for t ∈ R+, x ∈ R and Γ ∈ B(R),

m(t, x,Γ) = e−ct1Γ(1)

+ (e−c(x∨0∧t) − e−ct)1Γ(0)

+
∞∑
k=1

e−c(x∨0∧t) 1

k!
ck(x ∨ 0 ∧ t)k1Γ(−k).
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If t > 0, then the measure m(t, x, ·) is supported by more than point.
The Cauchy-Schwartz inequality implies that∫

R

eλy m(t, x, dy)

∫
R

y2eλy m(t, x, dy) >

(∫
R

yeλy m(t, x, dy)

)2

,

so Hλλ(t, x, λ) > 0 and H(t, x, λ) is strictly convex in λ. Part 1 is
proved. Part 2 follows by part 1 and (2.3).

To prove the Lipshitz continuity property, it suffices to prove that

sup
λ≥−�

0<x<t≤T

|Hλx(t, x, λ)| < ∞.

Calculations show that, for 0 < x < t and λ ∈ R,

Hλx(t, x, λ) =
ce−λ(1 − e−λ)e−ct

(1 − e−λ)e−ct + e−λec(e−λ−1)x

− (e−ct + ce−λx(1 − e−λ)e−ct)c(e−λ − 1)e−λec(e
−λ−1)x

((1 − e−λ)e−ct + e−λec(e−λ−1)x)2

− ce−λ.

Since (1 − e−λ)e−ct + e−λec(e
−λ−1)x ≥ e−ct for 0 ≤ x ≤ t, we obtain

that if λ ≥ −
 and 0 < x < t, then

|Hλx(t, x, λ)| ≤ ce�(1+e�)+(1+ce�t(1+e�))c(e�+1)e�ece
�tect+ce�.

Let, for t ∈ R+, x ∈ R and u ∈ R,

(2.4) L(t, x, u) = sup
λ∈R

(λu−H(t, x, λ)).

By Lemma 2.1, the maximizer in (2.4), if any, satisfies the equation
u = Hλ(t, x, λ). For the solution to exist, it is necessary that u < 1.
The purpose of the next lemma is to gather some useful inequalities
concerning that solution.

Lemma 2.2. Suppose that t > 0 and that λ and u are such that
u = Hλ(t, x, λ).
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1. We have that λ ≥ 0 (respectively, λ ≤ 0) if and only if Hλ(t, x, 0) ≤
u (respectively, Hλ(t, x, 0) ≥ u).

2. If λ ≥ 0, then λ ≤ (− log(1 − u)) ∨ 0 + log(1 + c(x ∨ 0 ∧ t)) + ct.

3. If u > 0, then

λ ≥
(

1

2 + c(x ∨ 0 ∧ t)
(− log(1 − u) + log(ct) + ct− log 2)

)
∧ (− log(1 − u) + log u + log(ect/2 − 1)).

4. If λ ≤ 0 and x > 0, then −λ ≤ log(e−ct+ |u|)− log(x∨0∧t)− log c.

5. If λ ≤ 0 and u < 0, then −λ ≥ log(−u) − ct.

6. If u > 0, then λ ≥ log u + log(ect − 1) ∧ 0.

7. If λ ≤ 0, u > 0 and x > 0, then

− 1

2
(ct + 1) − 1

2
log(u + c(x ∨ 0 ∧ t))

≤ −λ ≤ −1

2
ct− 1

2
log(x ∨ 0 ∧ t) − 1

2
log c.

8. If x ≤ 0 and u > 0, then λ = − log(1 − u) + log u + log(ect − 1).

Proof. Part 1 follows by the monotonicity of Hλ(t, x, λ) in λ (see
Lemma 2.1). If λ ≥ 0 and Hλ(t, x, λ) ≥ 0, then by (2.3),

Hλ(t, x, λ) ≥ eλe−ct − c(x ∨ 0 ∧ t)

eλe−ct + 1
.

Thus, if u ≥ 0 and λ ≥ 0, then eλ ≤ (1+c(x∨0∧t))ect/(1−u). If λ ≥ 0

and u < 0, then by (2.3) eλe−ct − ce−λ(x ∨ 0 ∧ t)ec(e
−λ−1)(x∨0∧t) < 0,

so eλ < c(x ∨ 0 ∧ t)ect. Part 2 is proved.

An algebraic manipulation of the equation u = Hλ(t, x, λ) yields,
provided u ≥ 0,

(2.5)

eλe−ct(1 − u) = ce−λ(x ∨ 0 ∧ t)ec(e
−λ−1)(x∨0∧t)

+ uec(e
−λ−1)(x∨0∧t) − ue−ct

≥ ce−λ(x ∨ 0 ∧ t)ec(e
−λ−1)(x∨0∧t)

≥ ce−(1+c(x∨0∧t))λ(x ∨ 0 ∧ t),
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so e(2+c(x∨0∧t))λ ≥ cect(x∨0∧t)/(1−u) ≥ cectt/(2(1−u)) when x ≥ t/2.
If x ≤ t/2, then by the equality in (2.5), eλe−ct(1−u) ≥ u(e−ct/2−e−ct).
The assertion of part 3 follows.

If λ ≤ 0, then by (2.3),

−|u| ≤ Hλ(t, x, λ) ≤ e−ct − ce−λ(x ∨ 0 ∧ t)ec(e
−λ−1)(x∨0∧t)

(eλ − 1)e−ct + ec(e−λ−1)(x∨0∧t)

so

−|u|ec(e−λ−1)(x∨0∧t) ≤ e−ct − ce−λ(x ∨ 0 ∧ t)ec(e
−λ−1)(x∨0∧t),

and ce−λ(x ∨ 0 ∧ t) ≤ e−ct + |u|, proving part 4.

By the equality in (2.5),

ce−λt ≥ eλe−ct(1 − u)e−c(e−λ−1)(x∨0∧t) − u + ue−cte−c(e−λ−1)(x∨0∧t).

If u ≤ 0 and λ ≤ 0, then the righthand side is greater than −u+ue−ct.
Hence, the assertion of part 5.

To obtain part 6, we observe that by (2.2) and (2.3),

Hλ(t, x, λ) ≤ eλe−ct

(1 − e−ct) ∧ e−ct
.

If λ ≤ 0 and u ≥ 0, then

(2.6) eλe−ct ≥ ce−λ(x ∨ 0 ∧ t)ec(e
−λ−1)(x∨0∧t) ≥ ce−λ(x ∨ 0 ∧ t),

which implies the righthand inequality of part 7. For the lefthand
inequality, we write

u ≥ eλe−ct

ec(e−λ−1)(x∨0∧t)
− ce−λ(x ∨ 0 ∧ t) ≥ eλe−ct−1 − ce−λ(x ∨ 0 ∧ t),

where the second inequality follows by (2.6). Part 8 is a straightforward
consequence of the definition of λ.

The next lemma lists the properties of L(t, x, u) pertinent to the
proof of Theorem 1.1. If there exists a unique solution to the equation
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u = Hλ(t, x, λ), we let λ̂(t, x, u) represent this solution. We define

λ̂(t, x, u) = 0 otherwise.

Lemma 2.3. The function L(t, x, u) is nonnegative. If t > 0
and either x > 0 and u < 1, or 0 < u < 1, then L(t, x, u) =

λ̂(t, x, u)u − H(t, x, λ̂(t, x, u)). For t > 0, L(t, x, u) is finite if and
only if either x > 0 and u ≤ 1 or x ≤ 0 and 0 ≤ u ≤ 1. Also,
L(t, x, 1) = ct for t ∈ R+ and x ∈ R, and L(t, x, 0) = − log(1 − e−ct)

for t ∈ R+ and x ≤ 0. The function λ̂(t, x, u) is continuous on

(0,∞) × (0,∞) × (−∞, 1) and on (0,∞) ×R× (0, 1), λ̂(t, x, 1−) = ∞
and λ̂(t, 0, 0+) = −∞ for (t, x) ∈ (0,∞) ×R. The function L(t, x, u)
is continuous on (0,∞) × (0,∞) × (−∞, 1] and on (0,∞) ×R× [0, 1].

Proof. The function L(t, x, u) is nonnegative because H(t, x, 0) = 0.
The representation for L(t, x, u) provided t > 0 and either x > 0
and u < 1, or 0 < u < 1, follows by Lemma 2.1. If u > 1,
then limλ→∞(u − H(t, x, λ)/λ) = u − 1 > 0, so L(t, x, u) = ∞. If
x ≤ 0 and u < 0, then limλ→−∞ H(t, x, λ) = log(1 − e−ct) whereas
limλ→−∞ λu = ∞. The equality L(t, x, 1) = ct follows because

L(t, x, 1) = −infλ∈R log(e−ct + e−λ(ec(e
−λ−1)(x∨0∧t) − e−ct)),

where the infimum is given by the limit as λ → ∞. For x ≤ 0,

L(t, x, 0) = − inf
λ∈R

log((eλ − 1)e−ct + 1),

where the infimum is given by the limit as λ → −∞.

We establish the continuity properties of λ̂(t, x, u) and L(t, x, u).
Suppose that either (t, x, u) ∈ (0,∞) × (0,∞) × (−∞, 1) or (t, x, u) ∈
(0,∞) × R × (0, 1). If (tn, xn, un) → (t, x, u) as n → ∞, then by

parts 2, 3, and 4 of Lemma 2.2 the sequence λ̂(tn, xn, un) is bounded,
so it has a convergent subsequence whose limit must coincide with
λ̂(t, x, u) by the continuity of Hλ(t, x, λ) and the uniqueness of the

solution λ to u = Hλ(t, x, λ). Hence, λ̂(tn, xn, un) → λ̂(t, x, u) as

n → ∞ which implies the continuity of λ̂(t, x, u) and of L(t, x, u) on
(0,∞) × (0,∞) × (−∞, 1) and on (0,∞) ×R× (0, 1).
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To prove the continuity of L(t, x, u) at (t, x, 1), where (t, x) ∈ (0,∞)×
R, we consider (tn, xn) → (t, x) and un ↑ 1 as n → ∞. We have

L(tn, xn, un) = λ̂(tn, xn, un)(un − 1)

− log((1 − e−λ̂(tn,xn,un))e−ctn

+ e−λ̂(tn,xn,un)ec(e
−λ̂(tn,xn,un)−1)(xn∨0∧tn)).

By Lemma 2.2 part 3, λ̂(tn, xn, un) → ∞ as n → ∞. By part 2 of

Lemma 2.2, λ̂(tn, xn, un)(un−1) → 0. We conclude that L(tn, xn, un) →
ct = L(t, x, 1).

We consider the continuity at (t, x, 0), where (t, x) ∈ (0,∞) ×
(−∞, 0]. Suppose (tn, xn) → (t, x) and un ↓ 0. If x < 0,
then xn < 0 for all n large enough, so we apply Lemma 2.2 part
8 to obtain that λ̂(tn, xn, un) → −∞ and λ̂(tn, xn, un)un → 0.

It follows that H(tn, xn, λ̂(tn, xn, un)) → log(1 − e−ct) and that
L(tn, xn, un) → − log(1 − e−ct) = L(t, x, 0). Suppose that x = 0.
Since Hλ(tn, xn, 0) = e−ctn − c(xn ∨ 0 ∧ tn) → e−ct as n → ∞, the

equation un = Hλ(tn, xn, λ̂(tn, xn, un)) implies by part 1 of Lemma 2.2

that λ̂(tn, xn, un) < 0 for all n large enough. By Lemma 2.2 part 6,

λ̂(tn, xn, un)un → 0 as n → ∞. By the lefthand inequality of part 7 and

by part 8 of Lemma 2.2, λ̂(tn, xn, un) → −∞. The righthand inequality

of Lemma 2.2 part 7 implies that c(xn ∨ 0 ∧ tn)e−λ̂(tn,xn,un) → 0 and

by (2.1), H(tn, xn, λ̂(tn, xn, un)) → log(1 − e−ct), so L(tn, xn, un) →
− log(1 − e−ct) = L(t, x, 0).

Finally, λ̂(t, x, 1−) = ∞ by part 3 of Lemma 2.2 and λ̂(t, 0, 0+) = −∞
by part 8 of Lemma 2.2.

The next lemma deals with the differentiability properties of L(t, x, u).

Lemma 2.4. The functions λ̂(t, x, u) and L(t, x, u) are continuously
differentiable in (t, x, u) on the set {(t, x, u) : 0 < x < t, u < 1}. For
these (t, x, u), the following identities hold

λ̂(t, x, u) = Lu(t, x, u),

Lt(t, x, u) = −Ht(t, x, λ̂(t, x, u)),

Lx(t, x, u) = −Hx(t, x, λ̂(t, x, u)).
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Also,

|Lt(t, x, u)| ≤ c +
ce−ct

1 − e−ct
,

Lx(t, x, u) ≤ c,

|Lx(t, x, u)| ≤ c +
c

1 − e−ct

e−ct + |u|
cx

.

The functions Lt(t, x, u) and Lx(t, x, u) can be continuously extended
to the set {(t, x, u) : 0 < x ≤ t, u ≤ 1}. In addition, for every interval
[a, b] ⊂ R+ with a > 0 there exist C1 > 0 and C2 > 0 such that
Lx(t, x, 0) ≤ −C1/

√
x for all x ∈ (0, C2] and t ∈ [a, b].

Proof. Given (t, x, u) ∈ (0,∞) × (0,∞) × (−∞, 1), we have by

Lemma 2.1 that Hλλ(t, x, λ̂(t, x, u)) > 0. Since u = Hλ(t, x, λ̂(t, x, u))
and, by Lemma 2.1, Hλ(t, x, λ) is continuously differentiable in (t, x, λ)
provided 0 < x < t and λ ∈ R, by the implicit function theo-
rem the function λ̂(t, x, u) is continuously differentiable in (t, x, u) if
0 < x < t and u < 1. It follows that L(t, x, u) is also continu-

ously differentiable. The equations Lt(t, x, u) = −Ht(t, x, λ̂(t, x, u)),

Lx(t, x, u) = −Hx(t, x, λ̂(t, x, u)) and Lu(t, x, u) = λ̂(t, x, u) follow
in a standard fashion by differentiating the equation L(t, x, u) =

λ̂(t, x, u)u − H(t, x, λ̂(t, x, u)) and using that u = Hλ(t, x, λ̂(t, x, u)),
cf. [4, page 138, Lemma 4.27].

By the definition of H(t, x, λ) in (2.1), for 0 < x < t and u < 1,

(2.7)

Lt(t, x, u) = −Ht(t, x, λ̂(t, x, u))

=
c(eλ̂(t,x,u) − 1)e−ct

(eλ̂(t,x,u) − 1)e−ct + ec(e−λ̂(t,x,u)−1)x
.

It follows that

|Lt(t, x, u)| ≤ c +
ce−ct

1 − e−ct
.

Also,

(2.8)

Lx(t, x, u) = −Hx(t, x, λ̂(t, x, u))

= − c(e−λ̂(t,x,u) − 1)ec(e
−λ̂(t,x,u)−1)x

(eλ̂(t,x,u) − 1)e−ct + ec(e−λ̂(t,x,u)−1)x
.
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If λ ≥ 0, then (eλ − 1)e−ct + ec(e
−λ−1)x ≥ ec(e

−λ−1)x, so that 0 ≤
Lx(t, x, u) ≤ c if λ̂(t, x, u) ≥ 0. If λ < 0, then

c(e−λ − 1)ec(e
−λ−1)x

(eλ − 1)e−ct + ec(e−λ−1)x
≤ ce−λ

(eλ − 1)e−cte−c(e−λ−1)x + 1

≤ c e−λ

1 − e−ct
.

Hence, if λ̂(t, x, u) < 0, then

− c

1 − e−ct
e−λ̂(t,x,u) ≤ Lx(t, x, u) ≤ 0.

By part 4 of Lemma 2.2, e−λ̂(t,x,u) ≤ (e−ct + |u|)/(cx). Combining the

cases λ̂(t, x, u) ≥ 0 and λ̂(t, x, u) < 0, we obtain that

|Lx(t, x, u)| ≤ c +
c

1 − e−ct

e−ct + |u|
cx

.

Let (tn, xn, un) → (t, x, 1) as n → ∞, where 0 < xn < tn, un < 1 and

t > 0. By Lemma 2.2 part 3, λ̂(xn, tn, un) → ∞. By (2.7) and (2.8),
Lt(tn, xn, un) → c and Lx(tn, xn, un) → 0, which shows that Lt(t, x, u)
and Lx(t, x, u) extend continuously to {(t, x, u) : 0 < x ≤ t, u ≤ 1}.

Since Hλ(t, x, 0) = e−ct− cx > 0 for all x small enough, λ̂(t, x, 0) < 0

for t ∈ [a, b] and all x < e−bc/c. By (2.8), Lx(t, x, 0) ≤ −c(e−λ̂(t,x,u) −
1). By Lemma 2.2 part 7, for all t ∈ [a, b] and all x ∈ (0, (e−bc/c) ∧ a],

−λ̂(t, x, 0) ≥ −(ct + 1)/2 − (log x)/2 − (log c)/2. Hence, Lx(t, x, 0) ≤
−√

ce−(ct+1)/2/
√
x − c, so one can take C1 =

√
ce−(cb+1)/2/2 and

C2 = (e−cb+1/(4c)) ∧ (e−bc/c) ∧ a.

Remark 2.1. One can show, in addition, that limx→0
u↓0

Lx(t, x, u) =

limx→0
u↓0

Lu(t, x, u) = −∞ and limu↑1 Lu(t, x, u) = ∞.

We now concern ourselves with finding a lower bound on I(x(·)).
As a consequence of Lemma 2.3, if x(·) is absolutely continuous and
x(0) = 0, then

(2.9) I(x(·)) =

∫ ∞

0

L(t, x(t), ẋ(t)) dt.
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In particular, the righthand side equals ∞ if x(·) assumes negative
values because in that case

∫∞
0 1{ẋ(t)<0}(t)1{ẋ(t)<0}(t) dt > 0, so∫∞

0 1{L(t,x(t),ẋ(t))=∞}(t) dt > 0 by Lemma 2.3.

Lemma 2.5. Given T > 0, there exists AT > 0 such that, for all
absolutely continuous x(·),∫ T

0

|ẋ(t) log(|ẋ(t)|)| dt ≤ AT (1 + I(x(·))).

Proof. Since ẋ(t) ≤ 1 almost everywhere if I(x(·)) < ∞, it suffices to
prove that there exists K(T ) > 0 such that

(2.10)

∫ T

0

|ẋ(t) log(|ẋ(t)|)|1{ẋ(t)≤−K(T )}(t) dt ≤ A′
T (1 + I(x(·)))

for some A′
T > 0. By Lemma 2.1, on taking into account that

ẋ(t) = 0 almost everywhere on the set {t : x(t) = 0}, we have that

ẋ(t) = Hλ(t, x(t), λ̂(t, x(t), ẋ(t))) for almost all t such that ẋ(t) < 0.
Since Hλ(t, x, 0) ≥ e−ct − t, by Lemma 2.2 part 1, if K(T ) ≥ T , then

λ̂(t, x(t), ẋ(t)) < 0 almost everywhere on the set {t : ẋ(t) ≤ −K(T )}.
By Lemma 2.2 part 4, (2.1) and (2.2),

(−ct) ∧ log(1 − e−ct) < H(t, x(t), λ̂(t, x(t), ẋ(t))) ≤ 1 + |ẋ(t)|,
which implies that

∫ T

0 |H(t, x(t), λ̂(t, x(t), ẋ(t)))| dt < ∞. The repre-

sentation L(t, x(t), ẋ(t)) = λ̂(t, x(t), ẋ(t))ẋ(t)−H(t, x(t), λ̂(t, x(t), ẋ(t)))
and (2.9) yield∫ T

0

λ̂(t, x(t), ẋ(t))ẋ(t)1{ẋ(t)≤−K(T )}(t) dt

≤ T +

∫ T

0

|ẋ(t)|1{ẋ(t)≤−K(T )}(t) dt + I(x(·)).

By Lemma 2.2 part 5, if ẋ(t) < 0 and λ̂(t, x(t), ẋ(t)) < 0, then

−λ̂(t, x(t), ẋ(t)) ≥ log(−ẋ(t)) − ct. It follows that∫ T

0

|ẋ(t) log |ẋ(t)||1{ẋ(t)≤−K(T )}(t) dt

≤ T + (1 + cT )

∫ T

0

|ẋ(t)|1{ẋ(t)≤−K(T )}(t) dt + I(x(·)).
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Suppose, in addition, that logK(T ) > 2(1+cT ). Then |ẋ(t) log |ẋ(t)|| ≥
2(1 + cT )|ẋ(t)| if ẋ(t) ≤ −K(T ). Inequality (2.10) follows.

3. Solving the variational problem. The purpose of this section
is a proof of the following result.

Theorem 3.1. The infimum of
∫ 1

0
L(t, x(t), ẋ(t)) dt over all abso-

lutely continuous functions x(·) such that x(0) = 0 and 0 ≤ x(t) ≤ t
for t ∈ [0, 1], and x(1) = a ∈ [0, 1] is attained at a unique function
xa,1(·) which is defined by xa,1(t) = (1 +α(e−cαt − 1))t, where α is the
nonnegative solution of the equation 1 + α(e−cα − 1) = a. In addition,∫ 1

0

L(t, xa,1(t), ẋa,1(t)) dt =
c

2
(α − 1)2 + (1−a) logα+a(log a+αc).

Remark 3.1. This theorem also delivers a solution to the problem of

minimizing
∫ T

0 L(t, x(t), ẋ(t)) dt over nonnegative absolutely continuous
x(·) such that x(t) ≤ t for t ∈ [0, T ], x(0) = 0 and x(T ) = a, where
T > 0 and a ∈ [0, T ]. This can be seen by a scaling argument as follows.
If we indicate the dependence of L on c explicitly by writing L(c)(t, x, u),

then
∫ T

0 L(c)(t, x(t), ẋ(t)) dt = T
∫ 1

0 L(cT )(t, y(t), ẏ(t)) dt, where y(t) =
x(tT )/T . Thus, xa,T (t) = Txa/T,1(t/T ) is the unique minimizer
and the minimum equals T ((cT/2)(αT − 1)2 + (1 − a/T ) logαT +
(a/T )(log(a/T ) + αT c)), where 1 + αT (e−cTαT − 1) = a/T .

The proof of Theorem 3.1 proceeds through a number of lemmas.
The next lemma describes some properties of the trajectory of interest.

Lemma 3.1. Given 0 ≤ t1 < t2 and a ≤ 1, there exists a unique
α ∈ R+ such that 1 +α(e−ct1 e−cα(t2−t1) − 1) = a; α = 0 if and only if
a = 1. For x(t) = (1 + α(e−ct1e−cα(t−t1) − 1))(t− t1) with t1 ≤ t ≤ t2
and α > 0, the supremum in the expression (2.4) for L(t, x(t), ẋ(t))

is attained at λ̂(t) = log(1 + ect1 ecα(t−t1)(1 − α)/α). In addition, for
s ∈ [0, t2 − t1],∫ t1+s

t1

L(t, x(t), ẋ(t)) dt =
cs2

2
(α− 1)2+s logα+s(1+ α(e−ct1−αcs−1))

× log

(
ect1+αcs

(
1

α
− 1

)
+ 1

)
.
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Proof. With x = cα(t2 − t1), the equation for α takes the form
xe−xe−ct1 = x+c(t2− t1)(a−1). Since a ≤ 1, the latter equation has a

unique nonnegative solution. One checks that ẋ(t) = Hλ(t, x(t), λ̂(t)).
The expression for the integral is verified by differentiation.

Remark 3.2. An explanation of how λ̂(t) has been found is given in
the proof of Lemma 3.3.

We now address the existence of a minimizer.

Lemma 3.2. The infimum of
∫ 1

0 L(t, x(t), ẋ(t)) dt over all absolutely
continuous functions x(·) such that x(0) = 0, 0 ≤ x(t) ≤ t for t ∈ [0, 1],
and x(1) = a ∈ [0, 1] is finite and is attained.

Proof. The infimum is finite because
∫ 1

0
L(t, xa,1(t), ẋa,1(t)) dt < ∞

by Lemma 3.1. Let C[0, 1] denote the Banach space of continuous real-
valued functions x(·) defined on [0, 1] endowed with uniform norm. We

define a functional J on C[0, 1] by letting J(x(·)) =
∫ 1

0
L(t, x(t), ẋ(t)) dt

if x(·) is absolutely continuous, x(0) = 0, and 0 ≤ x(t) ≤ t for
t ∈ [0, 1], and by letting J(x(·)) = ∞ otherwise. We will prove that J
is lower compact, i.e., the sets {x(·) : J(x(·)) ≤ q} are compact for all
q ≥ 0. That will imply that J(x(·)) attains infima on closed sets, so
infx∈C[0,1]:x(0)=0,x(1)=aJ(x(·)) is attained.

Since L(t, x, u) is the convex conjugate of H(t, x, λ) in the last variable
(see (2.4)), we have by Young’s inequality that λu ≤ H(t, x, Rλ)/R +
L(t, x, u)/R for arbitrary R > 0. We let sign (x) = 1 if x ≥ 0 and
sign (x) = −1 if x < 0. Given x(·) such that J(x(·)) < ∞, we have
recalling (2.1) that, for 0 ≤ s < t ≤ 1,

|x(t) − x(s)| ≤
∫ 1

0

1[s,t](r)|ẋ(r) dr

≤ 1

R

∫ 1

0

H(r, x(r), R sign (ẋ(r))1[s,t](r)) dr

+
1

R

∫ 1

0

L(r, x(r), ẋ(r)) dr
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=
1

R

∫ t

s

H(r, x(r), R)1{ẋ(r)≥0}(r) dr

+
1

R

∫ t

s

H(r, x(r),−R)1{ẋ(r)<0}(r) dr +
J(x(·))

R

≤ (t− s) +
eRc

R

∫ t

s

x(r) dr +
J(x(·))

R
.

Since R is arbitrary and 0 ≤ x(t) ≤ t, the elements of the set
{x(·) ∈ C[0, 1] : J(x(·)) ≤ q} are uniformly equicontinuous. Since
x(0) = 0 on that set, an application of the Arzela-Ascolli theorem
shows that the set in question is relatively compact in C[0, 1].

It remains to show that J is lower semicontinuous. Suppose xn(·) →
x(·) in C[0, 1] and J(xn(·)) < ∞. Let Λ0 represent the set of R-valued
simple functions on R+. By (2.4) and [17, page 460, Lemma A.2],

lim inf
n→∞

∫ 1

0

L(t, xn(t), ẋn(t)) dt

= lim inf
n→∞ sup

λ(·)∈Λ0

∫ 1

0

(λ(t)ẋn(t) −H(t, xn(t), λ(t))) dt

≥ sup
λ(·)∈Λ0

lim inf
n→∞

∫ 1

0

(λ(t)ẋn(t) −H(t, xn(t), λ(t))) dt

= sup
λ(·)∈Λ0

∫ 1

0

(λ(t)ẋ(t) −H(t, x(t), λ(t))) dt

=

∫ 1

0

L(t, x(t), ẋ(t)) dt,

where the convergence of integrals follows by λ(·) being piecewise
constant, (2.1) and (2.2).

Remark 3.3. By Lemma 2.5, the set {x(·) : J(x(·)) ≤ q} is relatively
compact for the weak topology on W 1,1(0, 1), so one may hope to
use the general theory such as [4, page 96, Theorem 3.23] in order
to deduce the lower semicontinuity of J . However, that doesn’t seem
to be possible because L(·) is not a Carathéodory function.

Remark 3.4. The lower compactness property of J(x(·)) is also a
byproduct of Theorem 1.1.
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As follows from Lemma 2.3 and Lemma 2.4, the integrand L(t, x, u)

does not meet the standard requirements for a minimizer to
∫ 1

0 L(t, x(t),
ẋ(t)) dt over absolutely continuous x(·) such that x(0) = 0 and x(1) =
a, where a ∈ [0, 1], to satisfy the Euler-Lagrange equation, see, e.g.,
[4, page 125, Theorem 4.12]. Nevertheless, we will solve the equation
and show that it delivers the minimum. The next lemma provides the
essential stepping stone toward proving the optimality of the trajectory
appearing in Theorem 3.1. Let us denote Σ = {(t, x) : t > 0, 0 < x < t}.

Lemma 3.3. If x̂(·) is a trajectory that minimizes
∫ t2
t1
L(t, x(t), ẋ(t))dt,

where 0 ≤ t1 < t2, among all absolutely continuous functions x(·) such
that (t, x(t)) ∈ Σ for t ∈ (t1, t2), x(t1) = 0, and x(t2) = a ∈ [0, t2 − t1],
then

x̂(t) = (1 + α̂(e−ct1e−cα̂(t−t1) − 1))(t− t1),

where α̂ is the unique nonnegative solution of the equation

1 + α̂(e−ct1 e−cα̂(t2−t1) − 1) =
a

t2 − t1
.

Proof. If a = t2 − t1, then there is a unique trajectory such
that x(t1) = 0, x(t2) = a and

∫ t2
t1

L(t, x(t), ẋ(t)) dt < ∞, which is

x(t) = t − t1. It satisfies the requirements with α̂ = 0. We now as-
sume that a < t2 − t1. Consider t′1 and t′2 with t1 < t′1 < t′2 < t2.
Then the piece of x̂(t) for t ∈ [t′1, t

′
2] is an optimal trajectory which

belongs to Σ and has (t′1, x̂(t′1)) as the initial point and (t′2, x̂(t′2)), as
the terminal point. Let x′

1 = x̂(t′1) and x′
2 = x̂(t′2). We note that

by Lemma 2.3 we must have that ˙̂x(t) ≤ 1 almost everywhere. Let-
ting u(t) = ẋ(t), we reformulate the variational problem of minimizing∫ t′2
t′1

L(t, x(t), ẋ(t)) dt as the Lagrange optimal control problem of min-

imizing
∫ t′2
t′1

L(t, x(t), u(t)) dt over absolutely continuous functions x(·)
and measurable functions u(·) subject to the constraints ẋ(t) = u(t),
x(t′1) = x′

1, x(t′2) = x′
2 and u̇(t) ∈ (−∞, 1] almost everywhere. We ap-

ply Pontryagin’s maximum principle, as in [3, pages 196, 197], with
A = {(t, x) : t′1/2 ≤ t ≤ 2t′2,mins∈[t′1,t

′
2]
x̂(s)/2 ≤ x ≤ t} and

U = (−∞, 1]. By Lemma 2.4, the function L(t, x, u) is continuous
on M = A × U together with Lx and Lt. By [3, page 197, Theorem
5.1.i], if (x′(t), t′1 ≤ t ≤ t′2) is an optimal trajectory which belongs
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to the interior of A and (u′(t), t′1 ≤ t ≤ t′2) is the associated optimal
control, then either there exists an absolutely continuous function λ′(·)
such that the following equations hold almost everywhere

ẋ′(t) = u′(t),(3.1a)

λ̇′(t) = Lx(t, x′(t), u′(t)),(3.1b)

and

λ′(t)u′(t) − L(t, x′(t), u′(t)) = sup
u∈U

(λ′(t)u − L(t, x′(t), u)),
(3.1c)

which occurs if λ0 in (5.1.3) [3, page 197] is positive, or u(t) = 1 and
ẋ′(t) = 1 almost everywhere if λ0 = 0. The latter function x′(·) does
not satisfy the requirements that x′(t′1) = x′

1 and x′(t′2) = x′
2 if t′1 and

t′2 are close enough to t1 and t2, respectively, because a < t2 − t1, so
we leave it out of consideration.

We note that Theorem 4.2.i [3, page 162], which is invoked for the
proof of Theorem 5.1.i there, requires that the optimal control be
bounded which we do not know a priori. However, Remark 5 [3,
page 167] allows us to incorporate unbounded controls by checking
condition (S). It stipulates that there exist a nonnegative Lebesgue
integrable on [t′1, t′2] function S(t) and γ > 0 such that for all t ∈ [t′1, t′2]
and all (t̃, x̃) ∈ A subject to the requirements that |t̃− t| ≤ γ and
|x̃− x′(t)| ≤ γ the following holds

|Lt(t̃, x̃, u
′(t))| + |Lx(t̃, x̃, u′(t))| ≤ S(t).

Since by Lemma 2.4,

|Lt(t, x, u)| ≤ c +
ce−ct

1 − e−ct

and

|Lx(t, x, u)| ≤ c +
c

1 − e−ct

e−ct + |u|
cx

,
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we can take γ = mint∈[t′1,t
′
2]

(x′(t) ∧ (t− x′(t)))/2 and

S(t) = c +
ce−ct

1 − e−ct
+ c +

c

1 − e−ct

e−ct + |u′(t)|
cγ

.

We have thus checked the applicability of Pontryagin’s maximum
principle in our setting.

Since L(t, x, u) is the convex conjugate of H(t, x, λ) in λ (see (2.4)),
we have that the righthand side of (3.1c) equals H(t, x′(t), λ′(t)), so
supλ(λu′(t) − H(t, x′(t), λ′(t)) is attained at λ = λ′(t), which im-

plies that λ′(t) = λ̂(t, x′(t), u′(t)) almost everywhere and u′(t) =
Hλ(t, x′(t), λ′t)) almost everywhere. It follows that u(t) < 1 almost
everywhere and that Lx(t, x′(t), u′(t)) = −Hx(t, x′(t), λ′(t)) (for in-
stance, by Lemma 2.4). Equations (3.1a) and (3.1b) take the canonical
form

ẋ′(t) = Hλ(t, x′(t), λ′(t)),

λ̇′(t) = −Hx(t, x′(t), λ′(t)).

Consequently,

ẋ′(t) =
eλ

′(t)e−ct − cec(e
−λ′(t)−1)x′(t)e−λ′(t)x′(t)

(eλ′(t) − 1)e−ct + ec(e−λ′(t)−1)x′(t)
,

(3.2a)

λ̇′(t) = − cec(e
−λ′(t)−1)x′(t)(e−λ′(t) − 1)

(eλ′(t) − 1)e−ct + ec(e−λ′(t)−1)x′(t)
.

(3.2b)

Let us introduce

y(t) = ec(e
−λ′(t)−1)x′(t)(3.3a)

and

μ(t) = (eλ
′(t) − 1)e−ct.(3.3b)

We note that y(t) > 0 and y(t) + μ(t) > 0 (see (2.2) for the latter).
Equations (3.2a) and (3.2b) imply that

ẏ(t) = − cy(t)μ(t)

y(t) + μ(t)
,(3.4a)

μ̇(t) = − cμ(t)2

y(t) + μ(t)
.(3.4b)
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The righthand side of (3.4b) is Lipshitz-continuous in μ(t) in a small
enough neighborhood of t′1, which implies that if μ(t′1) = 0, then that
equation has the unique solution μ(t) = 0 in such a neighborhood. By
(3.4a), y(·) does not vary over that neighborhood, so we can apply this
argument repeatedly to conclude that μ(t) = 0 for all t if μ(t′1) = 0.
By (3.3b), λ′(t) = 0 and, by (3.2a), ẋ′(t) = e−ct − cx′(t), so

(3.5) x′(t) = (x′
1 + t− t′1)e−c(t−t′1).

It is an admissible trajectory provided (x′
1 + t′2 − t′1)e−c(t′2−t′1) = x′

2.
Since x′

1 → 0 and x′
2 → a as t′1 → t1 and t′2 → t2, this condition implies

that (t2− t1)e−c(t2−t1) = a. We then obtain the assertion of the lemma
with α̂ = 1.

We now solve the equations assuming μ(t′1) �= 0. By (3.4b), μ(t)
is monotonically nonincreasing, so μ(t) maintains its sign provided
μ(t′1) < 0. Suppose μ(t′1) > 0, and let t̆ = inf{t ≥ t1 : μ(t) ≤ 0} ≤ ∞.
Since y(t) > 0, we have that μ̇(t) ≥ −cμ(t) for t < t̆, so that
μ(t) ≥ μ(t′1) exp(−c(t − t′1)), which implies that t̆ = ∞. Thus, μ(t)
also maintains its sign if μ(t′1) > 0. Since μ(t) �= 0 and y(t) �= 0 for
all t, we can divide the righthand sides of (3.4a) and (3.4b) by y(t)
and μ(t), respectively, to deduce that ẏ(t)/y(t) = μ̇(t)/μ(t). Therefore,
y(t) = Kμ(t) where K �= 0. Since y(t) + μ(t) > 0 and y(t) > 0, we
also have that (K + 1)/K > 0, so either K < −1 or K > 0. By (3.4b),
μ(t) = μ(t′1) exp(−(c/(1 + K))(t − t′1)). With α′ = K/(K + 1) and
β′ = y(t′1), we deduce with the aid of (3.3a) and (3.3b) that

x′(t) =

(
1 + α′

(
e−ct

β′ e−c(α′−1)(t−t′1) − 1

))(
t− t′1 −

log β′

c(1 − α′)

)
,

(3.6a)

λ′(t) = log

(
1 + β′ 1 − α′

α′ ectec(α
′−1)(t−t′1)

)
,

(3.6b)

where α′ > 0, α′ �= 1, and β′ > e−cx′
1. Substituting t = t′1 and t = t′2
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in (3.6a), we obtain that

x′
1 =

(
1 + α′

(
e−ct′1

β′ − 1

))
log β′

c(α′ − 1)
,

(3.7a)

x′
2 =

(
1 + α′

(
e−ct′1

β′ e−cα′(t′2−t′1) − 1

))(
t′2 − t′1 −

log β′

c(1 − α′)

)
.

(3.7b)

Besides, noting that y(t′1) = (α′/(1−α′))μ(t′1), we can see that if α′ > 1,
then μ(t′1) < 0, so by (3.3a) and (3.3b) β′ = y′(t′1) > 1. Analogously,
if α′ < 1, then β′ < 1. Therefore, log β′/(1 − α′) < 0.

We now let t′1 → t1 and t′2 → t2. Since x′
1 = x̂(t′1) and x′

2 = x̂(t′2),
we have that x′

1 → 0 and x′
2 → a. We show that β′ → 1. The

bound β′ > e−cx′
1 implies that lim inf β′ ≥ 1. Let β′′ be a subsequence

with limβ′′ = lim supβ′. The inequality log β′/(1 − α′) < 0 implies
that t′2 − t′1 − (log β′)/(c(1 − α′)) > t′2 − t′1. Therefore, the lefthand
multiplier on the right of (3.7b) is nonnegative, which yields

(3.8) 1 + α′
(
e−ct′1

β′ − 1

)
≥ (α′ − 1)(ecα

′(t2−t1) − 1).

Let α′′ be the subsequence associated with β′′. If α′′ > 1 eventually,
then by (3.8), the (1 + α′′(e−ct′1/β′′ − 1))/(α′′ − 1) are eventually
bounded from below by a positive quantity, so the convergence of the
righthand side of (3.7a) to zero yields the convergence lim log β′′ = 0.
If α′′ < 1 infinitely often, then β′′ < 1 infinitely often (recall that
log β′/(1 − α′) < 0). It follows that lim β′′ ≤ 1. The convergence
β′ → 1 has been proved.

By (3.8), the net α′ is bounded. Let α̂ represent a limit point.
The convergence of the righthand side of (3.7a) to zero implies that
log β′/(1 − α′) → 0. By (3.7b),

1 + α̂(e−ct1e−cα̂(t2−t1) − 1) =
a

t2 − t1
,

which has a unique positive solution. It follows that α′ → α̂. Since
x′(·) = x̂(·) on [t′1, t

′
2], by (3.6a), x̂(t) = (1 + α̂(e−ct1e−cα̂(t−t1)− 1))(t−

t1).
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In the next two lemmas we eliminate from the list of potential min-
imizers trajectories that hit zero before reaching the final destination.
We first show that a trajectory that spends nonzero time at zero cannot
be optimal.

Lemma 3.4. If x(·) is a trajectory with x(0) = 0 and 0 ≤ x(t) ≤ t for

t ∈ [0, 1] such that
∫ 1

0 L(t, x(t), ẋ(t)) dt < ∞ and
∫ 1

0 1{x(t)=0}(t) dt > 0,
then there exists a trajectory x̃(·) with the same initial and terminal

points such that
∫ 1

0
L(t, x̃(t), ˙̃x(t)) dt <

∫ 1

0
L(t, x(t), ẋ(t)) dt.

Proof. The trajectory that “does better than x(·)” will be ob-
tained by applying a small perturbation to x(·). We denote γ =∫ 1

0 1{x(t)=0}(t) dt > 0. Let t1 = inf {t > 0 : x(t) < t}. Let t2 rep-
resent a Lebesgue point of x(·) in the interval ((1− γ/2)∨ t1, 1]. Given
ε > 0, let τε = inf {t > t1 : x(t) < t − ε}. Obviously, τε > ε. We
introduce a variation xε(·) of x(·) by letting xε(0) = 0 and

ẋε(t) = 1[0,(t1+ε)∧τε)(t) + ẋ(t)1[(t1+ε)∧τε,t2−ε)(t)

+
1

ε
(x(t2) − xε(t2 − ε))1[t2−ε,t2)(t) + ẋ(t)1[t2,1](t).

For ε small enough, 0 < xε(t) ≤ t for t ∈ (0, t2), xε(t) = x(t) = t for
t ∈ [0, t1], x(t) < xε(t) ≤ x(t) + ε for t ∈ (t1, t2 − ε], and xε(t) = x(t)
for t ∈ [t2, 1]. Since Lx(t, x, u) ≤ c for x ∈ (0, t) by Lemma 2.4 and
ẋε(t) = ẋ(t) for t ∈ [(t1 + ε) ∧ τε, t2 − ε), we have that for almost all
t ∈ [(t1 + ε) ∧ τε, t2 − ε),

(3.9) L(t, xε(t), ẋε(t)) − L(t, x(t), ẋ(t)) ≤ cε.

Since, by Lemma 2.4, Lx(t, x, 0) ≤ −C1/
√
x for all t ∈ [ε, T ] and all

x ∈ (0, C2], where C1 > 0 and C2 > 0, we have, recalling that ẋ(t) = 0
almost everywhere on the set {t : x(t) = 0}, that for all ε small enough,
almost everywhere on the set {t : x(t) = 0} ∩ [(t1 + ε) ∧ τε, t2 − ε),

(3.10) L(t, xε(t), ẋε(t)) − L(t, x(t), ẋ(t)) ≤ −2C1

√
ε.

By Lemma 2.3, for t ∈ [t1, (t1 + ε) ∧ τε),

(3.11) L(t, xε(t), ẋε(t)) = ct.
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On the interval [t2− ε, t2), the derivative of xε(·) equals (x(t2)−xε(t2−
ε))/ε. Since the (x(t2)− x(t2 − ε))/ε converge to a finite limit as ε → 0
and x(t2 − ε) < xε(t2 − ε) ≤ x(t2 − ε) + ε, the net (x(t2)− xε(t2 − ε))/ε
is bounded for all ε > 0 small enough. If x(t2) > 0, then the
inft∈[t2−ε,t2]xε(t) are bounded from below for all small enough ε > 0
by a positive number, so the function L(t, xε(t), ẋε(t)) is essentially
bounded on [t2−ε, t2] uniformly in ε because L(t, x, u) is continuous on
(0,∞) × (0,∞) × (−∞, 1] by Lemma 2.3. In that case, we have that,
for some B > 0, for almost all t ∈ [t2 − ε, t2]

(3.12) L(t, xε(t), ẋε(t)) ≤ B.

Suppose x(t2) = 0. Let uε = −xε(t2 − ε)/ε. Since xε(t) > 0 for t ∈
(0, t2), by Lemma 2.3, λ̂(t, xε(t), uε) is well defined on [t2 − ε, t2]. Since
the uε are bounded for all ε > 0 small enough and xε(t) = (t − t2)uε

for t ∈ [t2 − ε, t2], by Lemma 2.2 part 4, there exists C3 > 0 such that

−λ̂(t, xε(t), uε) ≤ C3(1 − log((t − t2)uε)) for all t ∈ [t2 − ε, t2) and all

ε > 0 small enough. Hence, λ̂(t, xε(t), uε)uε ≤ C3(1−log((t−t2)uε))|uε|.
By Lemma 2.2 parts 2 and 4 and by (2.1), the H(t, xε(t), λ̂(t, xε(t), uε))
are bounded on [t2 − ε, t2] uniformly in ε. Since

L(t, xε(t), uε) = λ̂(t, xε(t), uε)uε −H(t, xε(t), λ̂(t, xε(t), uε)),

for some C4 > 0 and all ε > 0 small enough,

(3.13)

∫ t2

t2−ε

L(t, xε(t), ẋε(t)) dt ≤ −C4ε log ε.

By (3.9) (3.13), for all ε > 0 small enough and some C5 > 0,∫ 1

0

L(t, xε(t), ẋε(t)) dt ≤ 2cε−
(
γ

2
− 2ε

)
2C1

√
ε− C5ε log ε

+

∫ 1

0

L(t, x(t), ẋ(t)) dt.

Hence, if ε > 0 is small enough, then∫ 1

0

L(t, xε(t), ẋε(t)) dt <

∫ 1

0

L(t, x(t), ẋ(t)) dt.
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The next lemma deals with trajectories that hit zero finitely many
times.

Lemma 3.5. If x(·) is a trajectory such that x(ti) = 0 for i =
0, 1, . . . , k − 1 and x(t) > 0 for all other t ∈ (0, tk), where 0 =
t0 < t1 < t2 < · · · < tk ≤ 1, then there exists a trajectory x̃(·)
with x̃(0) = 0, x̃(t) > 0 for t ∈ (0, tk), and x̃(tk) = x(tk) such that∫ tk
0 L(t, x̃(t), ˙̃x(t)) dt <

∫ tk
0 L(t, x(t), ẋ(t)) dt.

Proof. It suffices to consider the case k = 2. Suppose x(·) is optimal.
Then it yields optimal ways to get from (0, 0) to (t1, 0) and from (t1, 0)
to (t2, x(t2)) staying in Σ, so by Lemma 3.3,

x(t) = (1 + α1(e−cα1t − 1))t for 0 ≤ t ≤ t1

and

x(t) = (1 + α2(e−ct1e−cα2(t−t1) − 1))(t− t1) for t1 ≤ t ≤ t2,

where α1 and α2 are the unique positive solutions of the respective
equations

1 + α1( e−cα1t1 − 1) = 0

and

1 + α2(e−ct1 e−cα2(t2−t1) − 1) =
x(t2)

t2 − t1
.

We note that x(·) is twice continuously differentiable in a left and in a
right neighbourhood of t1 and the derivatives have finite limits at t1,
in particular, ẋ(t1−) < 0 < ẋ(t1+). By Lemma 3.1, for t ∈ [0, t1],

L(t, x(t), ẋ(t)) = log

(
1 +

1 − α1

α1
ecα1t

)
× (−cα2

1e
−cα1tt + 1 + α1(e−cα1t − 1))

+ logα1 − c(α1 − 1)t.
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In particular, limt↑t1 L(t, x(t), ẋ(t)) = ∞.

Given ε > 0 small enough, let t1,ε = sup{t ≤ t1 : x(t) = ε} and
t2,ε = inf{t ≥ t1 : x(t) = ε}. We define xε(t) by letting xε(t) = x(t) for
t ∈ [0, t1,ε] and t ∈ [t2,ε, t2] and xε(t) = ε for t ∈ [t1,ε, t2,ε]. We have∫ t2

0

L(t, x(t), ẋ(t)) dt −
∫ t2

0

L(t, xε(t), ẋε(t)) dt

=

∫ t1

t1,ε

L(t, x(t), ẋ(t)) dt

+

∫ t2,ε

t1

L(t, x(t), ẋ(t)) dt

−
∫ t2,ε

t1,ε

L(t, ε, 0) dt.

Since L(t, x(t), ẋ(t)) → ∞ as t ↑ t1 and L(t, ε, 0) → L(t1, 0, 0) =
− log(1 − e−ct1) as t → t1 and ε → 0 (Lemma 2.3), we conclude that,
given arbitrary B > 0, for all ε > 0 small enough,∫ t2

0

L(t, x(t), ẋ(t)) dt −
∫ t2

0

L(t, xε(t), ẋε(t)) dt

≥ B(t1 − t1,ε)

+ (log(1 − e−ct1) − 1)(t2,ε − t1,ε).

We have that ε/(t1 − t1,ε) → −ẋ(t1−) > 0 and that ε/(t2,ε − t1) →
ẋ(t1+) > 0 as ε → 0. Therefore, for all ε > 0 small enough,
t1 − t1,ε ≥ −ε/(2ẋ(t1−)) and t2,ε − t1 ≤ 2ε/ẋ(t1+). We obtain that, if
ε is small enough and B is large enough, then∫ t2

0

L(t, x(t), ẋ(t)) dt −
∫ t2

0

L(t, xε(t), ẋε(t)) dt

≥ (B + log(1 − e−ct1) − 1)
ε

−2ẋ(t1−)

+ (log(1 − e−ct1) − 1)
2ε

ẋ(t1+)
.

If B is large enough, then the righthand side is positive for all ε > 0.
It follows that xε(·) meets the requirements for x̃(·) in the statement
of the lemma.
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Proof of Theorem 3.1. If a = 1, then there is the unique trajectory

x(t) = t with
∫ 1

0
L(t, x(t), ẋ(t)) dt < ∞ which corresponds to α = 0.

Suppose a < 1. According to Lemmas 3.3, 3.4 and 3.5, the proof will
be complete if we show that a trajectory that assumes the value of zero
infinitely many times and spends no time at zero cannot be optimal.
Suppose that x(t) = 0 at infinitely many points t in (0, 1). Pick t1 and
t2 with 0 < t1 < t2 < 1 and x(t1) = x(t2) = 0 such that x(·) attains
zero at some t3 ∈ (t1, t2). Then the set {t ∈ (t1, t3) : x(t) > 0} is
expressed as a disjoint union of possibly empty intervals ∪∞

i=1(si, ri).
Since

∑∞
i=1(ri − si) = t3 − t1, given ε > 0, there exists N such that∑∞

i=N+1(ri − si) < ε. We note that the set Vε = (t1, t3) \ ∪N
i=1[si, ri]

can be expressed as a finite union of disjoint open intervals. We define
xε(·) as coinciding with x(·) on the set Uε = ∪N

i=1(si, ri) and by being
of the form given in Lemma 3.1 (or Lemma 3.3) for a = 0 on the finite
collection of intervals that make up the set Vε. It follows by Lemma 3.1
that, for an interval (u, v) ∈ Vε,∫ v

u

L(t, xε(t), ẋε(t)) dt =
1

2
c(α̃− 1)2(v − u)2 + (v − u) log α̃,

where 1 + α̃(e−cu e−cα̃(v−u) − 1) = 0. The latter equation implies that
1 < α̃ < 1/(1 − e−cu). Since u ≥ t1, we obtain that∫ v

u

L(t, xε(t), ẋε(t)) dt

≤ 1

2

ce−2ct1

(1 − e−ct1)2
(v − u)2 − (v − u) log(1 − e−ct1).

Since the total length of the intervals in Vε is less than ε, for some
constant K which is a function of t1 and c only,

∫
Vε

L(t, xε(t), ẋε(t)) dt ≤
Kε. Therefore,

(3.14)

∫ t3

t1

L(t, xε(t), ẋε(t)) dt ≤
∫ t3

t1

L(t, x(t), ẋ(t)) dt + Kε.

Let x̃(·) represent the function defined on [t1, t3] as in Lemma 3.1 for
a = 0. By Lemmas 3.3 and 3.5,∫ t3

t1

L(t, x̃(t), ˙̃x(t)) dt ≤
∫ t3

t1

L(t, xε(t), ẋε(t)) dt.
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Since ε > 0 is arbitrary, by (3.14),

(3.15)

∫ t3

t1

L(t, x̃(t), ˙̃x(t)) dt ≤
∫ t3

t1

L(t, x(t), ẋ(t)) dt.

Similarly, if x̆(·) represents the function defined as in Lemma 3.1 on
[t3, t2] for a = 0, then

(3.16)

∫ t2

t3

L(t, x̆(t), ˙̆x(t)) dt ≤
∫ t2

t3

L(t, x(t), ẋ(t)) dt.

By Lemmas 3.3 and 3.5, for the function x(·) defined on [t1, t2] as in
Lemma 3.1 for a = 0, we have that

(3.17)

∫ t2

t1

L(t, x(t), ẋ(t)) dt <

∫ t3

t1

L(t, x̃(t), ˙̃x(t)) dt

+

∫ t2

t3

L(t, x̆(t), ˙̆x(t)) dt.

Putting together (3.15), (3.16) and (3.17), we conclude that∫ t2

t1

L(t, x(t), ẋ(t)) dt <

∫ t2

t1

L(t, x(t), ẋ(t)) dt.

Thus, x(·) is not optimal.

4. Proofs of Theorem 1.1 and Corollary 1.1.

Proof of Theorem 1.1. We apply Theorem 5.4.2 [17, page 417] to the
semimartingales X(n)(·). Let μ(n)(·) represent the measure of jumps of
X(n)(·) defined by

μ(n)([0, t],Γ) =

�nt�∑
i=1

1{ΔX(n)(i/n)∈Γ\{0}},

where ΔX(n)(s) = X(n)(s)−X(n)(s−) and Γ ∈ B(R). Let the complete

σ-algebra F (n)
t on Ω be generated by the random variables α

(n)
ik , where
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k = 1, 2, . . . , �nt� and i < k. The predictable measure of jumps of

X(n)(·) relative to the filtration F(n) = (F (n)
t , t ∈ R+) is defined as

ν(n)([0, t],Γ) =

�nt�∑
i=1

P(ΔX(n)(i/n) ∈ Γ \ {0}|F (n)
(i−1)/n).

By (1.2), the random variables ξ
(n)
i,k−1, where i = 1, 2, . . . , k − 1,

are F (n)
(k−1)/n-measurable. Since

∑k−1
i=1 ξ

(n)
i,k−1 = V

(n)
k−1 (which follows

from (1.1) and (1.2) by induction), the rightmost term of (1.1) has a

binomial distribution with parameters V
(n)
k−1 and cn/n when conditioned

on F (n)
(k−1)/n. Therefore, by (1.1), for m being a nonzero integer,

P(V
(n)
k − V

(n)
k−1 = m|F (n)

(k−1)/n) =

(
1 − cn

n

)k−1

1{m=1}

+

V
(n)

k−1∑
l=1

(
V

(n)
k−1

l

)(
cn
n

)l(
1 − cn

n

)V
(n)

k−1
−l

1{m=−l},

so using that X(n)(t) = V
(n)
�nt�/n, we obtain that

(4.1) ν(n)([0, t],Γ) =

�nt�∑
k=1

ν̃
(n)
k

(
X(n)

(
k − 1

n

)
,Γ

)
,

where ν̃
(n)
k (x, ·), for x ∈ R, is a measure on B(R) given by

(4.2)

ν̃
(n)
k (x, ·) =

(
1 − cn

n

)k−1

δ1/n

+

�n(x∨0∧((k−1)/n))�∑
j=1

( �n(x ∨ 0 ∧ ((k − 1)/n))�
j

)(
cn
n

)j

×
(

1 − cn
n

)�n(x∨0∧((k−1)/n))�−j

δ−j/n,

δy denoting the Dirac measure at y.
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Obviously,
∫
R eλy ν̃

(n)
k (x, dy) is finite for all λ ∈ R and x ∈ R, so

condition (5.4.4) [17, page 415] and condition (5.4.6) [17, page 416]

hold with αφ = βφ = n, and ν̂φk/αφ
(βφ dx;u) = ν̃

(n)
k (u, dx). We

introduce, for t ∈ R+, x ∈ R and λ ∈ R, the analogue of gφs (λ;u)
in [17, page 417] with rφ = n by

H(n)(t, x, λ) = log

(
1 +

∫
R

(eλny − 1)ν̃
(n)
�nt�+1(x, dy)

)
= log

(
(eλ − 1)

(
1 − cn

n

)�nt�

+

�n(x∨0∧t)�∑
j=0

e−λj

( �n(x ∨ 0 ∧ t)�
j

)(
cn
n

)j

×
(

1 − cn
n

)�n(x∨0∧t)�−j)
.

Since by Le Cam’s inequality, see, e.g., Steele [19], for x ∈ R+,

�nx�∑
j=0

∣∣∣∣ ( �nx�
j

)(
cn
n

)j(
1 − cn

n

)�nx−j�
− (cn�nx�/n)j

j!
e−cn�nx�/n

∣∣∣∣
+

∞∑
j=�nx�+1

(cn�nx�/n)j

j!
e−cn�nx�/n ≤ 2�nx�c2n

n2
,

recalling (2.1),

lim
n→∞ sup

s≤t
sup
x∈R

|H(n)(s, x, λ) −H(s, x, λ)| = 0,

which checks the condition of the convergence of integrals in the
statement of Theorem 5.4.2 [17, page 417] with gs(λ;u) = H(s, u, λ).
We note that gs(λ;u) is continuous in u by (2.1). The linear growth
condition gs(λ;u) ≤ g̃s(|λ|(1 + |u|)) in [17, page 417] is met for
g̃s(v) = ce|v| − log(1 − e−cs).

By Theorem 5.4.2 [17, page 417], the X(n)(·) obey the LDP with
large deviation function I for the Skorohod J1-topology on the space
of rightcontinuous functions on R+ with lefthand limits provided any
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solution Π of the maxingale problem (0, G) as defined [17, page
202] is of the form Π(x(·)) = exp(−I(x(·)), where the cumulant
G = (Gt(λ;x(·))) is given by

(4.3) Gt(λ;x(·)) =

∫ t

0

H(s, x(s), λ) ds.

We note that this cumulant can be represented as in equations (2.7.7)
and (2.7.13) [17, page 175 and 177], where bs(x(·)) = Hλ(s, x(s), 0) and

ĝs(λ;x(·)) = Ĥ(s, x(s), λ) with Ĥ(s, x, λ) = H(s, x, λ) − Hλ(s, x, 0)λ.
We verify for these functions conditions I and II [17, pages 215 and
216]. Condition I [17, page 215] holds by the form of Hλ(t, x, 0) given

in Lemma 2.1. By Lemma 2.1, the function Ĥ(s, x, λ) is nonnegative
and convex in λ, is continuous in (x, λ) ∈ R×R, and, for all B ∈ R+

and t ∈ R+,

sup
|x|+|λ|≤B

sup
s≤t

Ĥ(s, x, λ) < ∞,

lim
λ→0

sup
|x|≤B

sup
s≤t

Ĥ(s, x, λ) = 0.

This implies condition II [17, page 216].

Let Π represent a deviability which solves the maxingale problem
associated with (Gt(λ;x(·)). We need to show that Π(x(·)) = Π(x(·)).
It is always the case that Π(x(·)) ≤ Π(x(·)), see [17, page 174, Lemma
2.7.11] or [17, page 212, (2.8.11)], so we may assume that Π(x(·)) > 0.
According to the definition of I, if Π(x(·)) > 0 then x(·) is absolutely
continuous, x(0) = 0, x(t) ≥ 0, and ẋ(t) ≤ 1 almost everywhere.
Given x(·) with Π(x(·)) > 0, we define a function λ(·) by setting

λ(t) = λ̂(t, x(t), ẋ(t)) if t > 0, x(t) > 0 and ẋ(t) < 1. We also let
λ(t) = ∞ if t > 0 and ẋ(t) = 1, and we let λ(t) = −∞ if t > 0 and

x(t) = 0. A final specification is that λ(0) = 0. Since λ̂(·) is continuous
on (0,∞)×(0,∞)×(−∞, 1) by Lemma 2.3, the function λ(·) is a Borel
measurable mapping from R+ into R ∪ {∞} ∪ {−∞} if the latter is
considered as a compact metric space.

We will first show that Π(x(·)) = Π(x(·)) for the elements of the
set D of x(·) such that Π(x(·)) > 0 and the function λ(·) is R-
valued and is locally bounded in R. By Lemma 2.1, for such x(·),
ẋ(t) = Hλ(t, x(t), λ(t)) almost everywhere and x(·) is uniquely spec-
ified by this differential equation, the function λ(·) and the initial
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condition x(0) = 0. Suppose x(·) ∈ D. The required uniqueness is
established by checking the hypotheses of Theorem 2.8.14 [17, page
213]. More specifically, conditions a) and b) of the theorem need to
be checked. Since the function λ(·) is locally bounded, it belongs

to class Λ̂ of Definition 2.8.17 [17, page 216]. By Theorem 2.8.19
[17, page 217] it satisfies condition a) of Theorem 2.8.14. Since the
differential equation ẋ(t) = Hλ(t, x(t), λ(t)) almost everywhere has a
unique solution with the initial condition x(0) = 0, Lemma 2.8.20 part
2 [17, page 218] shows that Theorem 2.8.14 condition b) is satisfied
as well. According to that theorem, Π(x(·)) = Π(x(·)). Moreover,
supy(·)∈p−1

t (ptx(·)) Π(y(·)) = Πt(x(·)), where pt(x(·)) = (x(t ∧ s), s ∈
R+) and Πt(x(·)) = exp(− ∫ t

0 L(s, x(s), ẋ(s)) ds).

By Lemma 2.8.26 and Definition 2.8.24 [17, page 222], in order to
prove that Π(x(·)) = Π(x(·)) for arbitrary x(·) with Π(x(·)) > 0 it
suffices to show that there exists a sequence of functions xk(·) ∈ D,
where k ∈ N such that, for all T ∈ R+,

(4.4a) lim
k→∞

sup
t∈[0,T ]

|xk(t) − x(t)| = 0

and

(4.4b) lim
k→∞

∫ T

0

L(t, xk(t), ẋk(t)) dt =

∫ T

0

L(t, x(t), ẋ(t)) dt.

We establish the required properties in stages. As Lemma 2.2 shows,
the function λ(·) may become unbounded or not R-valued either
because x(·) comes close to zero, or because ẋ(·) is close to 1, or because
ẋ(·) is large negative, or because t approaches zero. We will successively
deal with all these complications. Firstly, we will show that, given x(·)
such that Π(x(·)) > 0, there exists a sequence xk(·) of functions such
that Π(xk(·)) > 0, xk(t) > εkt for all t > 0 and some εk > 0, and
(4.4a) and (4.4b) hold. Then we will show that, given x(·) such that
Π(x(·)) > 0 and x(t) > εt for all t > 0 and some ε > 0, there exist xk(·)
such that Π(xk(·)) > 0, xk(t) > εt for t > 0, the associated functions
λ(·) are bounded in neighborhoods of t = 0, and (4.4a) and (4.4b) hold.
As a final step, we approximate in the sense of (4.4a) and (4.4b) an
arbitrary x(·) such that Π(x(·)) > 0, x(t) > εt for t > 0, and λ(·) is
bounded in a neighbourhood of t = 0 with xk(·) ∈ D.
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Here is the first step. Given x(·) such that Π(x(·)) > 0, we de-
fine xk(t) = x(t) ∨ (t/k). We have that ẋk(t) = ẋ(t)1{x(t)≥t/k}(t) +
(1/k)1{x(t)<t/k}(t) almost everywhere. It is clear that the xk(·) con-
verge to x(·) for the compact open topology as k → ∞, i.e., (4.4a)
holds. We write

(4.5)

∫ T

0

L(t, xk(t), ẋk(t)) dt =

∫ T

0

L(t, x(t), ẋ(t))1{x(t)≥t/k}(t) dt

+

∫ T

0

L

(
t,

t

k
,

1

k

)
1{x(t)<t/k}(t) dt.

By Lemma 2,3, for t > 0 and k > 1,

(4.6) L

(
t,

t

k
,

1

k

)
=

λ̂(t, t/k, 1/k)

k
−H(t,

t

k
, λ̂(t, t/k, 1/k)

)
.

By the expression for Hλ(t, x, 0) in Lemma 2.1 part 2, for all k large
enough, uniformly in t ∈ (0, T ], Hλ(t, t/k, 0) is arbitrarily close to e−ct,
so it is greater than 1/k, which implies by Lemma 2.2 part 1 that

λ̂(t, t/k, 1/k) < 0 for all k large enough uniformly in t ∈ (0, T ]. By (2.1),

uniformly in t ∈ (0, T ], for all k large enough, H(t, t/k, λ̂(t, t/k, 1/k)) ≥
log(1 − e−ct), so that by (4.6) 0 ≤ L(t, t/k, 1/k) ≤ − log(1 − e−ct).
Since, by Lemma 2.3, L(t, t/k, 1/k) → L(t, 0, 0) as k → ∞ for t > 0,
on applying Lebesgue’s bounded convergence theorem,

lim
k→∞

∫ T

0

L

(
t,

t

k
,

1

k

)
1{x(t)<t/k}(t) dt =

∫ T

0

L(t, 0, 0)1{x(t)=0}(t) dt.

We conclude by (4.5) and monotone convergence that (4.4b) holds.

We proceed with step 2 of the approximation procedure and consider
x(·) such that Π(x(·)) > 0 and x(t) > εt for all t ∈ (0, T ] and some
ε ∈ (0, 1). We approximate it with a sequence of xk(·) which have all
these properties and, in addition, are such that the associated functions
λ(·) are bounded in neighbourhoods of t = 0. We define xk(t) for
t ∈ [0, 1/k] as in Lemma 3.1 with t1 = 0, t2 = 1/k and a = x(1/k), i.e.,

xk(t) = (1 + αk(e−cαkt − 1))t1[0,1/k](t) + x(t)1(1/k,∞)(t),
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where αk is the unique nonnegative solution of the equation (1 +
αk(e−cαk/k − 1))/k = x(1/k). The function αk(e−cαkt − 1) being
decreasing in t, we have that, for t ∈ [0, 1/k],

(1 + αk(e−cαkt − 1))t ≥ (1 + αk(e−cαk/k − 1))t = kx(1/k)t ≥ εt,

so xk(t) ≥ εt. It is readily seen that xk(t) ≤ t. By Lemma 3.1,

λ̂(t, xk(t), ẋk(t)) = log(1 + (1 − αk)eαkct/αk) for t ∈ [0, 1/k], so the

functions λk(t) = λ̂(t, xk(t), ẋk(t)) are bounded on [0, 1/k].

Convergence (4.4a) obviously holds. In order to establish (4.4b), one
needs to prove that

lim
k→∞

∫ 1/k

0

L(t, x(t), ẋ(t)) dt = 0, lim
k→∞

∫ 1/k

0

L(t, xk(t), ẋk(t)) dt = 0.

The first limit follows because I(x(·)) < ∞. The second limit fol-

lows from the first because by Remark 3.1,
∫ 1/k

0 L(t, xk(t), ẋk(t)) dt ≤∫ 1/k

0 L(t, x(t), ẋ(t)) dt.

We implement the third step. Suppose that x(·) is such that
Π(x(·)) > 0, x(t) > εt for t ∈ (0, T ], and the associated function
λ(·) is bounded on [0, γ], where ε ∈ (0, 1) and γ ∈ (0, T ). We define

yk(t) = x(γ) +

∫ t

γ

ẋ(s) ∧
(

1 − 1

k

)
1{ẋ(s)≥−k}(s) ds,

xk(t) = x(t)1[0,γ](t) + yk(t) ∨ (εt)1[γ,T ](t).

Evidently, 1−1/k ≥ ẋk(t) ≥ −k almost everywhere for t ∈ [γ, T ] and all
k large enough and t > xk(t) ≥ εt. By Lemma 2.3, the functions λk(t)
associated with the xk(·) are bounded on [γ, T ], so they are bounded
on [0, T ].

It is readily seen that xk(·) → x(·) as k → ∞ for the compact open
topology, so we need to establish (4.4b). For B > 0 and all k > B,
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(4.7)

∫ T

0

L(t, xk(t), ẋk(t)) dt

=

∫ γ

0

L(t, x(t), ẋ(t)) dt

+

∫ T

γ

L(t, εt, ε)1{yk(t)<εt}(t) dt

+

∫ T

γ

L(t, yk(t), 0)1{yk(t)≥εt}(t)1{ẋ(t)<−k}(t) dt

+

∫ T

γ

L

(
t, yk(t), ẋ(t) ∧

(
1 − 1

k

))
× 1{yk(t)≥εt}(t)1{ẋ(t)≥−B}(t) dt

+

∫ T

γ

L(t, yk(t), ẋ(t))1{yk(t)≥εt}(t)1{−B>ẋ(t)≥−k}(t) dt.

We consider the terms on the righthand side in order. The con-
vergence of the yk(·) to x(·) implies that 1{yk(t)<εt}(t) → 0 as k →
∞. By Lemma 2.3, the function L(t, x, u) is bounded on the set
[γ, T ] × [εγ, T ] × [0, 1]. By Lebesgue’s bounded convergence theorem,

(4.8) lim
k→∞

∫ T

γ

L(t, εt, ε)1{yk(t)<εt}(t) dt = 0.

Similarly,

(4.9) lim
k→∞

∫ T

γ

L(t, yk(t), 0)1{yk(t)≥εt}(t)1{ẋ(t)<−k}(t) dt = 0.

Furthermore, since yk(t) → x(t) for t ∈ [γ, T ] and L(t, x, u) is continu-
ous on [γ, T ] × [εγ, T ] × [−B, 1] by Lemma 2.3,

(4.10) lim
k→∞

∫ T

γ

L

(
t, yk(t), ẋ(t)

∧
(

1 − 1

k

))
1{yk(t)≥εt}(t)1{ẋ(t)≥−B}(t) dt

=

∫ T

γ

L(t, x(t), ẋ(t))1{ẋ(t)≥−B}(t) dt.



1980 ANATOLII A. PUHALSKII

By Lemma 2.3, provided t > 0,

L(t, yk(t), ẋ(t)) = λ̂(t, yk(t), ẋ(t))ẋ(t) −H(t, yk(t), λ̂(t, yk(t), ẋ(t)))

almost everywhere on the set {ẋ(t) < −B, yk(t) ≥ εt}. We choose
B > cT . Since Hλ(t, yk(t), 0) = e−ct − cyk(t), which is greater than

−B, we have by Lemma 2.2 part 1 that λ̂(t, yk(t), ẋ(t)) < 0 almost
everywhere on the set {ẋ(t) < −B, yk(t) ≥ εt}. By Lemma 2.2 part 4,

−λ̂(t, yk(t), ẋ(t)) ≤ (− log c− log(εt)) + log(1 + |ẋ(t)|) on that set. By

(2.1) and (2.2), H(t, yk(t), λ̂(t, yk(t), ẋ(t))) ≥ log(1− e−ct)∧ (−ct). We
obtain that almost everywhere on the set {ẋ(t) < −B, yk(t) ≥ εt},

0 ≤ L(t, yk(t), ẋ(t) ≤ ẋ(t)(log c + log(εt))

− ẋ(t) log(1 + |ẋ(t)|) + (− log(1 − e−ct)) ∨ (ct).

By Lemma 2.5, the integral over [0, T ] of the righthand side is finite.
Since L(t, yk(t), ẋ(t)) → L(t, x(t), ẋ(t)) as k → ∞ for t > 0 by
Lemma 2.3, we derive by Lebesgue’s dominated convergence theorem,
that

(4.11) lim
k→∞

∫ T

0

L(t, yk(t), ẋ(t))1{yk(t)≥εt}(t)1{−k≤ẋ(t)<−B}(t) dt

=

∫ T

0

L(t, x(t), ẋ(t))1{ẋ(t)<−B}(t) dt.

Putting together (4.7) (4.11) yields the convergence

lim
k→∞

∫ T

0

L(t, xk(t), ẋk(t)) dt =

∫ T

0

L(t, x(t), ẋ(t)) dt.

The uniqueness of a solution to the maxingale problem (0, G) has
been proved. By Theorem 5.4.2 [17, page 417], the X(n)(·) obey
the LDP with I for the Skorohod J1-topology on the space of real-
valued rightcontinuous functions with lefthand limits defined on the
nonnegative halfline. Since I(x(·)) = ∞ if x(·) is discontinuous and the
X(n)(·) are random elements of Dco(R+,R), Theorem 3.2.10 [17, page
285] allows us to strengthen the LDP so that it holds for the compact
open topology.
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We show that (te−ct, t ∈ R+) is the unique zero of I. We have that
I(x(·)) = 0 if and only if λẋ(t) ≤ H(t, x(t), λ) for all λ ∈ R almost
everywhere in t. Since both sides of the inequality coincide for λ = 0,
ẋ(t) represents a subgradient of H(t, x(t), λ) at λ = 0. The function
H(t, x, λ) being convex and differentiable in λ for t > 0 implies that
ẋ(t) = Hλ(t, x(t), 0) almost everywhere, i.e., ẋ(t) = e−ct− cx(t) almost
everywhere, which means that x(t) = te−ct.

Proof of Corollary 1.1. The first assertion follows by Theorem 1.1,
the continuous mapping principle, Theorem 3.1 and Remark 3.1. We
prove the second part. The argument is an adaptation of the one in
the proof of Theorem 3.4 [5, page 86]. By the LDP for X(n)(T ),

lim inf
n→∞

1

n
logP(|X(n)(T ) − a| ≤ γ) ≥ −infx(·):|x(T )−a|<γI(x(·))

and

lim sup
n→∞

1

n
logP

({
sup

t∈[0,T ]

|X(n)(t) − xa,T (t)| ≥ ε
}

∩{|X(n)(T ) − a| ≤ γ}
)

≤ −inf x(·):|x(T )−a|≤γ
supt∈[0,T ] |x(t)−xa,T (t)|≥ε

I(x(·)).

Therefore,

lim sup
n→∞

1

n
logP

(
sup

t∈[0,T ]

|X(n)(t) − xa(t)| ≥ ε
∣∣∣ |X(n)(T ) − a| ≤ γ

)
≤ −inf x(·):|x(T )−a|≤γ

supt∈[0,T ] |x(t)−xa,T (t)|≥ε

I(x(·))

+ infx(·):|x(T )−a|<γI(x(·)).
Since I is lower compact, the righthand side converges as γ → 0 to

−inf x(·):x(T )=a
supt∈[0,T ]|x(t)−xa,T (t)|≥ε

I(x(·)) + infx(·):x(T )=aI(x(·))

which is negative by Theorem 3.1 and Remark 3.1. Hence,

lim
γ→0

lim inf
n→∞ P

(
sup

t∈[0,T ]

|X(n)(t) − xa,T (t)| ≤ ε
∣∣∣|X(n)(T ) − a| ≤ γ

)
= 1.
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5. Proof of Theorem 1.2. Recalling that μ(n) denotes the measure
of jumps of X(n)(·) and ν(n) denotes its dual predictable projection, we
can write

X(n)(t) =

∫ t

0

∫
R

xν(n)(ds, dx) + M (n)(t),(5.1)

where

M (n)(t) =

∫ t

0

∫
R

x(μ(n) − ν(n))(ds, dx).(5.2)

The process M (n)(·) is an F(n)-locally square integrable martingale
with predictable quadratic variation process
(5.3)

〈M (n)〉(t) =

∫ t

0

∫
R

x2ν(n)(ds, dx) −
∑

0<s≤t

(∫
R

x ν(n)({s}, dx)

)2

.

By (4.1) and (4.2),
(5.4a)∫ t

0

∫
R

x ν(n)(ds, dx) =
1

n

�nt�∑
k=1

((
1 − cn

n

)k−1

−X(n)

(
k − 1

n

)
cn

)
and

(5.4b)

∫ t

0

∫
R

x2 ν(n)(ds, dx) −
∑

0<s≤t

(∫
R

x ν(n)({s}, dx)

)2

=
1

n2

�nt�∑
k=1

((
1 − cn

n

)k−1

+ X(n)

(
k − 1

n

)
cn

(
1 − cn

n

)

−
(

1 − cn
n

)2(k−1)

+ 2

(
1 − cn

n

)k−1

X(n)

(
k − 1

n

)
cn

)
.

According to (5.1), the process Y (n)(·) can be written in the form

Y (n)(t) =
√
n

(∫ t

0

∫
R

xν(n)(ds, dx) − te−ct

)
+
√
nM (n)(t).
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By (5.4a), the equation te−ct =
∫ t

0
(e−cs − cse−cs) ds, and the conver-

gence of the X(n)(·) to (te−ct) established in Theorem 1.1, for ε > 0
and T > 0,

(5.5) lim
n→∞P

(
sup

t∈[0,T ]

|√n

(∫ t

0

∫
R

xν(n)(ds, dx) − te−ct

)
+2θ

∫ t

0

se−cs ds + c

∫ t

0

Y (n)(s) ds| > ε

)
= 0.

By (5.3), (5.4b), and the convergence of the X(n)(·) to (te−ct), for ε > 0
and t > 0,

(5.6)

lim
n→∞P

(∣∣∣n〈M (n)〉(t) −
∫ t

0

(e−cs + cse−cs − e−2cs + 2cse−2cs) ds
∣∣∣

> ε
)

= 0.

In order to apply Theorem IX.3.48 [7, page 553] (see also Lemma IX.4.4
[7, page 555]) it remains to check the Lindeberg condition for the
predictable measure of jumps of Y (n)(·) that, for t > 0, ε > 0 and
γ > 0,

(5.7) lim
n→∞P

(
n

∫ t

0

∫
R

x21{|x|>γ/
√
n}(x)ν(n)(ds, dx) > ε

)
= 0.

Clearly,
(5.8)

n

∫ t

0

∫
R

x21{|x|>γ/
√
n}(x)ν(n)(ds, dx) ≤ n2

γ

∫ t

0

∫
R

x4ν(n)(ds, dx).

By (4.1) and the expression for the fourth moment of a binomial
distribution as given in [11],∫ t

0

∫
R

x4ν(n)(ds, dx)

=
1

n4

�nt�∑
k=1

((
1 − cn

n

)k−1

+ X(n)

(
k − 1

n

)
cn

+ 7

(
nX(n)

(
k − 1

n

))
(2)

c2n
n2

+ 6

(
nX(n)

(
k − 1

n

))
(3)

c3n
n3

+

(
nX(n)

(
k − 1

n

))
(4)

,
c4n
n4

)
,
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where m(i) = m(m − 1) · · · (m − i + 1) is the factorial polynomial of

order i. Since X(n)(s) ≤ s,∫ t

0

∫
R

x4 ν(n)(ds, dx) ≤ t

n3
(1 + tcn + 7t2c2n + 6t3c3n + t4c4n).

The convergence in (5.7) follows by (5.8).

By Theorem IX.3.48 [7, page 553], the Y (n)(·) converge in distribution
to Y (·) for the Skorohod J1-topology. The topology can be strength-
ened to the compact open topology since Y has continuous paths and
the Y (n)(·) are random elements of Dco(R+,R).

Remark 5.1. One could also invoke the results of Section 3 [14,
Chapter 8] in order to deduce the needed convergence.

6. Proofs of Theorem 1.3 and Corollary 1.3. Theorem 1.3 can
be expressed equivalently in terms of large deviation convergence to
idempotent processes as in [17].

Theorem 6.1. Suppose that (
√
n/bn)(cn − c) → θ̂ ∈ R as n → ∞,

where c > 0, bn → ∞, and bn/
√
n → 0. The processes (Ŷ (n)(t), t ∈

R+), where Ŷ (n)(t) = (
√
n/bn)(X(n)(t) − te−ct), large deviation con-

verge in distribution in Dco(R+,R) at rate b2n to the idempotent process

(Ŷ (t), t ∈ R+) given by the equation

Ŷ (t) =

∫ t

0

−2θ̂se−cs ds− c

∫ t

0

Ŷ (s) ds

+

∫ t

0

√
e−cs + c2s2e−2cs + cse−cs ˙̂

W (s) ds,

where (Ŵ (t), t ∈ R+) is a standard idempotent Wiener process. In par-
ticular, the (

√
n/bn)(X(n)(1) − e−c) large deviation converge in distri-

bution in R to the Gaussian idempotent variable N̂(−θ̂e−c, c2e−2c/3 +
e−c).

Proof of Theorem 6.1. The plan of the proof is similar to that for
Theorem 1.2 except that the results of [17] are used rather than the
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results of [7]. To be more specific, we apply Theorem 5.3.8 [17, page
413. Since this technique is not as common, more detail is provided.

To start with, we strengthen the convergence in probability of the
X(n)(·) to (te−ct) and show exponential convergence at rate b2n, i.e., for
ε > 0 and T > 0,

(6.1) lim
n→∞P( sup

t∈[0,T ]

|X(n)(t) − te−ct| > ε)1/b
2
n = 0.

By the LDP for the X(n)(·) and the uniqueness of the zero of I,

lim sup
n→∞

P

(
sup

t∈[0,T ]

|X(n)(t) − te−ct| ≥ ε

)1/n

≤ sup
x(·):supt∈[0,T ] |x(t)−te−ct|≥ε

e−I(x(·)) < 1.

Limit (6.1) follows since b2n/n → 0 as n → ∞.

According to (5.1), the process Ŷ (n)(·) can be written in the form

(6.2) Ŷ (n)(t) =

√
n

bn

(∫ t

0

∫
R

xν(n)(ds, dx) − te−ct

)
+

√
n

bn
M (n)(t).

We prove that, in analogy with (5.5), for ε > 0 and T > 0,

(6.3)

lim
n→∞P

(
sup

t∈[0,T ]

∣∣∣√n

bn

(∫ t

0

∫
R

x ν(n)(ds, dx)−te−ct

)
+ 2θ̂

∫ t

0

se−csds

+ c

∫ t

0

Ŷ (n)(s) ds
∣∣∣ > ε

)1/b2n

= 0.
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Recalling (5.4a), we can write

√
n

bn

(∫ t

0

∫
R

xν(n)(ds, dx) − te−ct

)
+ 2θ̂

∫ t

0

se−cs ds + c

∫ t

0

Ŷ (n)(s) ds

=

∫ t

0

(√
n

bn

((
1 − cn

n

)�ns�
− e−cs

)
+ θ̂se−cs

)
ds

−
(√

n

bn
(cn − c) − θ̂

)∫ t

0

se−cs ds

−
√
n

bn
(cn − c)

∫ t

0

(X(n)(s) − se−cs) ds

−
√
n

bn

∫ t

�nt�/n

((
1 − cn

n

)�ns�
− cnX

(n)(s)

)
ds.

The first two terms on the right converge to zero locally uniformly in t
because (

√
n/bn)(cn − c) → θ̂. By (6.1), for arbitrary γ > 0,

lim
n→∞P

(√
n

bn
(cn − c)

∫ t

0

|X(n)(s) − se−cs| ds > γ

)1/b2n

= 0,

which attends to the third term. For similar reasons,

lim
n→∞P

(
sup

t∈[0,T ]

√
n

bn

∫ t

�nt�/n

∣∣∣∣(1− cn
n

)�ns�
−cnX

(n)(s)

∣∣∣∣ ds > γ

)1/b2n

= 0.

Convergence (6.3) has been proved.

We now prove that in analogy with (5.6), for ε > 0 and t > 0,

(6.4) lim
n→∞P

(∣∣∣n〈M (n)〉(t)

−
∫ t

0

(e−cs + cse−cs − e−2cs + 2cse−2cs) ds
∣∣∣ > ε

)1/b2n

= 0.



ISOLATED VERTICES IN A GROWING RANDOM GRAPH 1987

By (5.3) and (5.4b),

n〈M (n)〉(t) −
∫ t

0

(e−cs + cse−cs − e−2cs + 2cse−2cs) ds

=

∫ �nt�/n

0

((
1 − cn

n

)�ns�
− e−cs

)
ds

+

∫ �nt�/n

0

(
X(n)(s)cn

(
1 − cn

n

)
− cse−cs

)
ds

−
∫ �nt�/n

0

((
1 − cn

n

)2�ns�
− e−2cs

)
ds

+

∫ �nt�/n

0

(
2

(
1 − cn

n

)�ns�
X(n)(s)cn − 2cse−2cs

)
ds

−
∫ t

�nt�/n
(e−cs + cse−cs − e−2cs + 2cse−2cs) ds.

Convergence (6.4) now follows by (6.1).

In order to apply Theorem 5.3.8 [17, page 413], it remains to check
condition (Le)loc on page 412 where rφ = b2n. It follows if, for t > 0,
ε > 0 and γ > 0,

(6.5) lim
n→∞

1

b2n

�nt�∑
k=1

sup
0≤u≤t

∫
R

eγbn
√
n|x|1{bn√n|x|>ε}(x)ν̃

(n)
k (u, dx) = 0.

By (4.2),∫
R

eγbn
√
n|x|1{bn√n|x|>ε}(x)ν̃

(n)
k (u, dx)

≤ e−ε
√
n/bn

∫
R

eγbn
√
n|x|en|x|ν̃(n)k (u, dx)

= e−ε
√
n/bn

(
eγbn/

√
n+1

(
1 − cn

n

)k−1

+

(
1 − cn

n
+ eγbn/

√
n+1 cn

n

)�n(u∨0∧((k−1)/n))�

−
(

1 − cn
n

)�n(u∨0∧((k−1)/n))�)
.
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The limit in (6.5) follows from the convergence bn/
√
n → 0. By

Theorem 5.3.8 [17, page 413], the Ŷ (n)(·) LD converge at rate b2n to

Ŷ (·) for the Skorohod topology. This can be strengthened to the LD
convergence in Dco(R+,R) as in the proof of Theorem 1.1.

Proof of Corollary 1.2. The proof proceeds similarly to the proof
of Corollary 1.1. Since the integrand in the expression for Î is a
Carathéodory function and is a strictly convex function of (y(·), ẏ(·)),
by Theorem 4.1 [4, page 120], the variational problem of minimizing

Î(y(·)) over absolutely continuous y(·) such that y(0) = 0 and y(T ) = b
has a unique solution. By Theorem 4.12 [4, page 125], it satisfies the
Euler-Lagrange equation. Solving the latter is straightforward. The
limit for the conditional probability is established as in the proof of
Corollary 1.1.
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