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SURVEY ARTICLE: BELLMAN FUNCTION METHOD
AND SHARP INEQUALITIES FOR MARTINGALES

ADAM OSȨKOWSKI

ABSTRACT. The Bellman function method is an efficient
device which enables relating certain types of estimates arising
in probability and harmonic analysis to the existence of the as-
sociated special function satisfying appropriate majorization
and concavity. This technique has gained considerable inter-
est in recent years and led to many interesting results con-
cerning the boundedness of wide classes of singular integrals,
Fourier multipliers, maximal functions and other related ob-
jects. The objective of this survey is to describe the Bellman
function approach to certain classical results for martingale
transforms. We present the detailed study of the weak-type
and moment estimates, and develop some arguments which al-
low us to simplify and extend the statements, originally proven
by Burkholder and others.

1. Introduction. The Bellman function method is a powerful tool
in proving various types of inequalities arising in probability and har-
monic analysis. The technique has its origins in the theory of stochastic
optimal control, and its fruitful connection with other areas of math-
ematics was firstly observed by Burkholder in [6], during the study of
certain sharp inequalities for martingale transforms. Since then, the
approach has been extended and applied essentially in two directions.
The first path is probabilistic: Burkholder’s arguments from [8] were
modified and exploited extensively to investigate numerous estimates
for semimartingales. The literature here is quite large; we mention
only the subsequent works of Burkholder [10 13], Choi [14, 15], Suh
[44], Wang [52, 53] and the monograph [33] by the author, which con-
tains the more complete bibliography on the subject. The second path,
which pushed the method towards applications in harmonic analysis,
started with the seminal paper [29] by Nazarov and Treil (inspired by
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the preprint version of [30]). This analytic approach has been con-
tinued in many papers, including the works of Dragičević and Volberg
[20 22], Ivanishvili et al. [23], Melas [26], Melas and Nikolidakis [27],
Nazarov, Treil and Volberg [31], Slavin, Stokolos and Vasyunin [41],
Slavin and Vasyunin [42, 43], Vasyunin [45, 46], Vasyunin and Vol-
berg [47 49] and the author [35]. The results in the aforementioned
papers have found many important applications, including tight bounds
for wide classes of Fourier multipliers and stochastic integrals: see the
papers cited above, consult also Bañuelos, Bielaszewski and Bogdan
[1], Bañuelos and Wang [2], Borichev, Janakiraman and Volberg [3,
4], Nazarov and Volberg [32], the author [34], and the works of many
other mathematicians.

The purpose of the current work is to present the refined study
of some fundamental results for martingale transforms, with the use
of both probabilistic and analytic aspects of the Bellman function
method. The contents of this survey extend and complement the
material contained in the monograph [33]. Our contribution will be of
a twofold nature. First, this mixed approach will allow us to strengthen
some of the classical results: we will obtain more exact information on
the control of a martingale over its ±1-transforms. Second, we will
present a certain simplification argument which, in a sense, splits the
problem of identifying a given Bellman function into two easier steps. In
some cases, this argument significantly reduces the technical difficulties
involved in the search of the corresponding Bellman function and, as
we hope, can be applied and further extended in many other problems
of this type.

We start with some motivation and introduce some basic notation.
Let (hn)n≥0 be the Haar system on [0, 1]. Recall that this family of
functions is given by:

h0 = [0, 1), h1 = [0, 1/2) − [1/2, 1),

h2 = [0, 1/4) − [1/4, 1/2), h3 = [1/2, 3/4)− [3/4, 1),

h4 = [0, 1/8) − [1/8, 1/4), h5 = [1/4, 3/8)− [3/8, 1/2),

h6 = [1/2, 5/8)− [5/8, 3/4), h7 = [3/4, 7/8)− [7/8, 1)

and so on (here we have identified a set with its indicator function).
As shown by Schauder [40], this collection forms a basis in Lp(0, 1)
(endowed with Lebesgue measure) for 1 ≤ p < ∞. A classical result of
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Marcinkiewicz [25] (exploiting the earlier work of Paley [37]) asserts
that this basis is unconditional if and only if 1 < p < ∞. That is,
for any such p, there is a finite constant βp (depending only on p),
such that the following holds: for any sequence a0, a1, a2, . . . of real
numbers and any sequence ε0, ε1, ε2, . . . of signs, we have

(1.1)

∥∥∥∥
n∑

k=0

εkakhk

∥∥∥∥
Lp(0,1)

≤ βp

∥∥∥∥
n∑

k=0

akhk

∥∥∥∥
Lp(0,1)

, n = 0, 1, 2, . . . .

This beautiful property of (hn)n≥0 is a starting point for various exten-
sions, which greatly influenced the shape of contemporary mathemat-
ics and stimulated the development of many areas, including harmonic
analysis, complex analysis, interpolation theory and the geometry of
Banach spaces.

We will be interested in the probabilistic version of (1.1), obtained in
1966 by Burkholder [5]. Suppose that (Ω,F ,P) is a probability space,
filtered by (Fn)n≥0, a non-decreasing family of sub-σ-algebras of F .
Let f = (f0, f1, f2, . . . ) be a real, adapted martingale with difference
sequence df = (df0, df1, df2, . . . ). That is,

fn =
n∑

k=0

dfk, n = 0, 1, 2, . . . ,

where for each k the variable dfk : Ω → R is integrable and Fk-
measurable with E(dfk+1 | Fk) = 0 (the latter condition is equivalent
to saying that for any bounded function ϕ : Rk+1 → R we have
E[dfk+1ϕ(f0, f1, . . . , fk)] = 0). We say that g = (g0, g1, g2, . . . ) is a
±1-transform of f , if there is a deterministic sequence ε0, ε1, ε2, . . . of
signs such that

gn =

n∑
k=0

εkdfk, n = 0, 1, 2, . . . .

That is, for any n ≥ 0, we have dgn ≡ dfn or dgn ≡ −dfn. Note that the
sequence g is also an adapted martingale. The aforementioned result
of Burkholder can be stated as follows.

Theorem 1.1. For any 1 < p < ∞ there is a constant βp depending
only on p, such that if f is a martingale and g is its ±1-transform,
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then

(1.2) ||gn||p ≤ βp||fn||p, n = 0, 1, 2, . . . .

Here we have used the notation ||fn||p = ||fn||Lp(Ω). Actually,
Burkholder proved this strong-type estimate in the more general case
when ε0, ε1, ε2, . . . is an arbitrary predictable sequence bounded in
absolute value by 1. Here by predictability we mean that each εk is
F(k−1)∨0-measurable (and in particular, it may be random). However,
in our considerations below, we will be mainly concerned with the case
when ε is a deterministic sequence of signs: in most situations, having
proved an estimate in this extremal setting, one deduces the more
general predictable version with the use of appropriate decomposition
theorems (cf. [10, Lemma A.1]).

The Haar system forms a martingale difference sequence on the
probability space ([0, 1],B(0, 1), | · |) (equipped with its natural, dyadic
filtration), and hence so does (anhn)n≥0, for an arbitrary sequence
a0, a1, a2, . . . of real numbers. Consequently, the above statement does
generalize (1.1). As a further illustration, let us provide another, closely
related example.

Definition 1.2. A system {An,i : i = 1, 2, . . . , 2n, n = 0, 1, 2, . . .}
of subsets of [0, 1] is called a dyadic tree if, for all n and 1 ≤ i ≤ 2n, we
have

An+1,2i−1 ∩An+1,2i = ∅

and

An+1,2i−1 ∪An+1,2i = An,i.

Definition 1.3. Given a dyadic tree of sets satisfying μ(An,i) > 0
for all n and i, we define the associated generalized Haar sequence
h = (hk)k≥0 by h0 = h0,1 = χA0,1/||χA0,1 ||1 and

h2n−1+i−1 = hn,i = Hn,i/||Hn,i||1,
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where

Hn,i =
χAn,2i−1

μ(An,2i−1)
− χAn,2i

μ(An,2i)
, i ≤ 2n, n = 1, 2, . . . .

As in the classical case, one easily verifies that the generalized Haar
system (hn)n≥0 is a martingale difference sequence with respect to
the filtration it generates. Thus, if (hn)n≥0 forms a basis of Lp(0, 1)
(for some 1 < p < ∞), then (1.2) implies that it is automatically
unconditional. This statement is a particular case of a more general
fact, which also follows from (1.2), that every monotone basis of Lp(0, 1)
is unconditional; see Dor and Odell [18] and Pe�lczyński and Rosenthal
[38]. Consult also the first of these papers and the work of Doust [19]
for closely related results concerning contractive projections in Lp.

Let us say a few words about the proof of (1.2). In his original
approach, Burkholder established first the related weak-type bound

(1.3) P(|gn| ≥ 1) ≤ c||fn||1, n = 0, 1, 2, . . . ,

for some absolute constant c. Since ‖gn‖2 = ‖fn‖2 (which is
a consequence of the orthogonality of martingale differences), the
Marcinkiewicz interpolation theorem gives the Lp bound for 1 < p < 2,
and the case 2 < p < ∞ follows from duality arguments. This reason-
ing, though simple and very natural, does not produce the best (i.e.,
the least possible) value of the constant βp. From the viewpoint of
applications (as well as for aesthetic reasons), it is desirable to identify
this optimal number for each p. To accomplish this, Burkholder refined
his proof and constructed in [5] a certain special object: the Bellman
function associated with the inequality (1.2). The careful exploitation
of the properties of this function yields that the best βp in (1.2) equals
p∗ − 1, where p∗ = max{p, p/(p− 1)}. In fact, the paper [5] contains a
number of other estimates, proved by the Bellman function approach,
including the sharp version of (1.3) as well as the more general sharp
weak-type (p, p) estimate for 1 ≤ p ≤ 2:

(1.4) P(|gn| ≥ 1) ≤ 2

Γ(p + 1)
||fn||pp, n = 0, 1, 2, . . . .

For a review of further results in this direction, we refer the interested
reader to the monograph [33] and the references therein.
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In what follows, we will mainly focus on the estimates (1.2), (1.3),
(1.4) and their various improvements. The remainder of this paper is
organized as follows. The next section contains the description of the
Bellman function method in the probabilistic setting. In Section 3, we
apply the technique to study various versions of weak-type inequalities
for martingale transforms. The final part of the paper addresses the
strong-type bound and its certain aspects.

Before we proceed, we would like to point out that, in general, the
identification of the Bellman function is a difficult task, and in fact, in
most cases it is the heart of the matter. Having constructed this special
object, the verification that it enjoys all the necessary properties (and
hence yields the desired bound) is just a question of some more or less
complicated calculations. For the readers’ convenience, in most of the
estimates studied below, we have decided to present the detailed steps
which lead to the discovery of the associated Bellman function. We
hope this can be helpful during the study of other related problems
which naturally arise in the area. On the other hand, to control the
size of this survey, we have decided to skip some technicalities, referring
instead to the papers where they were originally proved.

2. Bellman function method. The underlying concept of the
Bellman function method, both in the probabilistic and analytic ver-
sion, relates the validity of a certain given inequality to the existence
of a certain special function, which possesses appropriate majorization
and concavity-type properties. Actually, this special object often car-
ries much more information concerning the problem; see below. The
purpose of this section is to present the probabilistic version of the tech-
nique. The contents of this part of the survey is a refined version of
[33, Chapter 2], combined with some arguments taken from the works
[8, 10, 29, 49].

2.1. A basic version. Assume that (Ω,F ,P) is a probability space
equipped with the filtration (Fn)n≥0, a nondecreasing sequence of sub-
σ-algebras of F . In what follows, f = (fn)n≥0, g = (gn)n≥0 will be
two adapted martingales taking values in R, with the corresponding
difference sequences (dfn)n≥0 and (dgn)n≥0, respectively. We may and
will assume that (Fn)n≥0 is the natural filtration of f and g, i.e.,
Fn = σ(f0, g0, f1, g1, . . . , fn, gn) for each n ≥ 0.
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In the previous section, we assumed that dgn = εndfn for each n,
but it will be convenient to work with a wider class of sequences. For
any x, y ∈ R, let M(x, y) denote the class of all pairs (f, g) of adapted
martingales satisfying (f0, g0) ≡ (x, y) (that is, f starts from x and
g starts from y), such that dgn ≡ dfn or dgn ≡ −dfn for any n ≥ 1.
Thus, we see that g need not be the ±1-transform of f , but this can
be violated only on the first difference (which happens if and only if
x �= ±y). We stress here that the filtration can vary, as well as the
underlying probability space (unless it is nonatomic). For technical
reasons, we will assume throughout that f is a simple martingale;
that is, for any nonnegative integer n the random variable fn takes
a finite number of values and there is a deterministic integer N such
that fN = fN+1 = fN+2 = · · · . Of course, then g is also simple, and in
a typical situation it suffices to deal with a given martingale inequality
under a more restrictive assumption (the passage to the general case
follows by standard approximation).

Next, let V : R×R → R be a function, not necessarily Borel or even
measurable. Suppose that we are interested in the numerical value of
the associated Bellman function
(2.1)

B0(x, y) = sup
{
EV (fn, gn) : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .

}
.

Of course, there is no problem with measurability or integrability of
V (fn, gn), since the sequences f and g are simple.

The relation between the function B0 and the bounds mentioned in
the previous section is evident. For instance, the inequality (1.2) is
equivalent to saying that B0(x,±x) ≤ 0 for all x ∈ R, where the
underlying function V is given by V (x, y) = |y|p − βp

p |x|p. The same
applies to (1.3), (1.4), and it is clear that a large class of martingale
inequalities (encoded with appropriate V ) can be deduced from the
corresponding upper bounds for B0. At first glance, it seems that
only the values of B0 at the diagonals y = ±x are relevant, but this
is not the case: the use of a certain inductive argument (see below)
requires the knowledge of the values of B0 on the whole domain R×R.
As a by-product, if we successfully estimate B0 on the plane, we get
more information about the underlying inequality: we obtain a related
result for martingales starting from arbitrary points (but then evolving
according to the transforming sequence ε1, ε2, . . . ).
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The key idea during the search of an upper bound for B0 is to
introduce a class of special functions. The class consists of all B :
R×R → R which satisfy the following conditions:

1◦ (Majorization property). For all x, y ∈ R,

(2.2) B(x, y) ≥ V (x, y).

2◦ (Concavity-type property). For all x, y ∈ R, ε ∈ {−1, 1} and any
α ∈ (0, 1), t1, t2 ∈ R such that αt1 + (1 − α)t2 = 0, we have

(2.3) αB(x + t1, y + εt1) + (1 − α)B(x + t2, y + εt2) ≤ B(x, y).

By a straightforward induction argument, the condition 2◦ is equiv-
alent to the following: for any (x, y) ∈ R2, any ε ∈ {−1, 1} and any
simple mean-zero variable ξ, we have

(2.4) EB(x + ξ, y + εξ) ≤ B(x, y),

that is to say, (2.3) means that the function B is diagonally concave,
i.e., concave along the lines of slope ±1.

What is the connection between the above class and the Bellman
function B0? The answer is contained in the two statements below,
Theorems 2.1 and 2.2.

Theorem 2.1. Suppose that B satisfies 1◦ and 2◦, and let f , g be
two simple martingales such that dgn ≡ dfn or dgn ≡ −dfn for all
n ≥ 1. Then we have

(2.5) EV (fn, gn) ≤ EB(f0, g0), n = 0, 1, 2, . . . .

In particular, this implies

(2.6) B0(x, y) ≤ B(x, y) for all x, y ∈ R.

Proof. The general fact, which is valid in essentially all versions of the
Bellman method, is that the composition of the special function with
the underlying processes forms a supermartingale. In our situation,
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the sequence (B(fn, gn))n≥0 has this property. Indeed, all the variables
involved are integrable (by simplicity of f and g); furthermore, for any
n ≥ 1, we have

E
[
B(fn, gn) | Fn−1

]
= E

[
B(fn−1 + dfn, gn−1 + dgn) | Fn−1

]
.

Applying (2.4) conditionally on Fn−1, with x = fn−1, y = gn−1, ε = εn
and ξ = dfn, we get the supermartingale property. Combining this with
the majorization 1◦, we obtain

(2.7) EV (fn, gn) ≤ EB(fn, gn) ≤ EB(f0, g0),

and the proof is complete.

As a corollary, we see that B0(x, y) ≤ infB(x, y), where the infimum
is taken over all B satisfying 1◦ and 2◦. The remarkable feature of the
method is that the reverse estimate is also valid. Namely, we have the
following statement.

Theorem 2.2. If B0 is finite, then it is the least function satisfying
1◦ and 2◦.

Proof. The fact that B0 satisfies 1◦ is immediate: the deterministic
constant pair (x, y) belongs to M(x, y). To prove 2◦, we make use of
the so called “splicing argument.” Take x, y, ε, α, t1, t2 as in the
statement of the condition. Pick two arbitrary pairs (f j, gj) from the
class M(x + tj , y + εtj), j = 1, 2. We may assume that these pairs are
given on Lebesgue’s probability space ([0, 1],B([0, 1]), | · |), equipped
with some filtration. By the simplicity, there is a deterministic integer
T such that these pairs terminate before time T . Now we will “glue”
these pairs into one using the number α. To be precise, let (f, g) be a
pair on ([0, 1],B([0, 1]), | · |), given by (f0, g0) ≡ (x, y),

(f2n−1, g2n−1)(ω) =

{
(f1

n−1, g
1
n−1)(ω/α) if ω ∈ [0, α),

(f2n−2, g2n−2)(ω) if ω ∈ [α, 1)

and

(f2n, g2n)(ω) =

⎧⎨
⎩

(f2n−1, g2n−1)(ω) if ω ∈ [0, α),

(f2
n−1, g

2
n−1)

(
ω−α
1−α

)
if ω ∈ [α, 1),
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when n = 1, 2, . . . , T . Finally, we let dfn = dgn ≡ 0 for n > 2T . Then
it is straightforward to check that f , g are martingales with respect to
natural filtration and (f, g) ∈ M(x, y). Therefore, by the very definition
of B0,

B0(x, y) ≥ EV (f2T , g2T )

=

∫ α

0

V (f1
T−1, g

1
T−1)

(
ω

α

)
dω

+

∫ 1

α

V (f2
T−1, g

2
T−1)

(
ω − α

1 − α

)
dω

= αEV (f1
T−1, g

1
T−1) + (1 − α)EV (f2

T−1, g
2
T−1).

Taking the supremum over the pairs (f1, g1) and (f2, g2) gives

B0(x, y) ≥ αB0(x + t1, y + εt1) + (1 − α)B0(x + t2, y + εt2),

which is 2◦. To see that B0 is the least special function, simply apply
(2.6).

The above two facts give the following general method of proving
inequalities for ±1-transforms. Let V : R×R → R be a given function,
and suppose we are interested in showing that

(2.8) EV (fn, gn) ≤ 0, n = 0, 1, 2, . . . ,

for all simple f , g, such that dgn ≡ dfn or dgn ≡ −dfn for all n (in
particular, also for n = 0).

Theorem 2.3. Inequality (2.8) is valid if and only if there exists
B : R×R → R satisfying 1◦, 2◦ and the initial condition

3◦ B(x,±x) ≤ 0 for all x ∈ R.

Proof. If there is a function B satisfying 1◦, 2◦ and 3◦, then (2.8)
follows immediately from (2.5), since 3◦ guarantees that the term
EB(f0, g0) is nonpositive. To get the reverse implication, we use
Theorem 2.2; as we know from its proof, the function B0 satisfies 1◦

and 2◦. It also enjoys 3◦, directly from the definition of B0 combined
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with the inequality (2.8). The only thing which needs to be checked
is the finiteness of B0, which is assumed in Theorem 2.2. Since
B0 ≥ V > −∞, we only need to show the upper bound B0(x, y) < ∞
for every (x, y). The condition 3◦, which we have already established,
guarantees the inequality on the diagonals y = ±x. Suppose that
|x| �= |y|, and let (f, g) be any pair from M(x, y). Consider another
martingale pair (f ′, g′), which starts from ((x + y)/2, (x + y)/2) and,
in the first step, moves to (x, y) or to (y, x). If it jumped to (y, x),
it stops; otherwise, we determine (f ′, g′) by the assumption that the
conditional distribution of (f ′

n, g
′
n)n≥1 with respect to F1 coincides with

the (unconditional) distribution of (fn, gn)n≥0. We easily check that g′

is a ±1-transform of f ′, and hence, for any n ≥ 1,

0 ≥ EV (f ′
n, g

′
n) =

1

2
V (y, x) +

1

2
EV (fn−1, gn−1).

Consequently, taking the supremum over f , g and n gives B0(x, y) ≤
−V (y, x), and we are done.

Let us say a few words about the notation we plan to use throughout;
we hope that the reader will find it helpful. Typically, the superscript
“0” will be reserved for “theoretical” Bellman functions as in (2.1): that
is, for such objects, we will use the symbols B0, b0, b0c , and so on. On
the other hand, the lack of this superscript (e.g., B, b, bc) will indicate
that we work with the corresponding candidates. We conclude this
subsection by providing several important comments and observations.

(a) Suppose we want to show the inequality (2.8) for some given
V . As we have already proved, if this estimate holds true, it can be
established with the use of Theorem 2.3. A very natural question arises:
is the special function B unique (i.e., does it necessarily equal B0)? The
answer in general is no, and in some situations the choice of the right
function does simplify the calculations involved. On the other hand,
we would like to repeat (and stress) here that the knowledge of B0 is
desirable; the discovery of this function brings much more information
about estimate (2.8).

(b) As previously, suppose we are given a function V and we want to
prove (2.8). A natural idea in the search of the corresponding special
function is to take a look at definition (2.1). This formula shows that
B0 inherits some types of properties from V . For instance, if V enjoys
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the symmetry property

(2.9) V (x, y) = V (−x, y) for all x, y ∈ R,

then so does B0. Indeed, we have (f, g) ∈ M(x, y) if and only if
(−f, g) ∈ M(−x, y), so

B0(−x, y) = sup
{
EV (fn, gn) : (f, g) ∈ M(−x, y), n = 0, 1, 2, . . .

}
= sup

{
EV (−fn, gn) : (−f, g) ∈ M(x, y), n = 0, 1, 2, . . .

}
= B0(x, y).

Analogously, if V is homogeneous of order p, then the same is true
for B0. This can be shown as above, with the use of the fact that
(f, g) ∈ M(x, y) if and only if (λf, λg) = M(λx, λy) for all λ �= 0. In
other words, if V has a property of the above type, then we may search
for the Bellman function in the class of all functions which share this
property.

(c) The above method concerns real-valued martingales f and g. This
can be easily modified to the case when the sequences take values in
some other domains. For instance, suppose we are interested in show-
ing (2.8) for nonnegative f (but g may take negative values). Then all
of the above arguments remain valid (only some minor straightforward
modifications are required). Namely, one needs to construct appropri-
ate special functions on [0,∞)×R and the parameters x, ti appearing
in 2◦ must be assumed to satisfy x + ti ≥ 0. We leave the necessary
changes to the reader. Analogously, one extends the method so that it
works for Hilbert or Banach-space valued sequences; see subsection 2.2
below, and [10, 33] for a more detailed exposition.

(d) There is an iterative procedure which may be helpful in some
situations, as it provides some approximation for Bellman function.
This type of reasoning has its roots in the theory of moments. For
the description of this theory, see e.g., Kemperman [24] and Cox [16,
17]. Suppose that V : R ×R → R is given and fixed, and we aim at
solving (2.1). Consider the sequence (Vn)n≥0 of real-valued functions
on R×R, given by V0 = V and, for n ≥ 0 and (x, y) ∈ R2,

(2.10) Vn+1(x, y) = supEVn(x + ξ, y + εξ),

where the supremum is taken over all ε ∈ {−1, 1} and all two-
point centered random variables ξ. This recurrence has a very nice
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geometrical interpretation. Given Vn, let us consider all the intervals
of slope ±1, with endpoints lying on the graph of this function (here
by slope ±1 we mean that the endpoints are of the form (x, y, V (x, y)),
(x + t, y ± t, V (x + t, y ± t)) for some x, y, t ∈ R; in particular,
we allow t = 0). Then the graph of Vn+1 is the upper boundary
of the union of all such intervals. Clearly, the sequence (Vn)n≥0 is
nondecreasing; furthermore, if B0 is finite, then it coincides with the
pointwise limit of (Vn)n≥0. To prove the latter statement, observe that
by straightforward induction, the equality (2.10) holds for arbitrary
simple centered random variable ξ. Therefore, we have the following
alternative definition of Vn:

Vn(x, y) = sup
{
EV (fn, gn) : (f, g) ∈ M(x, y)

}
,

or, to put it yet another way, Vn is a version of B0 in which only
the martingales of length n + 1 are considered. This clearly gives the
pointwise convergence of (Vn)n≥0 to B0. In particular, if the iteration
(2.10) stabilizes after a finite number of steps, then the “fixed function”
must coincide with B0.

2.2. An extension. Sometimes it is of interest to study the function
(2.1) under more restrictive assumptions on the martingales f and
g. We will consider this problem given some additional integral-norm
bounds on f and/or g. To formulate the statement rigorously, assume
that Φ, Ψ : R → R are two fixed functions, and let x, y, t, s be four real
numbers. We define M(x, y, s, t) as the class of all pairs (f, g) ∈ M(x, y)
such that

(2.11) EΦ(f∞) = s and EΨ(g∞) = t.

Here, and below, f∞, g∞ denote the pointwise limits of f and g, which
exist because of the simplicity of the martingales. Suppose that the
class M(x, y, s, t) is nonempty for all (x, y, s, t). In analogy with the
preceding setting, assume that we are interested in the numerical value
of

(2.12) B0(x, y, s, t) = sup
{
EV (fn, gn) :

(f, g) ∈ M(x, y, s, t), n = 0, 1, 2, . . .
}
.
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Of course, this problem is more difficult that (2.1), and the solution
to it gives much more information about the behavior of the pairs
(f, g) (indeed, having successfully identified B0, we recover the Bellman
function from the previous section by taking the supremum over all s
and t). As previously, in order to study (2.12), we introduce a class
of special functions. The modification of the method requires some
changes in conditions 1◦ and 2◦, which become

1◦ (Majorization). For all (x, y, s, t) ∈ R4,

(2.13) B(x, y, s, t) ≥ V (x, y).

2◦ (Concavity). For all (x, y, s, t) ∈ R4, ε ∈ {−1, 1} and any
α ∈ (0, 1), d1, d2, s1, s2, t1, t2 ∈ R such that

αd1 + (1 − α)d2 = 0, αs1 + (1 − α)s2 = s, αt1 + (1 − α)t2 = t,

we have

(2.14) αB(x + d1, y + εd1, s1, t1) + (1 − α)B(x + d2, y + εd2, s2, t2)

≤ B(x, y, s, t).

Sometimes we will also refer to (2.14) as to diagonal concavity of B.
Observe that, by a simple induction argument, this property implies the
following: for any x, y, s, t ∈ R, ε ∈ {−1, 1} and any simple random
variables ξ, S, T satisfying Eξ = 0, ES = s and ET = t,

(2.15) EB(x + ξ, y + εξ, S, T ) ≤ B(x, y, s, t).

We have the following version of Theorems 2.1 and 2.2.

Theorem 2.4. (i) Suppose that B : R4 → R is a function satisfying
1◦ and 2◦. Then B0 ≤ B.

(ii) If B0 is finite on R4, then it is the least function satisfying 1◦

and 2◦.

Proof. (i) Pick (f, g) ∈ M(x, y, s, t), and consider the auxiliary mar-
tingales Sn = E(Φ(f∞) | Fn), Tn = E(Ψ(g∞) | Fn), n = 0, 1, 2, . . . .
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Then, arguing as in the proof of Theorem 2.1 (i.e., using the conditional
version of (2.15)), we show that the sequence (B(fn, gn, Sn, Tn))n≥0 is
a supermartingale. Therefore, by (2.13),

EV (fn, gn) ≤ EB(fn, gn, Sn, Tn) ≤ EB(f0, g0, S0, T0).

But F0 is a trivial σ-field, so S0 = EΦ(f∞) = s, T0 = EΨ(g∞) = t,
and hence

EV (fn, gn) ≤ B(x, y, s, t).

Taking the supremum over all n ≥ 0 and all (f, g) from M(x, y, s, t)
yields the claim.

(ii) We proceed exactly in the same manner as in the proof of
Theorem 2.2. The function B0 clearly satisfies (2.13): we may always
take n = 0 in its definition. To prove (2.14), pick two pairs (f j , gj) ∈
M(x + dj , y + εdj , sj, tj) and splice them into one pair (f, g) as above.
Then f , g are simple martingales starting from x and y, respectively,
which satisfy dfn ≡ dgn or dfn ≡ dgn for all n ≥ 1. Furthermore,
the distribution of (f∞, g∞) is an appropriate mixture of (f1∞, g1∞) and
(f2

∞, g2∞), so the inclusion (f, g) ∈ M(x, y, s, t) is valid. Thus,

B0(x, y, s, t) ≥ EV (f∞, g∞) = αEV (f1
∞, g1∞) + (1 − α)EV (f2

∞, g2∞),

and taking the supremum over all (f1, g1), (f2, g2) as above completes
the proof.

The above theorem covers only an exemplary situation. The modifi-
cations mentioned at the end of the previous subsection are valid (with
some obvious alterations). Let us describe here some further changes
which will be often used later.

(e) In practice, the class M(x, y, s, t) may be empty for some choices
of the parameters (x, y, s, t), and one has to restrict to appropriate
subsets of R4. For instance, if one assumes that Φ, Ψ are nonnegative,
then the requirement (x, y, s, t) ∈ R4 should be replaced by (x, y, s, t) ∈
R2 × R2

+. Another important example concerns the case when Φ, Ψ
are convex. Then one has to consider the set {(x, y, s, t) : s ≥ Φ(x), t ≥
Ψ(y)}.

(f) If we want to impose the restriction (2.11) on one martingale
only, the corresponding boundary value problem simplifies to three-
dimensional. This is evident if we study (2.12) for all (f, g) ∈ M(x, y)



1774 ADAM OSȨKOWSKI

such that, say,
EΦ(f∞) = t,

then the function B0 depends only on three variables, x, y and t.

(g) Sometimes it is convenient to work with the modification of (2.11)
in which equalities are replaced by inequalities

(2.16) EΦ(f∞) ≤ s, and EΨ(g∞) ≤ t.

Then the whole methodology can be applied, since the class M(x, y, s, t)
(which this time consists of all (f, g) ∈ M(x, y) which satisfy (2.16)) is
monotone in the sense that it grows when s, t increase. The necessary
change in the approach is as follows. In Theorem 2.4, instead of working
with B which satisfies 1◦ and 2◦, one considers the class of all functions
which enjoys 1◦, 2◦ and the additional property

2◦′ For any s′ ≤ s, t′ ≤ t we have B(x, y, s′, t′) ≤ B(x, y, s, t).

Indeed, then the technique works. In the proof of (i), we write

EV (fn, gn) ≤ EB(f0, g0, S0, T0)

= B
(
x, y,EΦ(f∞),EΨ(g∞)

)
≤ B(x, y, s, t)

so the assertion holds true; in the proof of the second half, we observe
that B0 satisfies 2◦′ directly from its definition and the monotonicity
of class M .

There is a very natural question which we want to address now.
Namely, given V , how can we proceed in the search of the corresponding
function B0? Remark (b) mentioned above shows that we can restrict
ourselves to symmetric or homogeneous functions only if V enjoys these
properties. We will present some further, intuitive observations which
may be helpful. In many aspects, the search is similar to that arising
in the optimal stopping problems. In that setting, one looks for the
least superharmonic majorant (in the sense of an underlying Markov
process) of the gain function, which in turn leads to the corresponding
free-boundary problem (a convenient reference is [39]). To give some
ideas, assume that we are in the setting of Theorem 2.4. The “state
space” R4 can be split into two sets:

S = {(x, y, s, t) : B0(x, y, s, t) = V (x, y)},
C = {(x, y, s, t) : B0(x, y, s, t) > V (x, y)},
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which, in the theory of optimal stopping, are called the stopping and
the continuation region, respectively. This is due to the following
interpretation. During the computation of B0(x, y, s, t), on the set S
the best choice is just to take any pair (f, g) ∈ M(x, y, s, t) and evaluate
it at its starting point; so, from the viewpoint of B0, the pair could just
stop at the point (x, y) (its further evolution occurs only due to the
assumptions on M(x, y, s, t)). On the contrary, when (x, y, s, t) ∈ C,
then there is a nontrivial choice of (f, g) and n, that is, there are non-
constant sequences which matter in the computation of B0(x, y, s, t).

Thus, the problem reduces to finding C and the restriction of B0 to
C. Since B0 is the least diagonally concave majorant of V , it seems
plausible to assume the following. For each (x, y, s, t) ∈ C, there is a
direction along which B0 is locally linear; otherwise, it would be possible
to make B0 a little smaller. More precisely, for such (x, y, s, t), there
are ε ∈ {−1, 1} and m, n ∈ R such that

d �−→ B0(x + d, y + εd, s + md, t + nd)

is linear for d lying in some neighborhood of 0. In other words, the
whole set C can be “foliated” into line segments of appropriate slope
along which the function B0 is linear. If B0 were twice differentiable on
C (this is quite a reasonable expectation; this function is extremal, so it
should possess some additional regularity), the latter condition yields
the second-order differential equation for B0. It is more convenient to
state it in terms of the“rotated” function

M(x, y, s, t) = B0(x + y, x− y, s, t).

After this change of variables, we see that the condition on B0 becomes

i) the functions (x, s, t) �→ M(x, y, s, t), (y, s, t) �→ M(x, y, s, t) are
concave, and, for each point (x, y, s, t), one of them is linear in some
direction.

In particular, this enforces the following “system” of Monge-Ampère
equations: for each (x, y, s, t) we have

det

⎡
⎣Mxx Mxs Mxt

Msx Mss Mst

Mtx Mts Mtt

⎤
⎦ (x, y, s, t) = 0
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or

det

⎡
⎣Myy Mys Myt

Msy Mss Mst

Mty Mts Mtt

⎤
⎦ (x, y, s, t) = 0.

Sometimes this system can be explicitly solved, see e.g., [8, 49, 50], and
this brings the candidate for the Bellman function. It may not satisfy
the assumed regularity (i.e., it need not be of class C2 on C), but this is
not important. Having obtained the candidate, one proves rigorously
that the function has all the desired properties, and the problem is
solved.

There is an alternative approach, which will also be of interest for us
below. Namely, from more or less formal arguments, one can guess the
(approximate) shape of C and then try to get the formula for B0 by
indicating the appropriate foliation of this set. Though this approach
seems difficult and sometimes the reasoning does depend on luck, it has
turned out to be very efficient. Actually, having seen several Bellman
functions, in some cases the discovery of the new special function is not
hard at all. The foliations often share some common features.

2.3. Further extensions. This subsection is irrelevant for our
further considerations, but we decided to include it here to indicate
some further refinements and extensions of the methodology. Our
primary goal is to show here how to modify the technique so that it
works for a wider class of processes.

Our first comment concerns the values of the transforming sequence.
In our previous setting, we assumed that (εn)n≥0 is deterministic
and its terms are ±1. However, it is easy to adjust the method
to the less restrictive case. Namely, suppose that the sequence ε is
simple, predictable and takes values in [−1, 1]; furthermore, allow the
martingales to be vector-valued. Then we have the following statement.
The proof is the same as in the real-valued setting and hence is omitted.

Theorem 2.5. Let X be a Banach space, and let V : X ×X → R
be a given function. Consider the estimate

EV (fn, gn) ≤ 0, n = 0, 1, 2, . . . ,
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where (f, g) runs over the class of all simple pairs of X-valued martin-
gales such that g is a transform of f by a predictable sequence bounded
in absolute value by 1. This inequality holds true if and only if there
exists B : X ×X → R satisfying the following three conditions.

1◦ B ≥ V on X ×X.

2◦ For all (x, y) ∈ X × X, any deterministic a ∈ [−1, 1] and any
α ∈ (0, 1), t1, t2 ∈ B such that αt1 + (1 − α)t2 = 0, we have

αB(x + t1, y + at1) + (1 − α)B(x + t2, y + at2) ≤ B(x, y).

3◦ B(x, y) ≤ 0 for all x, y ∈ X such that y = ax for some a ∈ [−1, 1].

Straightforward modifications lead to the similar vector-valued ver-
sion of Theorem 2.4. The details are left to the reader.

The next extension concerns another very important class of martin-
gale pairs. It is much wider than that considered in the previous two
subsections and has many interesting applications. Assume that X is
a Banach space with the norm | · |.

Definition 2.6. Suppose that f , g are martingales taking values in
X . Then g is differentially subordinate to f , if for any n = 0, 1, 2, . . . ,
we have

|dgn| ≤ |dfn|
with probability 1.

If g is a transform of f by a predictable sequence bounded in
absolute value by 1, then, obviously, g is differentially subordinate
to f . Another very important example is related to the martingale
square function. Namely, suppose that f takes values in X , and let
g be �2(X)-valued martingale, whose difference sequence is defined by
dgn = (0, 0, . . . , 0, dfn, 0, . . . ), n = 0, 1, 2, . . . (the term dfn appears
on the nth place). If we treat f as an �2(X)-valued process, via the
embedding fn ∼ (fn, 0, 0, . . . ), then g is differentially subordinate to f
and f is differentially subordinate to g. However,

‖gn‖�2(X) =

( n∑
k=0

| dfk|2
)1/2

, n = 0, 1, 2, . . . ,
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is the square function of f . Thus, any inequality valid for differentially
subordinated martingales with values in �2(X) leads to a corresponding
estimate for the square function of a X-valued martingale. This
observation has turned out to be particularly efficient when X is a
separable Hilbert space (cf. [10]).

Let us formulate the version of the Bellman function method when the
considered martingales satisfy the differential subordination. Assume
that V : X ×X → R is a given Borel function, and consider the class
of all B : X ×X → R such that

1◦ B(x, y) ≥ V (x, y) for all x, y ∈ X ,

2◦ there are Borel a, b : X×X → X∗ such that for any x, y ∈ X and
any h, k ∈ X with |k| ≤ |h|. We have

B(x + h, y + k) ≤ B(x, y) + 〈a(x, y), h〉 + 〈b(x, y), k〉.

3◦ B(x, y) ≤ 0 for all x, y ∈ X with |y| ≤ |x|.

Theorem 2.7. Suppose that B satisfies 1◦, 2◦ and 3◦. Let f , g be
B-valued martingales such that g is differentially subordinate to f and

(2.17)
E|V (fn, gn)| < ∞, E|B(fn, gn)| < ∞,

E
(|a(fn, gn)|| dfn+1| + |b(fn, gn)|| dgn+1|

)
< ∞,

for all n = 0, 1, 2, . . . . Then

(2.18) EV (fn, gn) ≤ 0, n = 0, 1, 2, . . . .

The proof is similar to that above. Using 2◦, we show that the
composition (B(fn, gn))n≥0 is a supermartingale and then apply 1◦

and 3◦ to get

EV (fn, gn) ≤ EB(fn, gn) ≤ EB(f0, g0) ≤ 0.

The details are left to the reader. Analogously, one can extend
Theorem 2.4 to this new setting.

Finally, let us mention that it is possible to extend the Bellman func-
tion method to other, less restrictive, classes of semimartingales. For
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instance, one can handle the case in which the transformed sequence
(fn)n≥0 is a submartingale, i.e., an adapted sequence of integrable vari-
ables satisfying E(dfk+1 | Fk) ≥ 0 for each k ≥ 0. This setting is maybe
not that important for analytic applications but plays a distinguished
role in stochastic analysis. Again, we focus on appropriate version of
Theorems 2.1 and 2.2; the modification which leads to the analogue of
Theorem 2.4 is left to the reader. For a given V : R×R → R, let

B0(x, y) = sup
{
EV (fn, gn) : (f, g) ∈ S(x, y), n = 0, 1, 2, . . . }.

Here S(x, y) denotes the class of all simple pairs (f, g) starting from
(x, y) such that f is a submartingale and, for each n ≥ 1, we have
dgn ≡ dfn or dgn ≡ −dfn. To study this object, consider the class
which consists of all B : R×R → R satisfying:

1◦ we have B ≥ V on R2,

2◦ for any x, y ∈ R, any ε ∈ {−1, 1} and any α ∈ (0, 1), t1, t2 ∈ R
such that αt1 + (1 − α)t2 ≥ 0, we have

αB(x + t1, y + εt1) + (1 − α)B(x + t2, y + εt2) ≤ B(x, y).

By induction, 2◦ implies that

EB(x + ξ, y + εξ) ≤ B(x, y)

for all x, y ∈ R, ε ∈ {−1, 1} and all simple random variables with non-
negative expectation. In other words, B is concave and nondecreasing
(when going “from left to the right”) on each line of slope ±1.

Repeating the proofs of Theorems 2.1 and 2.2, we get the following
statement.

Theorem 2.8. (i) Suppose that B : R2 → R is a function satisfying
1◦ and 2◦. Then B0 ≤ B.

(ii) If B0 is finite on R2, then it is the least function satisfying 1◦

and 2◦.

For further discussion and many examples, we refer the reader to [11]
and to the monograph [33].
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3. Weak type (1, 1) inequalities for martingale transforms.
The purpose of this section is to apply the above methodology in the
study of sharp weak-type (1, 1) inequalities for martingale transforms.

3.1. A toy example. Suppose we are interested in the sharp
estimate

P(|gn| ≥ 1) ≤ C1‖fn‖1, n = 0, 1, 2, . . . ,

where f is a martingale and g is its ±1-transform. By standard
approximation, we may assume that f is simple and thus the problem
can be rewritten in the form (2.8), with V (x, y) = 1{|y|≥1} − C1|x|.
There are two objects to be determined: the a priori unknown optimal
value of the constant C1 and an appropriate special function (which
may be equal to B0, but need not, see Remark (a) in subsection 2.1).
To gain some intuition about the special function to be found, let us
write down the definition (2.1) of B0:

B0(x, y) = sup
{
P(|gn| ≥ 1) − C1E|fn| :

(f, g) ∈ M(x, y), n = 0, 1, 2, . . .
}
.

It is not difficult to determine the formula for B0, based on the
conditions 1◦, 2◦ and 3◦. We will present two different approaches
to this problem. The first will be probabilistic, while the second will
have analytic flavor.

Probabilistic approach. We will construct B0 by the very definition.
For each (x, y), we will provide the corresponding extremal example.
We split the reasoning into three steps.

Step 1. The case |y| ≥ 1. Under this assumption, we have

(3.1) B0(x, y) = 1 − C1|x|.
Indeed, if (f, g) ∈ M(x, y), then P(|gn| ≥ 1) ≤ 1 and E|fn| ≥ |x| for
any n. This gives the inequality in one direction; letting f ≡ x and
g ≡ y (or using 1◦) yields the reverse estimate.

Step 2. The case |x| + |y| ≥ 1. Next, we show that, for such (x, y),

(3.2) B0(x, y) = 1 − C1|x|.
We have already done this for |y| ≥ 1, so let us assume that |x|+ |y| ≥
1 > |y|. Furthermore, we may restrict ourselves to nonnegative x
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and y, since B0(x, y) = B0(−x, y) = B0(x,−y) for all x, y, see
Remark (b) in subsection 2.1. Reasoning as in the previous step, we
obtain B0(x, y) ≤ 1 − C1|x|. To get the reverse bound, we need an
example. It is not difficult to find it. We must have P(|gn| ≥ 1) = 1
and E|fn| = |x| for some n; thus, we want to send g outside (−1, 1),
and, on the other hand, f cannot change sign (otherwise, E|fn| would
increase). A little experimentation leads to the following element of
M(x, y). We set (f0, g0) ≡ (x, y), assume that df1 = −dg1 is a centered
random variable taking values in {−x, y+1} (we do not need to specify
the probabilities: they are uniquely determined by the requirement that
the variable has mean zero) and put dfn = dgn ≡ 0 for n ≥ 2. Then
f ≥ 0, so E|fn| = x for all n; furthermore, g1 takes values in the
set {−1, x + y}, so |g1| ≥ 1 almost surely. This implies the reverse
inequality B0(x, y) ≥ 1 − C1|x| and yields (3.2).

Step 3. The case |x| + |y| < 1. How should one construct an
appropriate example in this case? A little thought and experimentation
leads to the following idea. Start the pair (f, g) at (x, y), then, at the
first step, send it to the set {(x, y) : x + y ∈ {−1, 1}}, and then move
according to the pattern described in Step 2. Precisely, consider the
following Markov martingale (f, g):

(i) It starts from (x, y): (f0, g0) ≡ (x, y).

(ii) The random variable df1 = dg1 is centered and takes values in
{(1 − x− y)/2, (−1 − x− y)/2}.

(iii) Conditionally on {df1 > 0} and conditionally on {df1 < 0},
the random variable df2 = −dg2 is centered and takes values in
{−f1, g1 + 1}.

(iv) Put dfn = dgn ≡ 0 for n ≥ 3.

Then we have P(|g2| ≥ 1) = 1. Furthermore, we easily derive that
df1 takes values (1 − x − y)/2 and (−1 − x − y)/2 with probabilities
p− = (1+x+y)/2 and p+ = (1−x−y)/2, respectively. In consequence,
since f2 has the same sign as f1, we may write

E|f2| = E|f1| =

∣∣∣∣x +
1 − x− y

2

∣∣∣∣ · 1 + x + y

2

+

∣∣∣∣x +
−1 − x− y

2

∣∣∣∣ · 1 − x− y

2
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=
1 + |x|2 − |y|2

2
,

and hence

(3.3) B0(x, y) ≥ 1 − C1(1 + |x|2 − |y|2)/2.

If we apply the initial condition 3◦, we get 1 −C1/2 ≤ B0(0, 0) ≤ 0, or
C1 ≥ 2. Assuming equality here and in (3.3), we obtain that B0(x, y)
should be equal to |y|2−|x|2. Summarizing, the above three steps have
led us to the candidate

(3.4) B(x, y) =

{ |y|2 − |x|2 if |x| + |y| ≤ 1,

1 − 2|x| if |x| + |y| > 1.

Now, one can easily check that this candidate satisfies 1◦, 2◦ and 3◦.
Consequently, we get B0 ≤ B and C1 ≤ 2. However, we have already
proved that C1 ≥ 2; hence, we actually have C1 = 2. Now the equality
B0 = B follows directly from Step 2 and (3.3). For a related reasoning,
consult [6, 8].

Analytic approach. Here we will use the iterative procedure de-
scribed in Remark (d) from subsection 2.1. We start with the function
V0(x, y) = 1{|y|≥1} − C1|x|, where C1 is a constant to be found. Then
some lengthy, but straightforward, calculations show that for C1 ≤ 2
we have

V2(x, y)=V3(x, y)= · · ·=
{

1 − C1|x| if |x| + |y| ≥ 1,

1 − C1(1 + |x|2 − |y|2)/2 if |x| + |y| < 1.

For C1 > 2, the situation is more complicated. We will study this
case in our later considerations. Therefore, we get that B0 = V2 when
C1 ≤ 2. In the limit case C1 = 2, the function B0 satisfies 3◦, and
hence 2 is the best constant in the weak-type (1, 1) inequality.

Remark 3.1. There is a very natural question about the vector-valued
version of the above weak-type estimate. Though we will not go further
in this direction, let us say a few words about this more general setting,
as they may shed some light on the differences between the scalar and
vector cases. It turns out that if the transformed martingale f takes
values in a Hilbert space X , then the best constant is still 2. This can



SURVEY ARTICLE: BELLMAN FUNCTION METHOD 1783

FIGURE 1. Examples arising in the study of B0. When |y| ≥ 1, the examples are
constant; when |y| < 1, they evolve as indicated.

be shown with the use of the Bellman function (3.4), with | · | being the
norm of X . However, this function does not coincide with B0 (unless
the Hilbert space is one-dimensional)! It can be shown (consult [9])
that

B0(x, y)

=

{
1−(1+2(x+y, x−y)+|x+y|2|x−y|2)1/2 if |x+y| ∨ |x−y| < 1,

1−2|x| if |x+y| ∨ |x−y| ≥ 1,

where (·, ·) denotes the scalar product of X . In the case when X is a
Banach space which is not isomorphic to a Hilbert space, the situation
is even more interesting (and much more difficult). Namely, it can be
proved that the best constant for such X is strictly larger than 2, and
it is finite if and only if X is the so-called UMD space (where UMD
is the abbreviation for Unconditional for Martingale Differences). In
this setting, the problem of identification of the weak-type constant
becomes very difficult. See [7, 9, 33] for more information on the
subject.

3.2. Related one-sided bound. The estimate P(|gn| ≥ 1) ≤
2E|fn| we have just proved has its weaker, one-sided version, which is
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also of interest. Namely, we have

(3.5) P(gn ≥ 1) ≤ 2E|fn|, n = 0, 1, 2, . . . ,

and it turns out that 2 is also the best here (modify slightly the above
examples; see also [28, 33, 36]). The purpose of this section is to give
an explicit formula for the related Bellman function:

B0(x, y, t)

= sup
{
P(gn ≥ 1) : (f, g) ∈ M(x, y), E|f∞| ≤ t, n = 0, 1, 2, . . .

}
,

defined on the set {(x, y, t) : t ≥ |x|} (it is obvious that, for each
(x, y, t) from this set, there is at least one pair (f, g) which satisfies
the requirements under the supremum). By the facts presented above,
we have B0(x,±x, t) ≤ 2t, but for some points the inequality is strict.
Thus, the identification of B0 can be regarded as a stronger, more exact
version of (3.5). Furthermore, the formula for B0 will be useful for us
later, when we study analogous Bellman function corresponding to the
two-sided bound for g. Due to the appearance of control condition on
E|f∞|, we are forced to take the more difficult approach described in
subsection 2.2.

We present two solutions to this problem. In the first of them we will
follow the path described at the end of subsection 2.2. We will exploit
a certain homogeneity property of B0 and point out the appropriate
foliation. The second approach is different and is of independent
interest, as it can be applied successfully in other Bellman function
problems. Namely, we will show that the search for B0 can be split
into two parts: first, one searches for the whole family of simpler (less
dimensional) Bellman functions, and then comes back to the original
problem by appropriate optimization argument.

Approach 1. A direct use of Theorem 2.4. It is more convenient
to work with

B(x, y, t)

= sup
{
P(gn ≥ 0) : (f, g) ∈ M(x, y), E|f∞| ≤ t, n = 0, 1, 2, . . .

}
,

which is related to B0 by the identity B0(x, y, t) = B(x, y − 1, t) for all
(x, y, t) ∈ R3 such that t ≥ |x|. By Theorem 2.4, the function B is
diagonally concave and satisfies the majorization

(3.6) B(x, y, t) ≥ 1{y≥0}.
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The reason why we have turned to B is that this function enjoys the
homogeneity-type property

(3.7) B(±αx, αy, αt) = B(x, y, t), for all α > 0.

Indeed, we have P(gn ≥ 0) = P(αgn ≥ 0) and the equivalence
(f, g) ∈ M(x, y), E|f∞| ≤ t if and only if (±αf, αg) ∈ M(αx, αy),
E|αf∞| ≤ αt.

In particular, (3.7) implies that the function x �→ B(x,−x, x) is
constant on (0,∞). On the other hand, this function is concave on
R, in view of the diagonal concavity of B. Hence,

(3.8) B(1/2,−1/2, 1/2) ≥ B(0, 0, 0) = 1,

where the latter equality follows from (3.6) and the obvious bound
B ≤ 1. Next, let us introduce the function

b(x, y) = B

(
x + 1

2
,
x− 1

2
, y

)
,

defined on the set D = {(x, y) ∈ R2 : y ≥ |x + 1/2|}. Using (3.7), we
see that for x �= ±y,

b

(
x + y

x− y
,

t

x− y

)
= B(x, y, t) = B(−x, y, t) = b

(
x− y

x + y
,− t

x + y

)
,

and hence b satisfies

(3.9) b (x, y) = b

(
1

x
,− y

x

)
.

Furthermore, since B is diagonally concave, we see that b is a concave
function, and the majorization (3.6) implies that b(x, y) ≥ 1{x≥1} ≥ 0.
The condition (3.8) implies that b(0, 1/2) ≥ 1; hence, using the
concavity of b along the halflines starting from (0, 1/2) and contained
in D, we infer that b(x, y) ≥ 1 (and hence b(x, y) = 1) provided
y ≥ −x/2 + 1/2. Therefore, all that remains is to identify the explicit
formula for b on

Ω = {(x, y) ∈ D : y ≤ −x/2 + 1/2}.
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It is easy to show that b(−1, 0) = B(0,−1, 0) = 0; indeed, the
conditions (f, g) ∈ M(0,−1), E|f∞| ≤ 0 are satisfied by only one,
constant pair (0,−1). The line segment which joins (−1, 0) and (0, 1/2)
is a part of the boundary of Ω, so it seems plausible to guess that b is
linear along this segment, b(2y − 1, y) = 2y for y ∈ [0, 1/2].

Next, we impose some regularity on b. Assume that b is of class C1

in the interior of Ω. By (3.9), we may restrict our search to the triangle
Ω∩{(x, y) : x ≥ −1}. Let us try to identify the foliation F of b restricted
to this set (i.e., split the triangle into the union of maximal segments
along which b is linear). We already know that the segment with the
endpoints (0, 1/2) and (−1, 1), as well as the boundary segment with
endpoints (−1, 0) and (0, 1/2), belong to the foliation. Now pick a
segment I ∈ F which contains the point (−1, y) for a given y ∈ (0, 1).
If I intersects one of the two boundary segments (call it J), at a point
different from (0, 1/2), then b must be linear in the triangle spanned by
I and J (i.e., the convex hull of I ∪ J). In particular, this implies that
b must be linear along the segment which joins (−1, y) with (0, 1/2).
Consequently, we see that there is only one reasonable foliation: the
fan of segments from the vertex (0, 1/2). This implies

b(−1, y) − 1 = −bx(−1, y) + by(−1, y)

(
y − 1

2

)
.

On the other hand, differentiating (3.9) with respect to x at the point
(−1, y), y ∈ (0, 1), yields

2bx(−1, y) = yby(−1, y).

If we combine the two latter identities, we obtain the following differ-
ential equation. For ϕ(y) = b(−1, y), y ∈ [0, 1], we have

ϕ(y) − 1 = ϕ′(y) · y − 1

2
.

The solution is ϕ(y) = K(y − 1)2 + 1 for some parameter K. To
determine this number, note that ϕ(0) = B(0,−1, 0) = 0; this gives
K = −1 and therefore

b(x, y) = (1+x)b

(
0,

1

2

)
−xb

(
−1,

1 + x− 2y

2x

)
= 1− ((x − 1/2) + y)2

x
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for (x, y) ∈ Ω, x ∈ [−1, 0]. By (3.9), the same formula is valid on the
whole Ω. This yields the candidate

B(x, y, t) = B(x, y − 1, t) = b

(
x + y − 1

x− y + 1
,

t

x− y + 1

)
,

which is given explicitly by

(3.10) B(x, y, t) =

{
1 if y + t ≥ 1,

1 − (1 − y − t)2/((1 − y)2 − x2) if y + t < 1.

We easily check that this function indeed satisfies the conditions 1◦ and
2◦, which implies B0 ≤ B. Actually, it can be shown that it coincides
with the desired function B0 (cf., [28]; one can also consult [33, 36]).
An alternative reasoning will be presented below.

Approach 2. Two-step procedure. Now we will present a
very simple, yet powerful argument, which in some cases considerably
simplifies the whole approach. Let us first note that the reasoning
presented above rests on a direct search of a special function of three
variables. The key is to reduce the problem to the simpler two-
dimensional case described in subsection 2.1. To accomplish this, we
take the restriction E|f∞| ≤ t and, in a sense, we move it into the
optimized expression. More precisely, we consider a slightly different
problem: let

(3.11) b0(x, y)

= sup

{
P(gn ≥ 0) −E|fn| : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .

}
.

We already know that b0 is the least diagonally concave function which
majorizes V : R×R → R given by V (x, y) = 1{y≥0} − |x|. To find b0,
we split the reasoning into a few parts.

Step 1. If |x| + y ≥ 0, then b0(x, y) = 1 − |x|. Indeed, the estimate
“≤” follows from the inequalities P(gn ≥ 0) ≤ 1 and E|fn| ≥ |x| (valid
for all (f, g) ∈ M(x, y)), while “≥” can be shown with the use of the
following example. Take a large number M > |x| and consider a pair
(f, g) satisfying

(i) (f0, g0) ≡ (x, y),
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(ii) df1 = −sgnx · dg1 is a centered random variable taking values
(M − |x|)sgnx and −x only,

(iii) df2 = df3 = · · · = dg2 = dg3 = · · · ≡ 0.

Then f does not change its sign, so E|f∞| = |x|. Furthermore, on the
set where df1 = −x we have g1 = y + |x| ≥ 0, so

P(|g∞| ≥ 0) ≥ M − |x|
M

,

which can be made arbitrarily close to 1. Hence, b0(x, y) ≥ 1 − |x|.
Step 2. Consider the sets

S = {(x, y) : b0(x, y) = V (x, y)}, C = {(x, y) : b0(x, y) > V (x, y)},

which we have called the stopping region and the continuation region.
We will study the “shape” of S and C. Assume that |x| + y < 0 and
observe that, if x �= 0, then (x, y) ∈ C. This can easily be shown
by the construction of an appropriate martingale pair. Clearly, there is
(f, g) ∈ M(x, y) such that f does not change its sign and P(gn ≥ 0) > 0
for some n ≥ 1; thus, b0(x, y) ≥ P(gn ≥ 0) − E|fn| > −|x| = V (x, y).
Next, note that, for any fixed x, the function b0(x, ·) is nondecreasing.
This follows directly from the fact that V has this property. Indeed,
fix a pair (f, g) ∈ M(x, y). Then for any d ≥ 0 we have (f, g + d) ∈
M(x, y + d) and

P(gn ≥ 0) −E|fn| ≤ P(gn + d ≥ 0) −E|fn| ≤ b0(x, y + d).

Taking the supremum over all (f, g) ∈ M(x, y) gives the desired
monotonicity of b0. Thus, if (0, y) ∈ S, then automatically the whole
halfline {0}× (−∞, y] is contained within S. These considerations lead
us to the following conjecture. We have

S = (R × [0,∞)) ∪ ({0} × (−∞, y0]
)

and C = R2 \ S,

for some y0 < 0 to be found.

Step 3. Now we guess the right foliation and the formula for
b0. Let us first look at the set {|x| + y ≤ y0}. If we decomposed
the set into halflines of slope −1, this would lead to the function
(x, y) �→ −|x| which, as we have already observed above, does not work
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(indeed, then we would get (x, y) ∈ S). Thus, it is natural to foliate
the angle into line segments of slope −1. Actually, a little thought
suggests extending this foliation (i.e., all the segments) to the whole set
{(x, y) : |x|+y ≤ 0, y ≤ |x|+y0}. We already know b0 on {0}×(−∞, y0]
and {(x,−|x|) : x ∈ R}, so we obtain

b0(x, y) ≥ 2|x|
|x| − y

(
1 − |x| − y

2

)
=

2|x|
|x| − y

− |x|.

Let us denote the right-hand side by b(x, y). Before we proceed, let
us specify the examples which lead to the value of b(x, y). We will
describe them for x > 0; in the case when x is negative we proceed
symmetrically. Let M be a large positive number, and consider (f, g)
such that

(i) (f0, g0) ≡ (x, y),

(ii) df1 = dg1 is a centered random variable taking values −x and
(−x− y)/2 (so, (f1, g1) moves along the line of slope 1, and ends at the
line x = 0 or at the line y = −x).

(iii) On the set where df1 = −x, put df2 = dg2 ≡ 0; on the set where
df1 = (−x − y)/2, we have (f1, g1) = ((x − y)/2, (−x + y)/2), and we
copy the example from Step 1. That is, conditionally on this set, we
assume that df2 = −dg2 is a centered random variable taking values
(−x + y)/2 and M only.

(iv) df3 = df4 = · · · = dg3 = dg4 = · · · ≡ 0.

Step 4. Finally, we turn our attention to the value of y0 and the
lower bound for b0 on the remaining part of the domain. In many
situations, it is natural to conjecture that the Bellman function has
some additional regularity. For instance, in our case, it is plausible to
assume that the derivative b0x(0, y), y ∈ [y0, 0), exists (and thus is equal
to zero, by the symmetry of b0). On the other hand, by the previous
step, b0x(0, y0) = −1−2/y0. This suggests y0 = −2, and thus all we need
is to construct a candidate on the square {(x, y) : |x|+ y < 0, y− |x| ≥
−2}. This is done with the use of similar examples as in the two-sided
case above, which we will describe in a Markovian language. Namely,
for (x, y) from the square, consider a pair (f, g) satisfying

(i) (f0, g0) ≡ (x, y),

(ii) (f1, g1) moves along the line of slope −1 and ends at the line
x + y = 0 or x + y = −2.
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(iii) Depending on whether f1 + g1 = 0 or f1 + g1 = −2, the process
(fn, gn)n≥2 evolves according to the rules listed in Step 1 or Step 3,
respectively.

Computing EV (f∞, g∞), we get the candidate b(x, y) = [(y + 2)2 −
x2]/4. Summarizing, we have constructed the following special func-
tion:
(3.12)

b(x, y) =

⎧⎨
⎩

1 − |x| if |x| + y ≥ 0,

[(y + 2)2 − x2]/4 if |x| + y < 0, y − |x| ≥ −2,

(2|x|)/(|x| − y) − |x| if |x| + y < 0, y − |x| < −2.

So far, we can only say that b0 ≥ b, since the construction of b was
based on examples. To prove the reverse, we check that b satisfies the
conditions 1◦ and 2◦ (cf., [33]). Hence, b = b0, and the first part of our
analysis is complete.

Remark 3.2. Alternatively, it is also quite easy to identify b0 with the
use of “iteration procedure” described in Remark (d) of subsection 2.2.
Namely, it can be shown that the sequence (Vn)n≥0 stabilizes after
three steps, and V4 = V5 = · · · is the function given by (3.12).

Now, we come back to the problem of identifying B0. We have just
shown that, for any (f, g) ∈ M(x, y), we have

P(gn ≥ 0) −E|fn| ≤ b0(x, y), n = 0, 1, 2, . . . .

Now we apply a simple homogenization and translation argument. For
any (f, g) as above and any α > 0, the pair (αf, αg − α) belongs to
M(αx, αy − α), and hence

P(αgn − α ≥ 0) − αE|fn| ≤ b0(αx, αy − α), n = 0, 1, 2, . . . ,

or, in other words,

P(gn ≥ 1) ≤ b0(αx, αy − α) + αE|fn|, n = 0, 1, 2, . . . .

Therefore, if we additionally assume that E|f∞| ≤ t (and hence also
E|fn| ≤ t), we obtain that

B0(x, y, t) ≤ b0(αx, αy − α) + αt
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FIGURE 2. The parallelogram P.

for all α > 0. All that is left is to optimize over α. Actually, one easily
checks that

B(x, y, t) = inf
α>0

{
b0(αx, αy − α) + αt

}
gives precisely the function (3.10). This proves B0 ≤ B. The reverse
bound can be verified with the use of the examples from Steps 1, 3 and 4
above. More precisely, if y+ t ≥ 1, then the equality B0(x, y, t) = 1 can
be proved with the use of a similar pair as in Step 1 (we only need to add
1 to y to ensure that P(|g1| ≥ 1) is arbitrarily close to 1). If y + t < 1,
we consider all the examples of Steps 3 and 4, starting from the points
of the form (αx, αy−α), where α runs over all positive numbers. From
all these pairs (f, g), we pick one which satisfies E|f∞| = αt (there are
many such pairs; we pick the one corresponding to a large parameter
M). Then (f, g) = (f/α, g/α + 1) belongs to M(x, y), E|f∞| = t
and, after some calculations, we check that P(g∞ ≥ 1) can be made
arbitrarily close to B(x, y, t) (by taking M sufficiently large). This
yields the desired lower bound B0 ≥ B.

3.3. More exact information on the two-sided bound. Now
we will provide the explicit formula for the function

(3.13) B0(x, y, t)

= sup
{
P(|gn| ≥ 1) : (f, g) ∈ M(x, y), E|f∞| ≤ t, n = 0, 1, 2, . . .

}
.
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This will be accomplished by the technique described in Section 2, with
V (x, y) = 1{|y|≥1}.

Approach 1. In comparison to the one-sided case, this situation
is more difficult since the function B0 does not seem to have any
homogeneity-type property. Nevertheless, it majorizes the Bellman
function corresponding to the one-sided estimate, which gives
(3.14)

B0(x, y, t) ≥
{

1 if |y| + t ≥ 1,

1 − (1 − |y| − t)2/[(1 − |y|)2 − x2] if |y| + t < 1.

This, in particular, yields

(3.15) B0(x, y, t) = 1 provided |y| + t ≥ 1.

Next, we proceed as follows. Fix a ∈ (0, 1), and consider the function

b(x, y) = B0

(
x + a

2
,
x− a

2
, y

)
,

given on the set {(x, y) ∈ R2 : y ≥ |(x + a)/2|}. This function is
concave and, by (3.15), we have b(x, y) = 1 for y ≥ 1 − |(x − a)/2|.
Thus, all we need is to determine the formula for b on the parallelogram
P = {(x, y) : |(x + a)/2| ≤ y < 1 − |(x− a)/2|} (see Figure 2).

Directly from the concavity of b, we obtain that b(x, y) = 1 if (x, y)
lies on or above the dotted diagonal of P precisely, the line segment
with endpoints (−1, (1 − a/2)) and (1, (1 + a/2)) due to the fact that
b equals 1 when evaluated at the sides of P lying above this segment.
For (x, y) lying below the diagonal we have, by (3.14),

b(x, y) ≥ ζ(x, y) = 1 − (1 − |(x − a)/2| − y)2

(1 − a)(1 + x)
.

Let us search for the least concave majorant of ζ. Some experi-
ments lead to the following idea. Take an interval I with endpoints
(1, (1 + a/2)) and (t,−(t + a/2)), where t ∈ (−1,−a] (see Figure 2). It
is easy to check that ζ is not concave along this interval and that the
least concave majorant of ζ|I is given by

b0(x, y) =

{
ζ(x, y) if (x, y) ∈ I, y < (a/2) − ((1/2) − a)x,

2y − ax if (x, y) ∈ I, y ≥ (a/2) − ((1/2) − a)x.
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Assuming b = b0 for all (x, y) below the diagonal, we obtain the
candidate for the Bellman function, given as follows. Consider the
sets

D1 = {(x, y, t) : |x| + |y| ≥ 1}
∪
{

(x, y, t) : |x| + |y| < 1, t ≥ 1

2
(x2 − y2 + 1)

}
,

D2 = {(x, y, t) : |x| + |y| < 1, t < x2 − y2 + |y|},
D3 =

{
(x, y, t) : |x| + |y| < 1, x2 − y2 + |y| ≤ t <

1

2
(x2 − y2 + 1)

}
.

Note that, if |x| + |y| < 1, then x2 − y2 + |y| < (x2 − y2 + 1)/2; thus,
the subsets are pairwise disjoint. The candidate B we obtain is given
by

(3.16) B(x, y, t) =

⎧⎨
⎩

1 on D1,

1 − (1 − |y| − t)2/[(1 − |y|)2 − x2] on D2,

2t− x2 + y2 on D3.

It can be shown that this function satisfies 1◦ and 2◦ and hence B0 ≤ B;
on the other hand, the bound B0 ≥ B follows directly from the above
construction. Thus, B0 = B, as originally proved in [36].

Approach 2. As in the one-sided case, there is a question
whether the function (3.16) can be discovered with the use of the two-
dimensional boundary value problem. The answer is positive, however,
due to the fact that since we have no additional homogeneity, we will
actually need to study a whole family of auxiliary estimates. Namely,
for c ≥ 0, let Vc : R × R → R be given by Vc(x, y) = 1{|y|≥1} − c|x|,
and let

b0c(x, y) = sup
{
EVc(fn, gn) : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .

}
.

We will find the formula for b0c in several steps below.

Step 1. For c ≤ 2, we proceed exactly in the same manner as in the
search for (3.4) (or follow the analytic approach presented there). One
way or another, we obtain that

b0c(x, y) =

{
c(y2 − x2)/2 + 1 − (c/2) if |x| + |y| ≤ 1,

1 − c|x| if |x| + |y| > 1.
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Step 2. The situation gets more interesting when c > 2. The above
formula does not work any more, since the majorization b0c(0, 0) ≥
Vc(0, 0) is no longer valid. How can we proceed? Again, some intuition
can be gained from the one sided version of the problem. In a sense, we
expect that b0c will be a “symmetrized” modification of that Bellman
function. A little thought leads to the following splitting of R2:

D1 = {(x, y) : |x| + |y| ≥ 1},
D2 = {(x, y) : |x| + |y| < 1, |y| ≤ |x|},
D3 = {(x, y) : |x| + |y| < 1, |x| < |y| < |x| + α},
D4 = R2 \ (D1 ∪D2 ∪D3).

Here the parameter α, to be determined later, has the property that
b0c(0, y) = V (0, y) = 0 for |y| ≤ α, and b0c(0, y) > 0 for |y| > α. What
about the formula for b0c? The same arguments as previously give that
b0c(x, y) = 1− c|x| on D1. Furthermore, both D2 and D4 consist of two
squares; on each square, in analogy with the preceding considerations,
we expect b0c to be linear along line segments of slope ±1 (in other
words, it is quadratic there, see the computations below). Finally, on
D3 ∩ [0,∞)2, b0c should be linear along the segments of slope 1 (the
remaining part of D3 is dealt with using symmetry).

Step 3. Now let us present some computations. For any 0 ≤ y ≤ α,
the candidate bc satisfies bc(0, y) = 0, bc((1 − y)/2, (1 + y)/2) =
1 − c|1 − y|/2 (because ((1 − y)/2, (1 + y)/2) ∈ D1) and is linear along
the line segment joining the two evaluated points. Thus,

bc(x, y) =
2|x|

1 + |x| − |y| − c|x| on D3.

As in the one-sided case, we expect the equality bcx(0, α) = 0. This
gives α = 1−2/c. Now the discovery of the candidate bc on D2 and D4

is just a mere repetition of the calculations from the one-sided setting.
As the reader may easily verify, at the very end we obtain

bc(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 − c|x| if (x, y) ∈ D1,

y2 − x2 + 2|x| − c|x| if (x, y) ∈ D2,

2|x|/(1 + |x| − |y|) − c|x| if (x, y) ∈ D3,

1 − c(1 − |y|) + (c2/4)
(
(|y| − 1)2 − x2

)
if (x, y) ∈ D4.
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As we have already seen a few times, all that we can claim so far is
the bound bc ≤ b0c (the construction of bc rests on examples). Now
we will verify that bc satisfies 1◦ and 2◦. We start with 2◦. Fix
y ∈ R, and consider the function G(t) = bc(t, y − t), t ∈ R. It suffices
to prove that this function is concave (then, by the symmetry of bc,
we will obtain that the sections of the form t �→ bc(t, y + t) are also
concave, and the property will follow). Note that, if (t, y − t) lies in
the interior of one of the sets D2 or D4, we have G′′(t) = 0. The
same is true if (t, y − t) belongs to the interior of D1 or D3 (for the
latter set, simply compute the second derivative), unless t = 0. In
this particular case, the second derivative of G does not exist, but
we easily check that G′(0−) ≥ G′(0+), so the concavity is preserved.
Thus, by the continuity of G, all we need is to verify that there are
appropriate inequalities between one sided derivatives when (t, y − t)
lies at the common boundary of some Di’s. By the symmetry, we
may and do assume that t ≤ 0. If (t, y − t) ∈ ∂D1 ∩ ∂D4, then
G′(t−) = c ≥ c − 2y − 2 = G′(t+); if (t, y − t) ∈ ∂D1 ∩ ∂D2, then
G′(t−) = c ≥ c− 2(1 − y)−1 = G′(t+). Next, if (t, y − t) ∈ ∂D1 ∩D4,
then G′(t−) = c and

G′(t+) =
c2

2
(1 − y) − c ≤ c− c = 0,

since y ≥ 1−2/c (which follows from the assumption on (t, y− t)). The
remaining cases (i.e., (t, y− t) ∈ ∂D2∩∂D3 and (t, y− t) ∈ ∂D3∩∂D4)
are studied in a similar manner; we leave the details to the reader.

Finally, we turn our attention to 1◦. We have equality for |x|+ |y| ≥ 1
and bc(0, |y|) ≥ 0 for y ∈ (−1, 1). All we need is to combine this with
the fact that, on the left and on the right halfplane, the function Vc is
linear, while bc is diagonally concave. This gives the majorization, and
hence bc = b0c .

Remark 3.3. As in the preceding settings, the function bc can be
identified with the use of the iterative approach described in Remark (d)
in subsection 2.1 (the recurrence stabilizes after three steps). The
calculations are not very difficult, but there are several cases to be
considered, and one may find this path a little tedious.

Now we come back to the problem of identifying B0 defined in (3.13).
For any (f, g) ∈ M(x, y) satisfying E|f∞| ≤ t, we have

P(|gn| ≥ 1) ≤ b0c(x, y) + cE|fn| ≤ b0c(x, y) + ct,
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and hence B0(x, y, t) ≤ minc≥0{b0c(x, y) + ct}. Let us denote the right
hand side by B, and let us derive its explicit formula. Assume first that
|x|+ |y| ≥ 1. Then bc(x, y) = 1− c|x| and bc(x, y) + ct = 1 + c(t− |x|).
Thus, we must take c = 0, and we get B(x, y, t) = 1. Next, suppose
that |x| + |y| < 1, but |x| ≥ |y|. Then

b0c(x, y) + ct =

{
c(y2 − x2)/2 + 1 − (c/2) + ct if c ≤ 2,

y2 − x2 + 2|x| − c|x| + ct if c > 2.

If we compute the derivative with respect to c, we get

d

dc

[
b0c(x, y) + ct

]
=

{
t− (1 + x2 − y2)/2 if c < 2,

t− |x| if c > 2.

So, we have two possibilities. If t ≥ (1 +x2− y2)/2, then the derivative
is nonnegative on (0, 2)∪ (2,∞), so the minimum is attained for c = 0.
This gives B(x, y, t) = 1. On the other hand, if t < (1 + x2 − y2)/2,
then the derivative is negative on (0, 2) and positive on (2,∞), so

B(x, y) = b02(x, y) + 2t = y2 − x2 + 2t.

Next, assume that |x| + |y| < 1 and |y| > |x|. Put α = 1 − 2/c. Then

b0c(x, y) + ct =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c(y2 − x2)/2 + 1 − (c/2) + ct if c ≤ 2,

1 − c(1 − |y|)
+c2

(
(|y| − 1)2 − x2

)
/4 + ct if c>2, |y|−|x|>α,

2|x|/(1 + |x| − |y|) − c|x| + ct if c>2, |y|−|x|≤α

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c(y2 − x2)/2 + 1 − (c/2) + ct if c ≤ 2,

1 − c(1 − |y|)
+c2 (|y|−1)2−x2

4 +ct if c∈(2, 2
1−|y|+|x|),

2|x|
1+|x|−|y|−c|x|+ct if c ≥ 2/(1−|y|+|x|).

Therefore,

d

dc

[
b0c(x, y) + ct

]

=

⎧⎪⎨
⎪⎩

t− (1 + x2 − y2)/2 if c < 2,

t + |y| − 1 + c
(
(|y| − 1)2 − x2

)
/2 if c ∈ (2, (2/1 − |y| + |x|)),

t− |x| if c > (2/1 − |y| + |x|).
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This time we have three possibilities. If t ≥ (x2 − y2 + 1)/2, then for
c > 2,

t + |y| − 1 +
c

2

(
(|y| − 1)2 − x2

) ≥ t + |y| − 1 + (|y| − 1)2 − x2

≥ −x2 + (|y| − 1)2

2
> 0,

so the minimum defining B is attained for c = 0. Therefore, B(x, y, t) =
1 in this case. Suppose then that t < (x2 − y2 + 1)/2, but

t + |y| − 1 + (|y| − 1)2 − x2 = t− x2 + y2 − |y| ≥ 0.

Then the choice c = 2 is optimal: B(x, y, t) = b02(x, y)+2t = y2−x2+2t.
Finally, if t < (x2 − y2 + 1)/2 and t− x2 + y2 − |y| < 0, then the above
derivative vanishes for c = 2(1 − |y| − t)/((|y| − 1)2 − x2), and then

B(x, y, t) = b0c(x, y) + ct = 1 − (1 − |y| − t)2

(y − 1)2 − x2
.

Thus, we end up with the function (3.16). So, we have shown that
B0 ≤ B, and the proof of the reverse bound rests on the construction
of appropriate examples. For an alternative argument, see Approach 1
or consult [36].

4. Weak type (p, p) estimates for martingale transforms,
p > 1. Now we will study the versions of the above weak-type bounds
in the case p > 1. Precisely, we will determine the best constants Cp

such that

(4.1) P(|gn| ≥ 1) ≤ Cp
pE|fn|p, n = 0, 1, 2, . . . .

These best constants were originally identified by Burkholder in [8]
for 1 < p ≤ 2, and by Suh [44] for remaining values of p. Our
considerations below will strengthen the results from those papers.
Quite unexpectedly, the arguments presented in the cases 1 < p ≤ 2
and p > 2 are entirely different. The two situations will be considered
separately.

4.1. The case 1 < p ≤ 2. We proceed according to the methodology
described in subsection 2.1 and write down the formula (2.1):

B0(x, y) = sup
{
EVβ(fn, gn) : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .

}
.
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Here β ≥ 0 and Vβ(x, y) = 1{|y|≥1} − β|x|p. The function B0 satisfies
the symmetry condition

(4.2) B0(x, y) = B0(−x, y) = B0(x,−y) for all x, y ∈ R,

so it suffices to determine it in the first quadrant [0,∞) × [0,∞).

Step 1. The case y ≥ 1. For these y we have

(4.3) B0(x, y) = 1 − βxp.

Indeed, for all f, g as above we may write P(|gn| ≥ 1) ≤ 1 and
E|fn|p ≥ xp, where the latter follows from Jensen’s inequality. This
gives the estimate in one direction, and the choice of constant f and g
yields the reverse.

Step 2. Two key assumptions. Now we will impose two
conditions on the candidate B for the Bellman function. The first
of them concerns regularity on the set R × [−1, 1], while the second
indicates the foliation on [0,∞)× [0, 1]. Precisely, the first assumption
reads

(A1) B is continuous on {(x, y) : |y| ≤ 1} and of class C1 in the
interior of this set,

while the second is

(A2) on [0,∞)× [0, 1], the function B is linear along the line segments
of slope −1.

The latter condition comes out when one considers appropriate exem-
plary martingale pairs. Suppose, for instance, that x > 0, y ∈ (0, 1)
with x + y > 1, and assume we are interested in identifying (f, g) ∈
M(x, y) for which B0(x, y) is (almost) attained. Intuitively speaking,
we want to make P(|gn| ≥ 1) large, keeping E|fn|p relatively small.
Since the second derivative of t �→ tp goes to 0 as t → ∞, the difference
E|fn+1|p − E|fn|p is insignificant, at least when fn is large. Thus, it
is reasonable to consider the pair (f, g) ∈ M(x, y) which satisfies the
following. Fix a small positive δ, and assume that (f0, g0) ≡ (x, y),

(i) df1 = −dg1 is a centered random variable with values in {y−1, y}.

(ii) if (f, g) = (x + y + 2kδ, 0) for some nonnegative integer k,
then at the next step (f, g) moves to (x + y + 2kδ − 1,−1) or to
(x + y + (2k + 1)δ, δ).



SURVEY ARTICLE: BELLMAN FUNCTION METHOD 1799

(iii) if (f, g) = (x + y + (2k + 1)δ, δ) for some nonnegative integer k,
then at the next step (f, g) moves to (x + y + (2k + 2)δ − 1, 1) or to
(x + y + (2k + 2)δ, 0).

Note that P(|gn| ≥ 1) → 1 as n → ∞; furthermore, we “push” the
evolution of fn towards infinity, thus making the increase of the p-
th moment smaller and smaller. Properties (i) (iii) mean that on
[0,∞) × [0, 1], (f, g) moves along the lines of slope −1, while on
[0,∞)× [−1, 0], along the lines of slope 1. This is where (A2) originates
from. For convenience, denote a(t) = B(t, 1) = 1 − βtp, b(t) = B(t, 0)
and c(t) = B(0, t). Then (A2) means that
(4.4)

B(x, y) = ya(x + y − 1) + (1 − y)b(x + y) if x + y ≥ 1 ≥ y ≥ 0,

B(x, y) =
y

x + y
c(x + y) +

x

x + y
b(x + y) if x, y ≥ 0, x + y < 1.

Step 3. Derivation of a candidate. Now we will see that the
above conditions (A1) and (A2) uniquely determine the candidate B.
The symmetry condition (4.2) implies

(4.5) Bx(0, y) = By(x, 0) = 0 for x ∈ R and y ∈ (−1, 1).

Using this and (4.4), we obtain the differential equations

c′(y) =
c(y) − b(y)

y
for y ∈ [0, 1),(4.6)

b′(x) =
b(x) − c(x)

x
for x ∈ [0, 1),(4.7)

and

b′(x) = b(x) − a(x− 1) for x ≥ 1.(4.8)

By (4.6), (4.7) and the condition b(0) = c(0) = B(0, 0), we have
that b(x) + c(x) = 2c(0) on [0, 1]. Plugging this into (4.6) yields
c(y) = c(0) + αy2 for all y ∈ [0, 1] and some fixed α ∈ R. Since
c(1) = a(0) = 1, we see that α = 1− c(0), so b(x) = c(0)− (1− c(0))x2

and c(y) = c(0) + (1 − c(0))y2 for x, y ∈ [0, 1]. Applying the second
equality in (4.4), we get that

B(x, y) = c(0) + (1 − c(0))(y2 − x2) if |x| + |y| ≤ 1.
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Similarly, solving (4.8) (recall that a(t) = 1 − βtp) gives

b(x) = 1 − βex
∫ ∞

x

e−t(t− 1)p dt + γex

for x > 1 and some γ ∈ R. Note that −βxp ≤ b(x) ≤ 1 − βxp, directly
from the definition of b and B0; this implies γ = 0, simply by letting
x → ∞ above. By continuity of b at 1, we derive that

1 − βe

∫ ∞

1

e−t(t− 1)p dt = 2c(0) − 1,

or

β =
2 − 2c(0)

Γ(p + 1)
.

By the first equation in (4.4), for |x| + |y| > 1, we have

B(x, y) = 1 − |y|β(|x| + |y| − 1)p − β(1 − |y|)e|x|+|y|−1

×
∫ ∞

|x|+|y|−1

e−ssp ds.

Now it can be checked that, if c(0) ∈ [0, 1], then the above function B
satisfies 1◦ and 2◦, so B0 = B. Thus, we have successfully identified
the Bellman function for β ≤ 2/Γ(p + 1). How is it related to (4.1)?
To answer this, we need to look at the condition 3◦: one easily proves
that B(x,±x) ≤ c(0), and hence the above reasoning yields the sharp
bound

P(|gn| ≥ 1) ≤ 2 − 2c(0)

Γ(p + 1)
E|fn|p + c(0), n = 0, 1, 2, . . . ,

for an arbitrary c(0) ∈ [0, 1]. In particular, taking c(0) = 0, we obtain
that the best choice for Cp is (2/Γ(p + 1))1/p.

Question 1. What is the formula for B when β > 2/Γ(p + 1)?

4.2. The case p > 2. As previously, we will study the more general
setting in which the constant Cp

p in (4.1) is replaced by an arbitrary
β ≥ 0. That is, introduce the Bellman function
(4.9)

B0(x, y) = sup
{
EVβ(fn, gn) : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .

}
,
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where, as above, Vβ(x, y) = 1{|y|≥1} − β|x|p. In analogy with the
preceding case, we will denote by B the candidate for B0, which will
be obtained after a number of assumptions. Actually, we will manage
to find the Bellman function only for β ≥ 2p−1/p. The analysis in the
case 0 < β < 2p−1/p has eluded us.

Step 1. The case |y| ≥ 1. The same argument as previously yields
B0(x, y) = 1 − β|x|p.

Step 2. A special curve. The following intuitive observation is
a key part of the construction. Let x be a large real number and let
y ∈ (−1, 1). Suppose that we are interested in determining B0(x, y).
To do this, loosely speaking, we need to find such f , g and n, for which
P(|gn| ≥ 1) is large and E|fn|p is relatively small. However, the “gain”
we can get from the first term is at most 1. This may not be enough
to compensate the “loss” coming from the growth of the p-th moment
of f (at least if |x| is sufficiently large). This is a consequence of the
fact that the second derivative of x �→ xp grows to infinity as x → ∞.
This is where the condition p > 2 plays a role. In other words, if
y ∈ (−1, 1) and |x| is large, it is natural to conjecture that the best
pair (f, g) ∈ M(x, y) is the constant one; hence, B0(x, y) = −β|x|p.
This suggests the following assumption:

(A1) there are c ≥ 0 and a nondecreasing function γ : [c,∞) → [0, 1]
of class C1 such that, if |y| ≤ γ(|x|), then B(x, y) = −β|x|p.

As we shall see, the condition β ≥ 2p−1/p enforces c to not be too
large: c ≤ 1/2. Thus, we will restrict ourselves to these values of this
parameter. Now, what can be said about the value of γ(c)? Extending
the function γ “as far as possible” leads to the following assumption:

(A2) We have c = 0 or γ(c) = 0.

See Figures 3, 4 and 5 below, which illustrate the possibilities that can
occur.

Step 3. Further assumptions. So, it remains to determine B
on the set J = {(x, y) : x > 0, γ(x) < y < 1}. Let a(y) = B(0, y)
and b(x) = B(x, 0) for x, y ∈ R. It seems reasonable to impose the
following regularity condition on B.

(A3) The function B is continuous on R× [−1, 1] and of class C1 in
the interior of this set.
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By symmetry of Vβ , we may restrict ourselves to the functions satisfying

(4.10) B(x, y) = B(−x, y) = B(x,−y) for all x, y ∈ R.

By (A3), this gives

(4.11) Bx(0, y) = 0 and By(x, 0) = 0 for x, y ≥ 0.

Now we will introduce an important structural condition on B. Instead
of examples, we will just indicate the foliation along which they evolve
(compare the assumption (A2) in the previous case, and the discussion
following it). Suppose first that c = 0. Then the condition reads

(A4) There is y∗ ∈ [0, 1] such that for (x, y) ∈ J ,

(4.12) B(x, y) =
x

x + t
B(x + t, y − t) +

t

x + t
a(x + y) if x + y ≤ y∗,

where t = t(x, y) is the unique positive number satisfying y − t =
γ(x + t), and
(4.13)

B(x, y) =
x

x + 1 − y
B(x+1−y, 1)+

1 − y

x + 1 − y
a(y−x) if −x+y ≥ y∗.

The condition (A4) enforces B to be linear along line segments of slope
−1 contained in D4 and line segments of slope 1 contained in D5 (the
regions D4 and D5 are as in Figure 3 and will be formally defined
below).

In the case c ∈ (0, 1/2], the assumption is slightly different:

(A4) There is y∗ ∈ [0, 1] such that for (x, y) ∈ J ,

(4.14) B(x, y) =
x

x + t
B(x+t, y−t)+

t

x + t
a(x+y) if c ≤ x+y ≤ y∗,

where t = t(x, y) is the unique positive number satisfying y − t =
γ(x + t). If (x, y) ∈ J and x + y < c, then

(4.15) B(x, y) =
x

x + y
b(x + y) +

y

x + y
a(x + y).
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FIGURE 3. Bellman function for the weak-type (p, p) estimate in the case c =
γ(c) = 0.

Finally,

(4.16) B(x, y) =
x

x + 1 − y
B(x + 1 − y, 1) +

1 − y

x + 1 − y
a(y − x)

if − x + y ≥ y∗.

Take a look at Figures 3 5 and compare the cases c = 0, c > 0.

Step 4. A special case. From now on, until we say otherwise, we
assume that c = γ(c) = 0; the function corresponding to this choice of
parameters will play a distinguished role in the considerations below
(and will lead to the special functions of remaining cases via some
simple transformations). Pick a nonnegative x satisfying x+γ(x) ≤ y∗,
and let t ∈ [0, x]. By (A3) and (A4), we have

B(x− t, γ(x) + t) = B(x, γ(x)) + (−Bx(x, γ(x)) + By(x, γ(x)))t,

so, by (A1),

(4.17) B(x − t, γ(x) + t) = −βxp + pβxp−1t.

Take t = x and differentiate both sides over x. We get

By(0, γ(x) + x)(γ′(x) + 1) = p(p− 1)βxp−1.
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FIGURE 4. Bellman function for the weak-type (p, p) estimate in the case c = 0 <
γ(c).

FIGURE 5. Bellman function for the weak-type (p, p) estimate in the case γ(c) =
0 < c.
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On the other hand, differentiate in (4.17) over t, then let t = x and
use (4.11) to obtain

By(0, γ(x) + x) = pβxp−1.

The two equations above give γ′(x) = p− 2, and hence γ(x) = (p− 2)x
provided x + γ(x) ≤ y∗.

By (4.12) and (4.13), the function B is linear on the line segments
I± of slope ±1 such that (0, y∗) ∈ I± ⊂ J . Combining this with the
symmetry condition B(x, y) = B(−x, y), we get that the function

F (t) := B

(
y∗

p− 1
− t,

(p− 2)y∗
p− 1

+ t

)

is linear on [0, 1− (p− 2)y∗/(p− 1)]. Indeed, for t lying in this interval,
the points (

y∗
p− 1

− t,
(p− 2)y∗
p− 1

+ t

)

fill out the line segment of slope −1, passing through (0, y∗), with one
endpoint lying on the line y = 1, and the other being the endpoint of
the found linear piece of γ. Thus, we see that

B(y∗ − 1, 1) = F

(
1 − (p− 2)y∗

p− 1

)

= F (0) + F ′(0)

(
1 − (p− 2)y∗

p− 1

)
.

However, by assumptions (A1), (A3) and the fact that (y∗/(p− 1),
(p− 2)y∗/(p−1)) lies on the linear piece of γ, we know what F (0) and
F ′(0) are. Namely, F (0) = −β(y∗/(p− 1))p and

F ′(0) = −Bx

(
y∗

p− 1
,

(p− 2)y∗
p− 1

)
+ By

(
y∗

p− 1
,

(p− 2)y∗
p− 1

)

= pβ

(
y∗

p− 1

)p−1

.

Therefore, the preceding equality can be rewritten in the form

β =
[
(1 − y∗)p − yp∗(p− 1)2−p + pyp−1

∗ (p− 1)1−p
]−1

.
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Now, if we replace y∗ by a certain number y (close to y∗), a similar
argument yields

(4.18) β ≥ [
(1 − y)p − yp(p− 1)2−p + pyp−1(p− 1)1−p

]−1
.

Indeed, this inequality is equivalent to saying that the line, tangent
to the curve t �→ Vβ((y/p− 1) − t, [(p− 2)y]/(p− 1) + t) at the point
t = 0, must majorize t �→ Bβ((y/p− 1) − t, [(p− 2)y]/(p− 1) + t) for
t = 1 − (p − 2)y/(p − 1). Thus, we see that the derivative of the
expression in the square brackets of (4.18) must vanish for y = y∗.
This equality is equivalent to

(1 − y∗)

((
1 − y∗
y∗

)p−2

− (p− 1)2−p

)
= 0,

and hence y∗ = 1 − p−1. This, in turn, implies β = pp−1/2.

Step 5. A final assumption. We still work under the condition
c = γ(c) = 0. Observe that the segments I+ and I−, introduced in the
previous step (see also Figure 3), have the same length. This suggests
the final assumption (A5), below, which to formulate we need some
notation. Introduce the curve

κ =

{(
x− 1 − γ(x)

2
, γ(x) +

1 − γ(x)

2

)
: x ≥ p−1

}

(for a better understanding of κ, see the geometric properties of I+(z)
and I−(z) below). Let D1 ⊂ J be the closed set bounded by the lines
y = 1, −x + y = y∗ and the curve κ; let D2 ⊂ J be the closed set
bounded by the line x + y = y∗, the curve κ and the graph of γ (see
Figure 3). Note that D1 and D2 have the following property. Take
any z ∈ κ, and let I+(z) ⊂ D1 (respectively, I−(z) ⊂ D2) denote the
maximal line segment of slope 1 (respectively, −1), which contains z as
one of its endpoints. Then I+(z) and I−(z) have the same length; so,
in a sense, κ divides the set

{(x, y) : y∗ − x ≤ y ≤ y∗ + x, γ(x) ≤ y ≤ 1}
into two halves. The assumption can be stated as follows.

(A5) We assume that

B is linear on each I+(z), z ∈ κ,(4.19)
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and

B is linear on each I−(z), z ∈ κ.(4.20)

Step 6. A formula for γ in the case c = γ(c) = 0. So far, we
have derived that

γ(x) = (p− 2)x for x ∈ [0, p−1],

and we need to determine this function on the remaining part of the
positive halfline. By (A3) and (4.20), equation (4.17) is valid for
all x ≥ p−1 and t ∈ [0, (1 − γ(x))/2]. This enables us to derive
Bx(z)+By(z) for any z ∈ κ. If z = (x−(1−γ(x))/2, γ(x)+(1−γ(x))/2),
then

Bx(z) + By(z) = −pβxp−1 +
p(p− 1)βxp−2(1 − γ(x))

1 + γ′(x)
.

On the other hand, by (A3) and (4.19), this must be equal to

B(x, 1) −B(z)

(1 − γ(x))/2
.

After some easy manipulations, this yields

(4.21) γ′(x) + 1 =
pp(p− 1)

4
xp−2(1 − γ(x))2.

Standard argumentation (cf. [44]) gives the existence of a unique γ :
(p−1,∞) → [0, 1] satisfying γ(p−1+) = 1− 2/p; then γ′(p−1+) = p− 2.
Thus, we have obtained the desired function γ.

Step 7. The formula for B, the case c = γ(c) = 0. Putting
everything together, equations (4.12), (4.13), (4.19) and (4.20) yield
the candidate B, the one invented by Suh. Let D0 = {(x, y) : x >
0, y ≥ 1}, and recall D1 and D2 introduced in Step 5. Moreover, let

D3 = {(x, y) : x ≥ 0, 0 ≤ y ≤ γ(x)},
D4 = {(x, y) : x ≥ 0, γ(x) ≤ y ≤ −x + y∗},
D5 = {(x, y) : R+ ×R+ \ (D0 ∪D1 ∪D2 ∪D3 ∪D4)}
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(see Figure 3). Suppose that G is the inverse to the function x �→
x + γ(x). Then
(4.22)

B(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − (pp−1/2)xp on D0,

1 − [2(1 − y)]/[1 − γ(x− y + 1)]

−(1/2)pp−1(x− y + 1)p−1
(
x− (p− 1)(1 − y)

)
on D1,

(pp−12)(G(x + y))p−1 ((p− 1)G(x + y) − px) on D2,

−(pp−1/2)xp on D3,

(1/2)(p/p− 1)p−1(x + y)p−1(y − (p− 1)x) on D4,

(pp−1/2)(1 + x− y)p−1((1 − y)/(p− 1) − x)

−(p2(1 − y))/(2(p− 1)) + 1 on D5.

The description of B is completed by the condition (4.10). One can
now check that the function satisfies the conditions 1◦, 2◦ as well as
3◦: B(x,±x) ≤ 0 for x ∈ R. However, this requires a large amount of
work and patience; for details, see [44].

This gives us the Bellman function (4.9) for β = pp−1/2. Further-
more, we have obtained that the best Cp in (4.1) equals (pp−1/2)1/p.

Step 8. The formula for B0 for β > pp−1/2. There is a very
natural modification of Suh’s function (4.22), which can be obtained
by appropriate scaling. This object will correspond to β > pp−1/2 and
the case c = 0, γ(c) > 0. Namely, for any α ∈ (0, 1), consider the
function

Bα(x, y) =

{
B (|x|/α, (|y| − 1 + α)/α) if |y| ≥ 1 − α,

− pp−1|x|p
2αp if |y| < 1 − α.

Obviously, this function is of class C1 and diagonally concave (the
rescaling factor α−1 occurs on both coordinates in the definition of
Bα). Furthermore, we easily check that Bα majorizes Vβ corresponding
to β = pp−1/(2αp), and hence B0 ≤ Bα. However, it is also evident
that the reverse holds true. If the function B0 were strictly smaller at
some point (x, y), then the appropriate improvement of B would also
be possible.

Step 9. The formula for B0 for β < pp−1/2. In this case, the
Bellman function is also closely related to Suh’s function (4.22), but
there is a little more to do. Again, the candidate comes into one’s mind
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after taking a closer look at the picture, see Figure 5. Namely, consider
the following scaling of B. Let α ∈ (2/p, 1) be a fixed parameter and,
for any x, y ∈ R put

Bα(x, y) = B (α|x|, α|y| + 1 − α) .

It follows at once from the majorization property of B that Bα(x, y) ≥
1{|y|≥1}−αppp−1|x|p/2. Unfortunately, this function does not work, as
the diagonal concavity fails to hold: for |x| < (1 − α)/((p− 2)α), the
function ξ(t) = Bα(x+ t, t) satisfies ξ′(0−) < ξ′(0+). To overcome this
problem, we modify Bα on the square

{
(x, y) ∈ R2 : |x| + |y| ≤ 1 − α

(p− 2)α

}
,

putting Bα(x, y) = κ1(y2 − x2) + κ2 there. The parameters κ1, κ2

depend only on p and α, and we determine them by requiring that Bα

be continuous. We obtain

κ1 =
pp(1 − α)p−2α2

4(p− 2)p−2
and κ2 =

pp−1(1 − α)p

4(p− 2)p−1
.

It turns out that, if α ≥ 2/p, then the modified Bα has the required
concavity (one easily verifies that the partial derivatives match ap-
propriately at the boundary of the square). Thus, Bα majorizes the
Bellman function (4.9) corresponding to β = αppp−1/2. However, it is
clear that we actually have equality (for instance, by considering ap-
propriate examples). Let us also mention that, as a by-product, we get
the sharp inequality

P(|gn| ≥ 1) ≤ 1

2
αppp−1E|fn|p +

pp−1(1 − α)p

4(p− 2)p−1
,

valid for α ∈ [2p−1, 1]. Now it is also clear that c must not exceed
1/2; otherwise, the line segments I± would not fit into the picture, see
Figure 5.

Question 2. What is the formula for B0 for β < 2p−1/p?
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4.3. One sided bound, p > 2. We turn our attention to the
one-sided version of (4.9). Consider the function

B0(x, y) = sup
{
EV (fn, gn) : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .

}
,

where V (x, y) = 1{y≥0} − |x|p. It is more convenient to study first
the situation when p is large; then, the special function can be easily
deduced from Suh’s function, with the use of appropriate scaling.
Namely, put
(4.23)

b(x, y) =

{
B((2/pp−1)1/px, (2/pp−1)1/py + 1) if y ≥ −(pp−1/2)1/p,

−|x|p if y < −(pp−1/2)1/p,

where B is given by (4.22). We easily check that b is of class C1 on
R×(−∞, 0) and hence, by the properties of B, it is diagonally concave.
Furthermore, b(x, y) ≥ V (x, y) for all (x, y) ∈ R2. This is obvious for
y < −(pp−1/2)1/p and for remaining points it follows immediately from
the corresponding majorization for B. Thus, we have B0 ≤ b. On the
other hand, if we had a strict inequality at some point (x, y), then
necessarily we would have y > −(pp−1/2)1/p, and then the function B
would not be the Bellman function for (4.9).

Clearly, the above arguments, combined with appropriate translation
and homogenization, give the formula for the “shifted” function

(x, y) �−→ sup
{
P(|gn| ≥ 1) − cE|fn|p :

(f, g) ∈ M(x, y), n = 0, 1, 2, . . .
}
,

for any fixed c. Now it is easy to see that this new function satisfies
3◦ if and only if c ≥ pp−1/2, and thus we obtain the sharp one-sided
bound

P(gn ≥ 1) ≤ pp−1

2
E|fn|p, n = 0, 1, 2, . . . ,

valid for all martingales f and their ±1-transforms g.

4.4. One sided bound, 1 < p ≤ 2. Now we deal with the
more interesting case of small p. The discovery of the corresponding
Bellman function is not difficult, especially in the light of the above
considerations. Namely, a closer inspection of the arguments from the
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case p = 1 and p > 2 suggests the appropriate candidate. We will
require the following auxiliary result, see [33] for the proof.

Theorem 4.1. Let 1 < p < 2. There is a continuous function
H = Hp : [0,∞) → [0,∞) satisfying the differential equation

(4.24) H ′(x) =
p(p− 1)

2
xp−2(H(x) − x)2

for x > 0 and such that

(4.25) H(0) =
(2p/(p− 1))1/pΓ(p + 1/p)

Γ(p− 1/p)
.

We proceed as in the previous subsection. The desired Bellman
function B0 is defined by the same formula. To define the candidate b,
let us first distinguish certain subsets of R ×R. Here H = Hp is the
function studied in the preceding theorem, and h = hp stands for its
inverse.

D0 = {(x, y) : y ≥ 0},
D1 = {(x, y) : h(|x| − y) − y < |x|, −|x| ≤ y < 0},
D2 = {(x, y) : h(|x| − y) < |x| ≤ h(|x| − y) − y, y − |x| ≤ −H(0)},
D3 = {(x, y) : |x| −H(0) < y < −|x|},
D4 = {(x, y) : |x| ≤ h(|x| − y)}.

See Figure 6. What is the reason for such regions and what can be said
about B? Arguing as above, we immediately get that b(x, y) = 1−|x|p
for y ≥ 0 (this gives the justification for D0). Let us describe the idea
behind the shape of D4. To compute B0(x, y), we need pairs (f, g)
for which P(gn ≥ 0) is large, while E|fn|p is small. For a given x, if
y is sufficiently small, then the best pair is the constant one; for any
other pair, the increase of the p-th moment of f is not compensated
by the gain coming from pushing g on or above the x-axis. Thus, we
expect B0(x, y) = −|x|p for small y. On the other hand, fix such a y
and start increasing x. Since p is smaller than 2, the second derivative
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FIGURE 6. The regions D0 D4, intersected with {(x, y) : x ≥ 0}.

of x �→ xp goes to 0; consequently, the p-th moment E|fn|p grows
slower and slower. This means that, for sufficiently large x, some
nontrivial pairs (f, g) should be taken into consideration. Summarizing,
the above reasoning suggests the existence of a certain nonincreasing
function γ : [0,∞) → (−∞, 0), such that B0(x, y) = −|x|p for y ≤ γ(x)
and B0(x, y) > −|x|p for y > γ(x). To get the description of γ, we
impose the following geometrical property on the sets D1 and D2 (see
Figure 6). Pick a point (x, y) ∈ ∂D1 ∩ D2, with x > 0, and consider
the maximal line segment of slope −1 (respectively, +1) contained
in D1 (respectively, D2) and having (x, y) as one of its endpoints.
The requirement is that both these segments have the same length.
Assuming that the Bellman function is continuous on R2 and of class
C1 on R× (−∞, 0), we obtain a differential equation for γ:

1 − γ′(x) =
p(p− 1)

2
xp−2γ(x)2,

which should be compared to its counterpart (4.21) in the case p ≥ 2.
The substitution H(x) = x−γ(x) transfers this equation to (4.24), and
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hence the function γ does exist. Furthermore, the solution satisfies:

γ(0) =
(2p/(p− 1))1/pΓ(p + 1/p)

Γ(p− 1/p)
,

see (4.25). Where does this equality come from? It is a consequence of
the fact that we want γ to be defined on the whole halfline [0,∞) and
to satisfy γ′(t) → 0 as t → ∞ (all the other solutions γ, corresponding
to different initial conditions, violate one of these two properties).

We come back to the search for the candidate b. It is clear what
foliation we should use. On D1 ∩ {(x, y) : x > 0}, the function should
be concave along the lines of slope −1. The set D2 ∩ {(x, y) : x > 0}
should be split into segments of slope 1. Finally, on D3, we expect
linearity along the line of both slopes ±1 (i.e., the Bellman function
should be quadratic there). A little calculation reveals the following
candidate. Put H(x) = x − γ(x) for x > 0, and let h be the inverse
function to H . Then
(4.26)

b(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − xp if (x, y) ∈ D0,

1 + (x + y)p−1((p− 1)y − x)

+(2y)/(H(x + y) − x− y) if (x, y) ∈ D1,

[h(x− y)]p−1[(p− 1)h(x− y) − px] if (x, y) ∈ D2,

[(y + H(0))
2 − x2](H(0))−2 if (x, y) ∈ D3,

−xp if (x, y) ∈ D4.

Some lengthy calculations (cf. [33]) show that this function enjoys the
conditions 1◦ and 2◦, so it coincides with B0. As in the case p > 2,
by appropriate translation and homogenization, we obtain the sharp
one-sided bound

P(gn ≥ 1) ≤ (2p/(p− 1))1/pΓ(p + 1/p)

Γ(p− 1/p)
E|fn|p, n = 0, 1, 2, . . . ,

valid for all 1 < p < 2 and all martingale pairs (f, g) such that g is a
±1-transform of f .

4.5. More exact information on weak-type bounds. The final
part of this section concerns the Bellman functions

B0(x, y, t)

= sup
{
P(gn ≥ 1) : (f, g) ∈ M(x, y), E|f∞|p ≤ t, n = 0, 1, 2, . . .

}
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and the two-sided version,

(4.27) B0(x, y, t)

= sup
{
P(|gn| ≥ 1) : (f, g) ∈ M(x, y), E|f∞|p ≤ t, n = 0, 1, 2, . . .

}
.

We will be brief. The first of these functions can be easily extracted
from the analysis of the above one-sided bounds. We simply repeat
the translation/homogenization arguments from the case p = 1. Un-
fortunately, the formula we obtain is complicated and non-explicit, so
we have decided not to include it here. The function (4.27) could be
handled similarly, but, unfortunately, in both cases 1 < p < 2, p > 2
the analysis of (4.9) is incomplete (there are some values of β for which
the function has not been found) and this disables the identification of
(4.27).

We omit the further details in this direction, and leave them to the
reader.

5. Strong-type inequalities for martingale transforms. We
turn to Burkholder’s celebrated Lp-estimates for martingale transforms:

(5.1) ‖gn‖p ≤ (p∗ − 1)‖fn‖p, 1 < p < ∞, n = 0, 1, 2, . . . ,

where p∗ = max{p, p/(p− 1)}. Thus,

p∗ − 1 =

{
(p− 1)−1 if 1 < p ≤ 2,

p− 1 if p ≥ 2.

The primary goal of this section is to determine the explicit formula
for the associated Bellman function

(5.2) B0(x, y, t)

= sup
{
E|gn|p : (f, g) ∈ M(x, y), E|f∞|p ≤ t, n = 0, 1, 2, . . .

}
,

originally invented by Burkholder in [8]. The reasoning we will present
is a combination of probabilistic and analytic arguments. For an alter-
native, analytic approach which exploits the Monge-Ampère equation
and the method of characteristics, see the recent work of Vasyunin and
Volberg [50].
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5.1. On the search of extremal examples. We start our analysis
from some natural examples, which will be helpful later. Let 1 < p < ∞
be fixed, and suppose that βp ≥ 1 is the best constant in the inequality

(5.3) ‖gn‖p ≤ βp‖fn‖p, n = 0, 1, 2, . . . ,

where f is a martingale and g is its ±1-transform. The case p = 2 is
trivial; we have ‖gn‖2 = ‖fn‖2 for each n and hence the best constant
is equal to 1. Thus, suppose that p �= 2. Since βp cannot be improved,
there must be martingales f , g for which both sides are equal, or
asymptotically equal. A natural idea during the search for f and g
is to let n → ∞ and look for sequences which satisfy the pointwise
equality |g∞| ≡ βp|f∞|. The construction of such a pair is not difficult.
Actually, from the viewpoint of our further reasoning, it will be more
convenient to introduce the whole family of Markov martingales. Fix
a small δ > 0 (eventually, we will let it go to 0), and consider the
following transition function:

(i) The states lying in the set {(x, y) : |y| ≥ βp|x|} are absorbing.

(ii) The state (x, y) with 0 < y < βpx, leads to (x + y, 0) or
to ((x + y)/(βp + 1), (βp(x + y))/(βp + 1)) (the move along the line of
slope −1).

(iii) The state (x, 0) with x > 0 leads to (x + δx, δx) or to
(x/(βp + 1),−(βpx)/(βp + 1)) (the move along the line of slope 1).

(iv) The remaining states (x, y) behave in a symmetrical way when
compared to (ii) and (iii).

Now if we assume that the pair (f, g) starts from (1, 1) and moves
according to (i) (iv), then indeed |g∞| = βp|f∞|. At first glance, this
seems to show that the Lp bound does not hold with any βp, since the
ratio |g∞|/|f∞| can be arbitrarily large. However, this is not the case.
The above martingales are bounded in Lp if and only if βp < (p−1)−1,
and we have

lim
βp↑(p−1)−1

‖f∞‖p = ∞

(cf., [33, pages 55, 56], or modify slightly the reasoning in [8, pages
669, 670]). That is, if the constant is at least (p−1)−1, then both sides
of (5.3) are infinite and hence the estimate holds true. On the other
hand, the above example shows the lower bound βp ≥ (p− 1)−1. This
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is of value only for 1 < p < 2; for p > 2, the stronger bound βp ≥ 1 is
given for free. How to modify the example when p > 2? A good idea
is to reflect the above transition function with respect to the diagonal
y = x, that is, let (i) (iv) describe the evolution of (g, f), not (f, g).
Actually, a small modification is required: without it, the points of
the diagonal are absorbing, so the above recipe would give us constant
pairs (g, f) (for which we only have ‖g‖p/‖f‖p = 1). We modify the
example as follows. We assume that (f, g) starts from (x, x) for some
x > 0, then make it move to (2x, 0) or to (0, 2x), and then require that
(g, f) moves according to (i) (iv). Then, as previously, f ∈ Lp if and
only if βp ≥ (p− 1)−1, and hence

lim
βp↓(p−1)−1

‖g‖p/‖f‖p = p− 1.

Thus, the best constant is at least p− 1. Actually, we can consider the
above Markov family for various choices of βp ∈ ((p− 1)−1,∞). As we
shall see, they will also play a role.

5.2. Basic inequality. In order to study the (difficult) Bellman
function B0, we implement our “splitting procedure.” As previously, we
move the p-th moment E|f∞|p from the assumption to the optimized
expression and work with an appropriate family of estimates. More
precisely, we will determine the explicit formula for the two-dimensional
Bellman function
(5.4)

b0(x, y) = sup
{
EVβ(fn, gn) : (f, g) ∈ M(x, y), n = 0, 1, 2, . . .

}
,

where Vβ(x, y) = |y|p − βp|x|p and β is a given constant. Then,
optimizing over β, we will obtain the desired function (5.2). Actually,
as we shall see in a moment in subsection 5.3, only the case p �= 2 is
of interest; when p = 2, the Bellman function B0 can be derived with
practically no effort.

We will present the detailed reasoning in the case 1 < p < 2 only.
As we have proved above, only the case β ≥ (p − 1)−1 is of interest;
for smaller β, the Bellman function b0 is infinite. So, assume that
β ≥ (p− 1)−1, and suppose that b0 is finite. This function satisfies 1◦

and 2◦; moreover, directly from (5.4), we have that it is homogeneous
of order p (since V has this property)

b0(λx,±λy) = |λ|pb0(x, y), x, y ∈ R, λ �= 0.



SURVEY ARTICLE: BELLMAN FUNCTION METHOD 1817

Consider the function w : R → R, given by

(5.5) w(x) = b0(x, 1 − x).

It is enough to determine w on [0, 1]. Then, by homogeneity, we will
obtain b0 on its whole domain. Note that w is concave and satisfies
(5.6)

w(x) = b0(x, 1 − x) = b0(x, x − 1) = (2x− 1)pw

(
x

2x− 1

)
for x > 1.

Furthermore, it majorizes u : R → R given by u(x) = Vβ(x, 1− x). By
the direct differentiation, we see that

u′′(x) = p(p− 1)
[
(1 − x)p−2 − βpxp−2

]
, x ∈ (0, 1),

and hence u is concave on (0, x0) and convex on (x0, 1) for some
x0 ∈ (0, 1). This suggests considering the following candidate for w:

w(x) =

{
u(x) if x ∈ (0, x1),

u′(x1)(x − x1) + u(x1) if x ∈ [x1, 1),

where x1 < x0 is a parameter which needs to be specified. To find x1,
we compare the behavior of the left- and the right-hand derivative of
w at 1. Namely, note that (5.6) implies

w(x)−w(1)

x−1
+ (2x−1)p−1w(1)−w(x/(2x−1))

1−x/(2x−1)
= 2w(1)

(2x−1)p−1

(2x−1)−1

for x > 1, so letting x ↓ 1, we get w′(1+) +w′(1−) = 2pw(1), and thus

u′(x1) = w′(1−)≥ w′(1+)+w′(1−)

2
= pw(1) = pu′(x1)(1−x1)+pu(x1).

Now, it will be convenient to switch to the parameter γ, given by
x1 = (1 + γ)−1. Then the above inequality is equivalent to (p− 1)βp ≥
(2−p)γp−1 +γp−2. We assume that we actually have equality here, so,

(5.7) βp =
(2 − p)γp−1 + γp−2

p− 1
.

Note that the expression on the right of (5.7), considered as a function
of γ, is decreasing on (0, (p − 1)−1) and increasing on ((p − 1)−1,∞).
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Furthermore, its minimal value equals (p− 1)−p. Thus, if β is strictly
larger than (p− 1)−1, we have two choices for γ, and in such a case we
pick the smaller one, i.e., γ < (p− 1)−1.

Coming back to b0, we obtain the following candidate for the Bellman
function:

b(x, y) =

{(
γ

γ+1

)p−2

(|x| + |y|)p−1
(
|y| − |x|

p−1

)
if |y| ≤ γ|x|,

|y|p − βp|x|p if |y| > γ|x|.

Now, it is straightforward to check that b satisfies 1◦ (this follows
directly from the homogeneity and the inequality w ≥ u). Furthermore,
some tedious calculations show that the condition 2◦ is also satisfied,
see e.g., [10, page 17]. Therefore, b0 ≤ b. Actually, we have equality
b0(x, y) = b(x, y) for all (x, y), which can be verified with the use of
examples from the previous section, with βp := γ (or just follows from
the above construction). This is the place where we use the fact that we
have chosen smaller γ in (5.7); for the larger choice, the computation of
supn≥0 EV (fn, gn) would not lead to b(x, y), but to a strictly smaller
constant. We have yet another analytic explanation for the smaller
γ’s: the function b corresponding to larger choice would lead to a strict
majorant of b0.

In the case p > 2, we proceed similarly. Let us briefly describe the
main steps of the analysis. Exploitation of the examples of subsec-
tion 5.1 leads us to the inequality β ≥ p − 1. The function u (given
by the same formula as above), restricted to [0, 1], has dual convex-
ity/concavity regions; that is, it is convex for small arguments and
concave for large ones (i.e., close to 1). Thus, it is natural to conjec-
ture that the restriction w|[0,1] (where w is given by (5.5)) is of the
form

w(x) =

{
u′(x1)(x − x1) + u(x1) if x ∈ (0, x1],

u(x) if x ∈ (x1, 1),

for some x1. Passing to γ = 1−x−1
1 as above and analyzing the behavior

of w′ in the neighborhood of 0, we obtain βp ≥ (p− 1)γp−1/(γ+ 2−p).
We assume that both sides are equal. Again, for a given β > p − 1,
there are two γ’s which satisfy the equation, and this time we pick the
larger one. Putting all these facts together, we obtain the candidate :
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(5.8)

b(x, y)=

{
γp−1(γ+1)2−p

γ+2−p (|x|+|y|)p−1
(|y|−(p−1)|x|) if |y|≥γ|x|,

|y|p−βp|x|p if |y|<γ|x|,

where γ is the larger positive root of the equation

βp =
(p− 1)γp−1

γ + 2 − p
.

Similar arguments to those above give b = b0, which completes the
analysis in the case p > 2.

5.3. Burkholder’s function. We are ready to compute the formula
for the general Bellman function B0 introduced in (5.2). Pick a point
(x, y, t) and a pair (f, g) as in the definition of B0(x, y, t). In the case
p = 2, everything is straightforward. We have

E|gn|2 = y2 +

n∑
k=1

| dgk|2 = y2 +

n∑
k=1

| dfk|2

= y2 − x2 + E|fn|2 ≤ y2 − x2 + t,

so B0(x, y, t) ≤ y2 − x2 + t. On the other hand, if we pick any simple
pair (f, g) ∈ M(x, y) for which E|f∞|2 = t, we get equality. Thus, for
p = 2, we have

B0(x, y, t) = |y|2 − |x|2 + t.

Next, let us assume that 1 < p < 2. Directly from the above
considerations, we can write that

B0(x, y, t) ≤ b0(x, y) + βp
pt.

Therefore, in light of (5.7), B0(x, y, t) does not exceed

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + γ−1)2−p(|x| + |y|)p−1
(
|y| − |x|

p−1

)
+ (2−p)γp−1+γp−2

p−1 t if |y| ≤ γ|x|,
|y|p + (2−p)γp−1+γp−2

p−1 (t− |x|p) if |y| > γ|x|.
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Denote this expression by B(x, y, t, γ), and let us minimize it over all
γ ≤ (p− 1)−1. If |y| ≥ (p− 1)−1|x|, then

B(x, y, t, γ) = |y|p + (2−p)γp−1+γp−2

p−1 (t− |x|p)

for all γ. We easily see that

∂B
∂γ (x, y, t, γ) = (2 − p)(p− 1)−1γp−3(−1 + (p− 1)γ) ≤ 0,

and thus the choice γ = (p − 1)−1 is optimal. This calculation also
shows that if |y| < (p− 1)−1|x|, then γ �→ B(x, y, t, γ) is nonincreasing
on (0, |y|/|x|), and hence the minimum is attained on [|y|/|x|, (p−1)−1].
A direct differentiation gives that γ0 which minimizes B is the unique
number γ from that interval, satisfying the equation

(|x|+|y|)p−1

t

(
|y| − |x|

p−1

)
− (1 + γ)p + p

p−1 (1 + γ)p−1 = 0.

Plugging the above optimal choices of γ into the definition of B, we
finally get that

B0(x, y, t) ≤
{ |y|p + (p− 1)−p(t− |x|p) if |y| ≥ (p− 1)−1|x|,
γp
0 t if |y| < (p− 1)−1|x|.

We actually have equality here, which can be verified with the examples
considered in the previous subsection (see also [8]). This gives us the
desired formula for B0, which was originally discovered by Burkholder.

Case p > 2 remains to be dealt with. We proceed analogously
and exploit the function defined by (5.8). In comparison to the case
1 < p < 2, there are no additional arguments, so we leave the details
to the reader. Let us only write down the result: having carried out all
the computations, we end up with

B0(x, y, t) =

{ |y|p + (p− 1)p(t− |x|p) if |y| ≤ (p− 1)|x|,
γp
0 t if |y| > (p− 1)|x|,

where γ0 is the unique γ ∈ [p− 1,∞) satisfying the equation

(|x|+|y|)p−1

t

(|y| − (p− 1)|x|) + p(γ + 1)p−1 − (γ + 1)p = 0.

This completes the analysis.
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