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MOSER’S MATHEMAGICAL WORK ON THE EQUATION
1k + 2k + · · ·+ (m− 1)k = mk

PIETER MOREE

In memory of Alf van der Poorten (1942 2010)

ABSTRACT. If the equation of the title has an integer

solution with k ≥ 2, then m > 1010
6
. Leo Moser showed this

in 1953 by amazingly elementary methods. With the hindsight
of more than 50 years, his proof can be somewhat simplified.
We give a further proof showing that Moser’s result can be
derived from a von Staudt-Clausen type theorem. Based on
more recent developments concerning this equation, we derive
a new result using the divisibility properties of numbers in the
sequence {22e+1 + 1}∞e=0. In the final section we show that
certain Erdős-Moser type equations arising in a recent paper
of Kellner can be solved completely.

1. Introduction. In this paper we are interested in non-trivial
solutions, that is, solutions with k ≥ 2, of the equation

(1) 1k + 2k + · · ·+ (m− 2)k + (m− 1)k = mk.

The conjecture that such solutions do not exist was formulated around
1950 by Paul Erdős in a letter to Leo Moser. For k = 1, one has the
solution 1 + 2 = 3 (and no further solutions). From now on, we will
assume that k ≥ 2. Moser [29] established the following theorem in
1953.

Theorem 1 [29]. If (m, k) is a solution of (1), then m > 1010
6

.

His result has since been improved. Butske et al. [6] have shown by
computing rather than estimating certain quantities in Moser’s original
proof that m > 1.485 · 109 321 155. By proceeding along these lines this
bound cannot be substantially improved. Butske et al. [6, page 411]
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expressed the hope that new insights will eventually make it possible
to reach the benchmark 1010

7

.

The main purpose of this paper is to make Moser’s remarkable proof
of Theorem 1 better known, and, with the hindsight and technological
developments of more than 50 years, to give an even cleaner version
of Moser’s proof. This is contained in Section 2.1 Moreover, we obtain
the following refinement of Moser’s result.

Theorem 2. Suppose that (m, k) is a solution of (1) with k ≥ 2.
Then:

i) m > 1.485 · 109 321 155.

ii) k is even, m ≡ 3 (mod 8), m ≡ ±1 (mod 3);

iii) m− 1, (m+ 1)/2, 2m− 1 and 2m+ 1 are all square-free.

iv) If p divides at least one of the integers in (iii), then p− 1 | k.
v) The number (m2 − 1)(4m2 − 1)/12 is square-free and has at least

4 990 906 prime factors.

In fact, Moser proved (iii) and (iv) of Theorem 2 and weaker versions
of parts (ii) and (v). Readers interested in the shortest (currently
known) proof of Theorem 2 are referred to Moree [25]. The deepest
result used to prove Theorem 2 is Lemma 1. Using a binomial identity
due to Pascal (1654) a reproof of Lemma 1 was given recently by
MacMillan and Sondow [18]. To wit, had Blaise Pascal’s computing
machine from 1642, the Pascaline2, worked like a modern computer,
then Theorem 2 could have already been proved in 1654.

In Section 3 we compare our alternative proof with Moser’s original
proof.

In Section 4 we give a more systematic proof of Moser’s result, which
uses a variant of the von Staudt-Clausen theorem.3 The relevance of
this result for the study of the Erdős-Moser equation was first pointed
out in 1996 by Moree [21] who used the result to show that the Moser
approach can also be used to study the equation 1k+2k+· · ·+(m−1)k =
amk and a ≥ 1, an integer. An improvement of the main result of [21]
will be presented in Section 8.

The reader might wonder which other techniques have been brought
to bear for the study of (1). Such techniques include Bernoulli numbers,
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considering the equation modulo prime powers, analysis (taking k to be
a real, rather than an integer) and continued fraction methods. There
is an extensive literature on the more general equation

1k + · · ·+ (m− 1)k = yn, n ≥ 2,

see, e.g., Bennett et al. [3]. That work incorporates several further
techniques. However, those results do not appear to have any impli-
cations for the study of (1). In Section 5, we give a taste of what can
be done using Bernoulli numbers and considering (1) modulo prime
powers. The main result here is Theorem 1 of [27]. We give a weak-
ened (far less technical) version of this, namely, Lemma 4. Using that
result and an heuristic assumption on the behavior of Sr(a), an heuris-
tic argument validating the Erdős-Moser conjecture can be given [26,
Section 6].

In Section 6, we consider implications for (1) based on analytic
methods, and in particular, the recent work of Gallot, Moree and
Zudilin [11] who obtained the benchmark 1010

7

and further improved

this to 1010
9

by computing 3 · 109 digits of log 2.

Section 7 is the most original part of the paper. Results on divisors
of numbers of the form 22e+1 + 1 are used to show that if (m, k) is a
solution of (1) such that m+2 is only composed of primes p satisfying

p ≡ 5, 7 (mod 8), then m ≥ 1010
16

.

In the final two sections we consider the Erdős-Moser variants

1k + 2k + · · ·+ (m− 1)k = amk,

respectively,

a(1k + 2k + · · ·+ (m− 1)k) = mk

(with a ≥ 1 a fixed integer) and show that the latter equation (arising
in a recent paper by Kellner [16]) can be solved completely for infinitely
many integers a.

This paper is in part scholarly and in part research. Moser (1921-
1970) was a mathematician of the problem solver type. For biblio-
graphic information, the reader is referred to the MacTutor history of
mathematics archive [30] or Wyman [40].
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2. Moser’s proof revisited. Let Sr(n) =
∑n−1

j=0 jr. In what
follows, we assume that

(2) Sk(m) = mk, k ≥ 2,

which corresponds to a non-trivial solution of (1). Throughout this
note, p will be used to indicate primes.

Lemma 1. Let p be a prime. We have

Sr(p) ≡ εr(p) (mod p),

where

εr(p) =

{−1 if p− 1 | r;
0 otherwise.

Proof. Let g be a primitive root modulo p. In case p− 1 � r, we have

Sr(p) ≡
p−2∑
j=0

(gj)r ≡ gr(p−1) − 1

gr − 1
(mod p),

and the numerator is divisible by p. In case p−1 | r, we find by Fermat’s
little theorem that Sr(p) ≡ p− 1 ≡ −1 (mod p), as desired.

Another proof using only Lagrange’s theorem on roots of polynomials
over Z/pZ can be given, see Moree [25]. The most elementary proof
presently known is due to MacMillan and Sondow [18] and is based on
Pascal’s identity (1654), valid for n ≥ 0 and a ≥ 2:

n∑
k=0

(
n+ 1

k

)
Sk(a) = an+1 − 1.

A further proof can be given using the polynomial identity

Xp−1 − 1 ≡
p−1∏
j=1

(X − j) (mod p)
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and Newton’s identities expressing power sums in elementary symmet-
ric polynomials.

Lemma 2. In the case where p is an odd prime or in the case where
p = 2 and r is even, we have Sr(p

λ+1) ≡ pSr(p
λ) (mod pλ+1).

Proof. Every 0 ≤ j < pλ+1 can be uniquely written as j = αpλ + β
with 0 ≤ α < p and 0 ≤ β < pλ. Hence, we obtain by invoking the
binomial theorem,

Sr(p
λ+1) =

p−1∑
α=0

pλ−1∑
β=0

(αpλ + β)r

≡ p

pλ−1∑
β=0

βr + rpλ
p−1∑
α=0

α

pλ−1∑
β=0

βr−1 (mod p2λ).

Since the first sum equals Sr(p
λ) and 2

∑p−1
α=0 α = p(p−1) ≡ 0 (mod p),

the result follows.

Proof of Theorem 2. Suppose that p | m − 1; then using Lemma 1,
we infer that

(3)

Sk(m) =

(m−1)/p−1∑
i=0

p∑
j=1

(j + ip)k

≡ m− 1

p
Sk(p) ≡ m− 1

p
εk(p) (mod p).

On the other hand, m ≡ 1 (mod p), so that by (2) we must have

(4)
m− 1

p
· εk(p) ≡ 1 (mod p).

Hence εk(p) �≡ 0 (mod p), so that from the definition of εk(p), it follows
that εk(p) = −1, and

(5) p | m− 1 implies p− 1 | k.
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Thus, (4) can be put in the form

(6)
m− 1

p
+ 1 ≡ 0 (mod p),

or

(7) m− 1 ≡ −p (mod p)2.

We claim that m− 1 must have an odd prime divisor p and that, hence
by (5), k must be even. It is easy to see that m − 1 > 2. If m − 1
does not have an odd prime divisor, then m − 1 = 2e for some e ≥ 2.
However, by (7), we see that m − 1 is square-free. This contradiction
shows that m− 1 has indeed an odd prime factor p.

We now multiply together all congruences of the type (6), that is,
one for each prime p dividing m − 1. Since m − 1 is square-free, the
resulting modulus is m − 1. Furthermore, products containing two or
more distinct prime factors of the form (m − 1)/p will be divisible by
m− 1. Thus, we obtain

(m− 1)
∑

p|m−1

1

p
+ 1 ≡ 0 (mod m− 1),(8)

or

∑
p|m−1

1

p
+

1

m− 1
≡ 0 (mod 1).(9)

We proceed to develop three more congruences, similar to (9) which,
when combined with (9), lead to the proof of part 1. Equation (2) can
be written in the form

(10) Sk(m+ 2) = 2mk + (m+ 1)k.

Using Lemma 1 and the fact that k is even, we obtain, as before,

p | m+ 1 implies p− 1 | k,(11)

and

m+ 1

p
+ 2 ≡ 0 (mod p).(12)
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From (12), it follows that no odd prime appears with exponent greater
than one in the prime factorization of m+ 1. The prime 2 (according
to H. Zassenhaus ‘the oddest of primes’), requires special attention. If
we inspect (1) with modulus 4 and use the fact that k is even, then
we find that m + 1 ≡ 1 or 4 (mod 8). Now let us assume that we are
in the first case, and we let 2f ‖ m (that is, 2f | m and 2f+1 � m).
Note that f ≥ 3. By an argument similar to that given in (3) we
infer that Sk(m + 1) ≡ (m/2f)Sk(2

f ) (mod 2f). Using Lemma 2, we
see that Sk(m + 1) ≡ (m/2f)Sk(2

f ) ≡ 2f−1 (mod 2f), contradicting
Sk(m + 1) = 2mk ≡ 0 (mod 2f ). Thus, m + 1 contains 2 exactly to
the second power, and hence (12) can be put in the form

(13)
m+ 1

2p
+ 1 ≡ 0 (mod p).

We multiply together all congruences of type (13). The modulus
then becomes (m + 1)/2. Further, any term involving two or more
distinct factors (m+ 1)/(2p) will be divisible by (m+ 1)/2, so that on
simplification we obtain

(14)
∑

p|m+1

1

p
+

2

m+ 1
≡ 0 (mod 1).

We proceed to find two similar equations to (14). Suppose that
p | 2m− 1, and let t = ((2m− 1)/p− 1)/2. Clearly t is an integer, and
m − 1 = tp + (p − 1)/2. We have ak = (−a)k since k is even so that
2Sk((p+ 1)/2) ≡ Sk(p) (mod p) and, hence, by Lemma 1,

Sk

(
p+ 1

2

)
≡ εk(p)

2
(mod p).

It follows that

(15) Sk(m) ≡
t−1∑
i=0

p−1∑
j=1

(j+ ip)k +

(p−1)/2∑
i=1

ik ≡
(
t+

1

2

)
εk(p) (mod p).

On the other hand, 1 ≡ (2m − 1 + 1)k ≡ (2m)k (mod p); hence,
mk �≡ 0 (mod p), so that (2) and (15) imply εk(p) �= 0. Hence, p−1 | k
and, by Fermat’s little theorem, mk ≡ 1 (mod p). Thus, (2) and
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(15) yield −(t + (1/2)) ≡ 1 (mod p). Replacing t by its value and
simplifying, we obtain

(16)
2m− 1

p
+ 2 ≡ 0 (mod p).

Since 2m−1 is odd, (16) implies that 2m−1 is square-free. Multiplying
congruences of the type (16), one for each of the r prime divisors of
2m− 1, yields

2r−1

(
(2m− 1)

∑
p|2m−1

1

p
+ 2

)
≡ 0 (mod 2m− 1).

Since the modulus 2m− 1 is odd, this gives

(17)
∑

p|2m−1

1

p
+

2

2m− 1
≡ 0 (mod 1).

Finally, we obtain a corresponding congruence for primes p dividing
2m+1, namely, (19) below. For this purpose, we write (2) in the form

(18) Sk(m+ 1) = 2mk.

Suppose p | 2m+1. Set v = ((2m+1)/p−1)/2. Clearly v is an integer.
We have m = pv + (p − 1)/2 and find Sk(m + 1) ≡ (v + (1/2))εk(p)
(mod p). From this and (18), it is easy to infer that εk(p) = −1, and
so v + (1/2) ≡ −2 (mod p). We conclude that

p | 2m+ 1 implies p− 1 | k.

Replacing v by its value and simplifying, we obtain

2m+ 1

p
+ 4 ≡ 0 (mod p).

Note that this implies that 2m+1 is square-free. Reasoning as before,
we obtain

(19)
∑

p|2m+1

1

p
+

4

2m+ 1
≡ 0 (mod 1).
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If we now add the left hand sides of (9), (14), (17) and (19), we get
an integer, at least 4. By an argument similar to that showing 2 � m,
we show that 3 � m (but in this case we use Lemma 2 with p = 3 and
3λ ‖ m and the fact that k must be even). No prime p > 3 can divide
more than one of the integers m−1, m+1, 2m−1 and 2m+1. Further,
since m ≡ 3 (mod 8) and 3 � m, 2 and 3 divide precisely two of these
integers. We infer that M1 = (m− 1)(m+ 1)(2m− 1)(2m+ 1)/12 is a
square-free integer. We deduce that

(20)
∑
p|M1

1

p
+

1

m− 1
+

2

m+ 1
+

2

2m− 1
+

4

2m+ 1
≥ 4− 1

2
− 1

3
= 3

1

6
.

One checks that (17) has no solutions with m ≤ 1 000. Thus, (20)
yields (with α = 3.16)

∑
p|M1

(1/p) > α. From this, it follows that, if

(21)
∑
p≤x

1

p
< α,

then m4/3 > M1 >
∏

p≤x p, and hence

(22) m > 31/4eθ(x)/4,

with θ(x) =
∑

p≤x log p, the Chebyshev θ-function. Since, for example,

(21) is satisfied with x = 1 000, we find that m > 10103 and infer from
(20) that we can take α = 19/6 − 10−100 in (21). Next one computes
(using a computer algebra package, say PARI) the largest prime pk
such that

∑
p≤pk

(1/p) < 19/6, with p1, p2, . . . the consecutive primes.
Here one finds that k = 4 990 906 and

4 990 906∑
i=1

1

pi
= 3.166 666 658 810 172 858 4< 3

1

6
− 10−9.

This completes the proof of part 1 of the theorem; the remaining parts
of the theorem have been proved along the way.

Remark 1. Since, for a solution of (1), (m2 − 1)(4m2 − 1)/12 has at
least 4 990 906 distinct prime factors, it is perhaps reasonable to expect
that each of the factors m − 1, m + 1, 2m− 1 and 2m + 1 must have
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many distinct prime factors. Brenton and Vasiliu [5], using the bound
given in part 1 of Theorem 2, showed that m− 1 has at least 26 prime
factors. Gallot et al. [11] increased this, using Theorem 5, to 33.

Remark 2. Moser [1] considered modulo m − 1, m + 1, 2m − 1 and
2m + 1. Sondow and MacMillan [38] considered the equation also
modulo (m− 1)2 and obtained some further information (this involves
the Fermat quotient).

3. Comparison of the proof with Moser’s. In this section we
compare and contrast the proof of Theorem 2 with Moser’s proof of
Theorem 1.

Moser used only Lemma 1, not Lemma 2. Consequently, he concluded
that either m ≡ 3 (mod 8) or m ≡ 0 (mod 8). In the first case we
followed his proof, but in the second case one has to note that we
cannot use (14). Letting M2 = (m− 1)(2m− 1)(2m+ 1), we get from
(9), (17), (19),

(23)
∑
p|M2

1

p
+

1

m− 1
+

2

2m− 1
+

4

2m+ 1
> 3− 1

3
.

However, since 2 � M2, (23) is actually a stronger condition on m than
is (20).

The idea to use 3 � m, leading to a slight improvement for the bound
on m, is taken from Butske et al. [6] and not present in Moser’s proof.
(Actually, they consider the cases 3 � m and 3 | m separately. We show
that only 3 � m can occur.)

By using some prime number estimates from Rosser, Moser deduces
that (21) holds with x = 107 and α = 3.16. In his argument, he claims
that, by direct computation, one sees that (21) holds with x = 1 000
and α = 2.18. This is not true (as pointed out to me by Buciumas and
Havarneanu). However, replacing 2.18 by 2.2 in Moser’s equation (21),
one sees that his proof still remains valid. The present day possibilities
of computers allow us to proceed by direct computation, rather than
resorting to prime number estimates as Moser was forced to do.

The advantage of the proof given in Section 2 is that it shows, in
contrast to Moser’s proof and Butske et al.’s variation thereof, that
every non-trivial solution satisfies the crucial inequality (20).
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4. A second proof using a von Staudt-Clausen type theorem.
In this section we show that Moser’s four formulas (9), (14), (17) and
(19) can be easily derived from the following theorem. Indeed, using
it, a fifth formula can be derived, namely (26), below.

Theorem 3 (Carlitz-von Staudt, 1961). Let r, y be positive integers.
Then:

(24) Sr(y) =

y−1∑
j=1

jr =

{
0 (mod y(y − 1)/2) if r is odd;

−∑
p−1|r, p|y(y/p) (mod y) otherwise.

Carlitz [7] gave a proof of Theorem 3 using finite differences and
stated that the result is due to von Staudt. In the case where r is odd,
he claims that Sr(y)/y is an integer, which is not always true (it is true
though that 2Sr(y)/y is always an integer). The author [20] gave a
proof of a generalization to sums of powers in arithmetic progression
using the theory of primitive roots. Kellner [15] gave a reproof for
even r only using Stirling numbers of the second kind. For the easiest
proof known and some further applications of the Carlitz-von Staudt
theorem, we refer the reader to Moree [25].

Second proof of Theorem 2. We will apply Theorem 3 with r = k.

In case k is odd, we find by combining (24) (with y = m) with (1)
and using the coprimality of m and m− 1, that m = 2 or m = 3, but
these cases are easily excluded. Therefore, k must be even.

Take y = m− 1. Then, using (1), the left hand side of (24) simplifies
to

Sk(m− 1) = 1k + 2k + · · ·+ (m− 2)k

= mk − (m− 1)k

≡ 1 (mod m− 1).

We get from (24) that

(25)
∑

p|m−1
p−1|k

(m− 1)

p
+ 1 ≡ 0 (mod m− 1).
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Suppose there exists a p | m − 1 such that p − 1 � k. Reducing both
sides modulo p, we get 1 ≡ 0 (mod p). This contradiction shows that,
in (25), the condition p− 1 | k can be dropped, and thus we obtain (8).
From (8), we see that m − 1 must be square-free and also we obtain
(9).

Take y = m. Then, using (1) and 2 | k, we infer from (24) that

(26)
∑
p−1|k
p|m

1

p
≡ 0 (mod 1).

Since a sum of reciprocals of distinct primes can never be a positive
integer, we infer that the sum in (26) equals zero and hence conclude
that, if p−1 | k, then p � m. We conclude, for example, that (6,m) = 1.
Now, on considering (1) with modulus 4, we see that m ≡ 3 (mod 8).

Take y = m+ 1. Then, using (1) and the fact that k is even, the left
hand side of (24) simplifies to

Sk(m+ 1) = Sk(m) +mk = 2mk ≡ 2 (mod m+ 1).

We obtain ∑
p|m+1
p−1|k

(m+ 1)

p
+ 2 ≡ 0 (mod m+ 1),

and by reasoning as in the case y = m − 1, it is seen that p | m + 1
implies p − 1 | k, and thus (14) is obtained. From (14) and m ≡ 3
(mod 8), we derive that (m+ 1)/2 is square-free.

Take y = 2m− 1. On noting that

Sk(2m− 1) =

m−1∑
j=1

(jk + (2m− 1− j)k) ≡ 2Sk(m)

≡ 2mk (mod 2m− 1),

we find that

(27)
∑

p|2m−1
p−1|k

(2m− 1)

p
+ 2mk ≡ 0 (mod 2m− 1).
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Since m and 2m − 1 are coprime, we infer that, if p | 2m − 1, then
p − 1 | k, mk ≡ 1 (mod p), and furthermore that 2m − 1 is square-
free. It follows from the Chinese remainder theorem that 2mk ≡ 2
(mod 2m− 1), and hence from (27) we obtain (17).

Take y = 2m+ 1. Noting that

Sk(2m+ 1) =
m∑
j=1

(jk + (2m+ 1− j)k) ≡ 2Sk(m+ 1)

= 4mk (mod 2m+ 1)

and proceeding as in the case y = 2m−1, we obtain (19) and the square-
freeness of 2m+1. To finish the proof, we proceed as in Section 2 just
below (19).

With some of the magic behind the four Moser identities revealed,
the reader might be well tempted to derive further identities. A typical
example would start from

(28) 4k − 1k − 2k − 3k ≡ −
∑
p−1|k
p|m−4

(m− 4)

p
(mod m− 4).

For simplicity, let us assume thatm ≡ 2 (mod 3). We have (6,m−4) =
1. For this to lead to a further equation, we need the left hand side to
be a constant modulo m − 4. If we could infer that p | m − 4 implies
p − 1 | k, then the left hand side would equal −2 (mod m − 4), and
we would be in business. (For the reader familiar with the Carmichael
function λ, this can be more compactly formulated as λ(m − 4) | k.)
Unfortunately, a problem is caused by the fact that the left hand side
could be divisible by p. Thus, all we seem to obtain is that if m ≡ 2
(mod 3), and λ(m− 4) | k or 4k − 1k − 2k − 3k and m− 4 are coprime,
then ∑

p|m−4

1

p
− 2

m− 4
≡ 0 (mod 1).

In Section 7, we will see that, if we replace m− 4 by m+ 2, we can do
a little better, the reason being that, in this case, 2k+1 + 1 appears on
the left hand side, and numbers of this form have only a restricted set
of possible prime factors.
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5. Bernoulli numbers and a cascade process. Recall that the
Bernoulli numbers Bk are defined by the power series

t

et − 1
=

∞∑
k=0

Bkt
k

k!
.

They are rational numbers and can be written as Bk = Uk/Vk, with
(Uk, Vk) = 1. One has B0 = 1, B1 = −1/2 and B2j+1 = 0 for
j ≥ 1. By the von Staudt-Clausen theorem we can take for k ≥ 2
even Vk =

∏
p−1|k p. The Kummer congruences state that if k and r

are even and k ≡ r �≡ 0 (mod p − 1), then Bk/k ≡ Br/r (mod p). A
prime p will be called regular if it does not divide any of the numerators
Uk with k even and ≤ p− 3. Otherwise, it is said to be irregular. The
first few irregular primes are 37, 59, 67, 101, . . . .

The power sum Sr(n) can be expressed using Bernoulli numbers. One
has, see e.g., [33, (2.1)],

Sr(n) =

r∑
j=0

(
r

j

)
Br−j

nj+1

j + 1
.

Voronoi in 1889, see, e.g., [33, Theorem 2.8], proved that if k is even
and ≥ 2, then VrSr(n) ≡ Ukn (mod n2). From this result, we infer
that, for a solution (k,m) of [1], we must have m | Uk, and thus
in particular, νp(Uk) ≥ νp(m), where we put νp(m) = f if pf ‖ m.
By a more elaborate analysis, Moree et al. [27] improved this to
νp(Bk/k) ≥ 2νp(m). It shows (by the von Staudt-Clausen theorem)
that if p | m, then p − 1 � k (a conclusion we already reached using
identity (26)). Invoking the Kummer congruences, we then obtain the
following result.

Lemma 3. Let (k,m) be a solution of (1) with k ≥ 2 and even. If
p | m, then p is irregular.

Let us call a pair (r, p) with p a regular prime and 2 ≤ r ≤ p−3 even,
helpful if, for every a = 1, . . . , p− 1, we have Sr(a) �≡ ar (mod p).

Lemma 4. If (r, p) is a helpful pair and (k,m) a solution of (1) with
k even, then we have k �≡ r (mod p− 1).
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Proof. Assume that k ≡ r (mod p− 1). By the previous lemma, we
must have p � m. Now write m = m0p + b. Thus, 1 ≤ b ≤ p − 1. We
have, modulo p, Sk(m) ≡ Sr(m) ≡ m0Sr(p) + Sr(b) ≡ Sr(b). Thus, if
(1) is satisfied, we must have Sr(b) ≡ br (mod p). By the definition of
a helpful pair, this is impossible.

Since 2 | k, and (2, 5) is a helpful pair, we infer that 4 | k. Since (2, 7)
and (4, 7) are helpful pairs, it follows that 6 | k. From 4 | k and the
fact that (4, 17) and (12, 17) are helpful pairs, it follows that 8 | k. We
thus infer that 24 | k. It turns out that this process can be continued
to deduce that more and more small prime factors must divide k; for a
detailed account with many tables, see [26]. Given an irregular prime p
and 2 ≤ r ≤ p−3 even, one would heuristically expect that it is helpful
with probability (1 − 1/p)p−1 which tends to 1/e, assuming that the
values Sr(a) are randomly distributed modulo p; this is supported by
current numerical data.

Moree et al. [27], using good pairs (of which the helpful pairs are a
special case), showed that N1 := lcm (1, 2, . . . , 200) divides k. Kellner
[14] showed in 2002 that also all primes 200 < p < 1000 divide k.
Actually Moree, et al. [27, page 814] proved a slightly stronger result
which, combined with Kellner’s, shows that N2 | k with

N2 = 28 · 35 · 54 · 73 · 112 · 132 · 172 · 192 · 23 · · ·997 > 5.7462 · 10427.

An heuristic argument can be given, suggesting that if Lv := lcm (1, 2,
. . . , v) divides k, with tremendously high likelihood we can infer that
Lw divides k, where w is the smallest prime power not dividing Lv. It
suffices that v ≥ 11. To deduce that k is divisible by 24 is delicate,
but once one has Lv | k, there is an explosion of further helpful pairs
one can use to establish divisibility of k by a larger integer. To add
the first prime power w not dividing Lv, one needs a number of helpful
pairs that is roughly linear in v, whereas an exponential number (in v)
is available. However, the required computation time increases sharply
with w. This heuristic argument is the most convincing known to the
author in support of the Erdős-Moser conjecture; details may be found
in [26], the extended version of [27].

Given a fixed integer a, one can try the same approach to study the
equation Sk(m) = amk. Again, one sees that once one manages to
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infer, for example, that 120 | k, one can show that there must be larger
and larger divisors. For many a, however, this ‘cascade process’ does
not seem to ‘take off,’ and it remains unknown whether all solutions
with k ≥ 2, if any, satisfy 120 | k, for example.

If n =
∏

i p
ei
i denotes the canonical prime factorization of n, then

Ω(n) =
∑

ei is the total number of prime divisors of n. Urbanowicz
[39] proved a result which implies that, given an arbitrary t, there
exists an integer mt such that, if (k,m) is a solution of (1) with k ≥ 2
and m ≥ mt, then Ω(k) ≥ t.

6. The analytical approach and continued fractions. Com-
paring Sk(m) with the appropriate integrals, it is easy to see that the
ratio k/m must be bounded. A more refined approach gives

Sk(m) =
(m− 1)k

1− e−(k+1)/(m−1)

(
1 +O

(
1√
m

))
.

On equating the left-hand side to mk and using (1−1/m)m = exp(−1+
O(m−1)), one concludes that, as m → ∞, we have

k

m
= log 2 +O

(
1√
m

)
.

By a rather more delicate analysis, Gallot et al. [11] obtain that, for
m > 109, one has

k

m
= log 2

(
1− 3

2m
− Cm

m2

)
, where 0 < Cm < 0.004.

As a corollary, this gives that, if (k,m) is a solution of (1) with k ≥ 2
and even, then 2k/(2m− 3) is a convergent pj/qj of log 2 with j even.
This approach was first explored in 1976 by Best and te Riele [4] in
their attempt to solve a related conjecture by Erdős, see also Guy [12,
D7]. The main result of [11] reads as follows: where given N ≥ 1, we
define

P(N) = {p : p− 1 | N} ∪ {p : 3 is a primitive root modulo p}.

Theorem 4. Let N ≥ 1 be an arbitrary integer. Let

log 2

2N
= [a0, a1, a2, . . . ] = a0 +

1

a1 +
1

a2+···
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be the (regular) continued fraction of (log 2)/(2N), with pi/qi =
[a0, a1, . . . , ai] its ith convergent.

Suppose that the integer pair (m, k) with k ≥ 2 satisfies (1) with
N | k. Let j = j(N) be the smallest even integer such that:

a) aj+1 ≥ 180N − 2;

b) (qj , 6) = 1;

c) νp(qj) = νp(3
p−1−1)+νp(N)+1 for all primes p ∈ P(N) dividing

qj.

Then m > qj/2.

Note that if, for some integer N , we could prove that if all continued
fraction digits ai satisfy ai ≤ 100N , say, and N | k, then (1) would
be resolved! However, for a generic number, ξ ∈ [0, 1], that is not a
rational, one can show that the sequence of ai is not bounded above.
The Gauss-Kuz’min statistics make this more precise and assert that
the probability that a given term in the continued fraction expansion
of a generic ξ is at least b, equals log2(1 + 1/b). Thus, for a sufficiently
large N , one expects that j(N) is quite large. This, in combination
with the exponential growth of qj then ensures a large lower bound for
m. (The numbers (log 2)/2N are expected to be generic.)

Conditions b) and c) are of lesser importance. It seems that condition
b) is satisfied with probability 1/2. In practice, sometimes condition
a) is satisfied, but not b) or c), and this leads to a larger lower bound
for m. Condition c) is derived using the Moser method, namely, by
analyzing the equation

(29)
2(3k − 1)(m− 1)k

2m− 3
≡ −

∑
p|2m−3
p−1|k

1

p
(mod 1),

that a solution (m, k) of (1) must satisfy.

We leave it as a challenge to experts in metric theory of contin-
ued fractions to determine the expected value of qj(N) on replacing
(log 2)/(2N) above by a generic number ξ. Gallot et al. [11] expect
that conditions a) and b) lead to E(log qj(N)(ξ)) ∼ c1N and, taking

into account also condition c), E(log qj(N)(ξ)) ∼ c2N logβ N for some
positive constants c1, c2 and β.
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Crucial in applying the result is a very good algorithm to determine
log 2 with many decimals of accuracy. Indeed, it is a well-known
result of Lochs, that if one knows a generic number up to n decimal
digits, then one can accurately compute approximately 0.97n continued
fraction digits. For example, knowing 1000 decimal digits of π allows
one to compute 968 continued fraction digits.

Applying Theorem 4 with N = 28 · 35 · 53 or N = 28 · 35 · 54, and
using that N | N2 and N2 | k, Gallot et al. obtained the current world
record:

Theorem 5. If an integer pair (m, k) with k ≥ 2 satisfies (1), then

m > 2.713 9 · 10 1 667 658 416 > 1010
9

.

Gallot et al. argue that, assuming one can compute log 2 with arbi-
trary precision, applying Theorem 4 with N = N2 should give rise to
m > 1010

400

.

Interestingly, the results obtained by invoking Bernoulli numbers
(‘arithmetic’) and analysis seem to be completely unrelated (‘the arith-
metic does not feel the analysis’). This strongly suggests that the
Erdős-Moser conjecture ought to be true.

7. A new result. This section focuses on new research; familiarity
with the theory of divisors of second order sequences is helpful. The
reader is referred to Ballot [2] or Moree [24] for more introductory
accounts.

Let S be an infinite sequence of positive integers. We say that a prime
p divides the sequence if it divides at least one of its terms. Here we
will be interested in the sequence S2 := {22e+1+1}∞e=0. It can be shown
that p > 2 divides S2 if and only if ord2(p) ≡ 2 (mod 4), with ordg(p)
(with p � g) the smallest positive integer t such that gt ≡ 1 (mod p).
The set of these primes is known to have natural density 7/24 [22].
Furthermore, if ord2(p) ≡ 2 (mod 4), then

(30) p|22e+1 + 1 if and only if 2e ≡ ord2(p)

2
− 1 (mod ord2(p)).
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In some coding theoretical work the sequence S2 and its variants play
an important role, as in [8, 13] and similarly in the study of the Stufe
of cyclotomic fields [9, 22] and the study of Fermat varieties [31, 37].

If m + 2 is coprime with S2, then from (33) and 2 | k we can infer

a fifth identity of Moser type, (32). This then leads to m > 1010
11

for
such m. We now consider the situation in greater detail.

Theorem 6. Let N ≡ 0 (mod 24) be an arbitrary integer. Suppose
that (m, k) is a solution of (1) with

k ≥ 2, N | k and m < 1010
11

.

Then m+ 2 has a prime divisor p > 3 such that:

1) (ord2(p), N) = 2;

2) k ≡ ord2(p)/2− 1 (mod ord2(p)).

In the case where m ≡ 2 (mod 3), we can replace 1010
11

by 1010
16

. In
the case N = N2, we have p ≥ 2 099.

We first prove a corollary.

Corollary 1. Suppose every prime divisor p > 3 of m + 2 satisfies
p ≡ 5, 7 (mod 8). Then

(31) m ≥
{
1010

16

if 3 � m+ 2;

1010
11

if 3 | m+ 2.

Proof. Using the supplementary law of quadratic reciprocity, (2/p) =

(−1)(p
2−1)/8, one sees that, if p ≡ 5, 7 (mod 8), then ord2(p) �≡ 2

(mod 4). Thus, condition 1 is not satisfied, as for it to be satisfied we
must have ord2(p) ≡ 2 (mod 4).

Put
P (N) = {p > 3 : (ord2(p), N) = 2}.

We will study the set P (N) in greater detail with the ultimate goal
of studying the N -good integers, that is, the odd integers n having no
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prime divisors in P (N). Note that, in the proof of Corollary 1, we
established that integers composed only of primes p ≡ 5, 7 (mod 8) are
N -good (with 24 | N).

Corollary 2. Let N ≡ 0 (mod 24) be an arbitrary integer. If (m, k)
satisfies (1), N |k and m+2 is N -good, then m satisfies inequality (31).

If p is to be in P (N), then p ≡ 1 (mod 8) or p ≡ 3 (mod 8). In
the latter case, we have ord2(p) ≡ 2 (mod 4). In the former case, it is
not necessarily so that ord2(p) ≡ 2 (mod 4), and numerically there is
a strong preponderance of primes p ≡ 3 (mod 8) in P (N). Indeed, we
have the following result.

Lemma 5. The relative density of primes p ≡ 1 (mod 8) satisfying
ord2(p) ≡ 2 (mod 4) within the set of primes p ≡ 1 (mod 8) is 1/6.

Proof. We have seen that, if ord2(p) ≡ 2 (mod 4), then p ≡ 1, 3
(mod 8). If p ≡ 3 (mod 8), then ord2(p) ≡ 2 (mod 4). From this,
the fact that δ(ord2(p) ≡ 2 (mod 4)) = 7/24 and the prime number
theorem for primes in arithmetic progression, we infer that the density
of primes p ≡ 1 (mod 8) is such that ord2(p) ≡ 2 (mod 4) equals
(7/24) − (1/4) = (1/24). The sought for relative density is then
(1/24)/(1/4) = 1/6.

Thus, if p ≡ 3 (mod 8), then ord2(p) ≡ 2 (mod 4) and, if p ≡ 1
(mod 8), then in 1/6th of the cases we have ord2(p) ≡ 2 (mod 4).

A further observation concerning the set P (N) is related to Sophie
Germain primes. A prime q such that 2q + 1 is a prime, is called a
Sophie Germain prime. Let qM denote the largest prime factor of M .

Lemma 6. Let N ≡ 0 (mod 24) be an arbitrary integer. If q is a
Sophie Germain prime, q ≡ 1 (mod 4) and q and N are coprime, then
p = 2q + 1 ∈ P (N).

Proof. The assumptions imply that (2/p) =−1 and, since p> 3, we
infer that ord2(p)=2q. Since (ord2(p), N)=(2q,N)=2, we are done.
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There are 42 primes p in P (N2) not exceeding 10 000. Of those 7
primes, p are such that (p−1)/2 is not Sophie Germain, the smallest one
being 7 699. However, the Sophie Germain primes have natural density
zero, whereas as we shall see P (N) has positive natural density.

Given a rational number g such that g /∈ {−1, 0, 1}, the natural
density δg(d) of the set of primes p such that the order of g (mod p) is
divisible by d is known to exist and can be computed, see e.g., Moree
[23]. Using inclusion and exclusion, one then finds that the set P (N)
has natural density

δ(N) =
∑
d|N0

(δ2(2d)− δ2(4d))μ(d),

where N0 is the product of the odd prime divisors dividing N and μ
denotes the Möbius function. By Moree [23, Theorem 2], we then find
that, for odd d,

δ2(2d)− δ2(4d) =
7

24

∏
p|d

p

p2 − 1
,

and hence

δ(N) =
7

24

∑
d|N0

μ(d)
∏
p|d

p

p2 − 1
=

7

24

∏
p|N0

(
1− p

p2 − 1

)
,

where we used that a multiplicative function f satisfies∑
d|N0

μ(d)f(d) =
∏

p]midN0

(1− f(p)).

Taking N = N2, one finds that

δ(N2) =
7

24

∏
2<p≤1000

(
1− p

p2 − 1

)
≈ 0.043 578 833 . . . .

By a result of Wiertelak, quoted as Theorem 1 in [23], we have

∑
p≤x

p/∈P (N)

1 = (1− δ(N))
x

log x
+ON

(
x

log2 x

)
,
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where the implicit constant may depend on N . From this result and
[10, Proposition 4], we then infer that asymptotically the number of
integers n ≤ x that are N -good, NG(x), satisfies

NG(x) ∼ cNx log−δ(N) x,

where

cN =
1

Γ(1 − δ(N))
lim
x→∞

∏
p≤x

(
1− 1

p

)1−δ(N)(
1− χN (p)

p

)−1

,

with χN (p) = 0 if p = 2 or p is in P (N) and 1 otherwise. (As usual Γ
denotes the Gamma-function.) TakingN = N2, a computer calculation
suggests that cN2 ≈ 0.54.

Now, if we have a sequence of random integers nj growing roughly as
eβj for some constant β > 0, the integer nj is N -good with probability

cN log−δ(N) nj ≈ cN (βj)−δ(N). The expected number of N -good nj

with j ≤ x is then approximately

cN
∑
j≤x

(βj)−δ(N) ∼ cN
(βx)1−δ(N)

(1− δ(N))β
.

The result that 2k/(2m− 3) is a convergent pj/qj of log 2 with j even
and the result of Lévy [17] that, for a generic ξ ∈ [0, 1] that is not a
rational

lim
j→∞

log qj(ξ)

j
=

π2

12 log 2
≈ 1.18,

leads us to expect that the sequence mj of potential solutions (kj ,mj)
to (1) coming from this result, is of exponential growth. Thus, of the
potential solutions (mj , kj), with j ≤ x, one expects about x1−δ(N2),
that is, roughly x0.96, to be N2-good. For those, (31) holds with
m = mj . Thus, if there would be, say, 1010 potential solutions with

m ≤ 1010
11

, then one expects roughly 3 · 109 to be N2-good, and those
can be excluded by Corollary 2.

Remark 3. Given positive integers a, b, c, d, the density of primes
p ≡ c (mod d) such that p | {ae + be}∞e=0 is known, see Moree and
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Sury [28]. Since S2 = {2 · 4e + 1}∞e=0, that result cannot be applied to
establish Lemma 5.

Proof of Theorem 6. The idea of the proof is to show that, if, for
every prime divisor p > 3 of m + 2, at least one the conditions 1 or 2
is not satisfied, then the identity

(32)
∑

p|m+2

1

p
+

3

m+ 2
≡ 0 (mod 1)

holds. Using this, we then show that m is bigger than the bound in the
theorem; this is a contradiction. As usual, we make heavy use of the
fact that k must be even.

We start with the equation

(33) 2k+1 + 1 ≡ −
∑
p−1|k
p|m+2

(m+ 2)

p
(mod m+ 2),

found on noting that Sk(m + 2) = 2mk + (m + 1)k ≡ 2k+1 + 1
(mod m + 2) and on invoking Theorem 3. Suppose that p | m + 2.
The idea is to reduce (33) modulo p (except if p = 3, then we reduce
modulo 9).

If p = 3, then using 6 | k, we see that 2k+1 + 1 ≡ 3 (mod 9), and we
infer that 32 ‖ m+2, that is, we must have m ≡ 7, 16 (mod 27). Next
assume p > 3.

First assume that ord2(p) �≡ 2 (mod 4). Then p does not divide S2.
Thus, the right hand side of (33) is non-zero modulo p, and this implies
that p− 1 | k and p2 � m+ 2, and hence 2k+1 + 1 ≡ 3 (mod p).

Next, assume that ord2(p) ≡ 2 (mod 4), and condition 1 is not
satisfied. Then ord2(p) and N have an odd prime factor in common,
and by (30) (with e = k/2) we get a contradiction to the assumption
N | k.
Finally, assuming that condition 1 is satisfied but not condition 2, the

right hand side of (33) is non-zero modulo p, and the same conclusion
as before holds. By the Chinese remainder theorem we then infer that
2k+1+1 ≡ 3 (mod m+2), and hence from (33) we see that (32) holds.
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Put M3 = (m2 − 1)(4m2 − 1)(m + 2). By part 2 of Theorem 2 we
infer that, amongst the numbers m− 1, m+1, m+2, 2m− 1, 2m+1,
no prime p ≥ 7 occurs more than once as divisor, the prime 2 occurs
precisely twice, the prime 3 at most three times and the prime 5 at
most two times. Using this, we obtain, on adding Moser’s equations
(9), (14), (17) and (19) to (32):

(34)
∑
p|M3

1

p
+

1

m− 1
+

2

m+ 1
+

2

2m− 1
+

4

2m+ 1
+

3

m+ 2
≥ 109

30
,

where
109

30
= 5− 1

2
− 2

3
− 1

5
= 3.633 333 333 333 . . . .

Using the estimate

∑
p≤x

1

p
< log log x+ 0.2615 +

1

log2 x
for x > 1,

due to Rosser and Schoenfeld [35, (3.20)], we find that
∑

p≤β 1/p <

3.633 32 with β = 4.33 · 1012. From another paper by the same authors
[36] we have

|θ(x) − x| < x

40 logx
, x ≥ 678 407.

Hence,

log(4m5) > log(N3) > log
∏
p≤β

p = θ(β) > 0.999β,

from which we infer that m ≥ 1010
11

.

In the case where m ≡ 2 (mod 3) there are precisely two of the five
terms m− 1, m + 1, 2m− 1, 2m+ 1 and m + 2 divisible by 3, and in
(34) we can replace 109/30 by 109/30 + 1/3 = 119/30 = 3.966 666 . . . .

In that case we can take β = 4.425 · 1017, and this leads to m ≥ 1010
16

.

The smallest two primes in P (N2) are 2 027 and 2 099. For p = 2 027,
we can actually show that condition 2 is not satisfied. To this end,
we must show that k �≡ 1 012 (mod 2 026). Computation shows that
(1 012, 6 079), (3 038, 6 079) and (5 064, 6 079) are helpful pairs. By
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Lemma 4, it then follows that k �≡ 1 012 (mod 2 026). The smallest
prime that possibly satisfies both condition 1 and 2 is hence 2 099.

Remark 4. We leave it as an exercise to the reader to show that (31)
can be refined to

(35) m ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1010
20

if 3 � m+ 2; 5 � m+ 2

1010
16

if 3 � m+ 2; 5 | m+ 2

1010
14

if 3 | m+ 2; 5 � m+ 2

1010
11

if 3 | m+ 2; 5 | m+ 2.

In the same vein, one can show that, if (m, k) satisfies (1), k ≥ 2 and

m ≡ ±1 (mod 15) or m ≡ ±1 (mod 21), then m ≥ 1010
20

. If, e.g.,
m ≡ 1 (mod 15), then the sum in the left hand side of (9) exceeds 1,
so it must be at least two. We infer that (20) holds with 3.1666 . . .

replaced by 4.1666 . . . . This then leads to m ≥ 1010
20

. The remaining
cases are similar (they all lead to (20) with 3.1666 . . . replaced by
4.1666 . . . ).

Remark 5. Using the methods from Bach et al. [1], it should be
possible to compute the largest β such that

∑
p≤β 1/p < 109/30,

respectively, 119/30 exactly. They found, e.g., that the prime p0 =
180 124 123 005 660 046 7 is the largest one such that

∑
p≤p0

1/p < 4.

8. The generalized Erdős-Moser conjecture. The Erdős-Moser
conjecture has the following generalization.

Conjecture 1. There are no integer solutions (m, k, a) of

(36) 1k + 2k + · · ·+ (m− 1)k = amk

with k ≥ 2, m ≥ 2 and a ≥ 1.

In this direction the author proved in 1996 [21] that (36) has no

integer solutions (a,m, k) with k > 1 and m < max(1010
6

, a · 1022).
With the hindsight of more than 10 years this can be improved.
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Theorem 7. Equation (36) has no integer solutions (a,m, k) with

k ≥ 2, m < max
(
109·10

6

, a · 1028).

Proof. (In this proof references to propositions and lemmas are
exclusively to those in [21].) The Moser method yields that 2 | k
and gives the following four inequalities:

∑
p−1|k
p|m−1

1

p
+

a

m− 1
≥ 1,

∑
p−1|k
p|m+1

1

p
+

a+ 1

m+ 1
≥ 1.(37)

∑
p−1|k
p|2m−1

1

p
+

2a

2m− 1
≥ 1,

∑
p−1|k
p|2m+1

1

p
+

2(a+ 1)

2m+ 1
≥ 1.(38)

Since p | m implies p− 1 � k (Proposition 9), we infer that (6,m) = 1.
Using this, we see that M1 = (m2 − 1)(4m2 − 1)/12 is an even integer.
Since no prime > 3 can divide more than one of the numbers m − 1,
m+1, 2m−1 and 2m+1, and since 2 and 3 divide two of these numbers,
we find on adding the inequalities that

∑
p−1|k
p|M1

1

p
+

a

m− 1
+

a+ 1

m+ 1
+

2a

2m− 1
+

2(a+ 1)

2m+ 1
≥ 4− 1

2
− 1

3
= 3

1

6
.

Using that a(k + 1) < m < (a + 1)(k + 1) (Proposition 2), we see
that in the latter equation the four terms involving a are bounded
above by 6/(k + 1). Since k ≥ 1022 (Lemma 2), we can proceed as
in the proof of Theorem 2 and find the same bound for m, namely,
m > 1.485 · 109321155.
Earlier it was shown that, if k > 1, then k ≥ 1022. To this end,

Proposition 6 with C = 3.16, s = 664 579 = π(107) and n the
200th highly composite number was applied. Instead, we apply it with
C = 19/6−10−10, s = 4 990 906 and n the 259th composite number c250
(this has the property that the number of divisors of c259 < s, whereas
the number of divisors of c260 exceeds s). Since n = c259 > 5.583 4·1027,
it follows that k ≥ 2n > 1028. Since m > a(k + 1), the proof is
completed.



THE ERDŐS-MOSER EQUATION REVISITED 1733

Remark 6. The above proof shows that if (36) has a solution with
k ≥ 2, m ≥ 2 and a ≥ 1, then m must be odd. An easy reproof of this
was given by MacMillan and Sondow [19].

Remark 7. The reader might wonder whether the method of Gallot
et al. can be applied here as well to break the 1010

7

barrier. For a
fixed integer a, this is possible if one manages to establish that N | k
with N large enough. Gallot et al. showed that 2k/(2m− 2a− 1) is a
convergent with even index of log(1 + 1/a) for m large enough. For a
given a, this can be made effective, establishing that N | k along the
lines of Section 5 is not always possible (see the last paragraph of that
section).

Challenge. Reach the benchmark 1010
7

in Theorem 7.

9. The Kellner-Erdős-Moser conjecture. Kellner [16] con-
jectured that, if k,m are positive integers with m ≥ 3, the ratio
Sk(m + 1)/Sk(m) is an integer if and only if (k,m) ∈ {(1, 3), (3, 3)}.
Noting that Sk(m + 1) = Sk(m) + mk, one easily observes that this
conjecture is equivalent with the following one.

Conjecture 2. We have aSk(m) = mk if and only if (a, k,m) ∈
{(1, 1, 3), (3, 3, 3)}.

If this conjecture holds true, then obviously so does the Erdős-Moser
conjecture.

It is easy to deal with the case m = 3. Then we must have
a(1 + 2k) = 3k, and hence a = 3e for some e ≤ k. It follows that
1 + 2k = 3k−e. This Diophantine equation was already solved by
the famous medieval astronomer Levi ben Gerson (1288 1344), alias
Leo Hebraeus, who showed that 8 and 9 are the only consecutive
integers in the sequence of powers of 2 and 3, see Ribenboim [34, pages
124 125]. This leads to the solutions (e, k) ∈ {(0, 1), (3, 1)}, and hence
(a, k,m) ∈ {(1, 1, 3), (3, 3, 3)}. Next assume that m ≥ 4 and k is odd.
Then, by Theorem 3, we find that m(m − 1)/2 divides mk, which is
impossible. We infer that, to establish Conjecture 2, it is enough to
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establish Conjecture 3, where

A = {a ≥ 1 : aSk(m) = mk has a solution with 2 | k, k ≥ 2, m ≥ 4}.

Conjecture 3. The set A is empty.

The next result shows that, if a ≡ 2 (mod 4) or a ≡ 3, 6 (mod 9),
then a /∈ A.

Theorem 8. Let k ≥ 2 be even. Suppose that q | a is a prime such
that q2 � a and q − 1 | k. Then aSk(m) �= mk, and hence a /∈ A.

Proof. Suppose that aSk(m) = mk. Let qe ‖ m. Note that e ≥ 1.
Using Theorem 3, we find that Sk(m) ≡ (m/qe)Sk(q

e) ≡ −(m/q)
(mod qe). Now we consider the identity aSk(m) = mk modulo qe+1

and find −a(m/q) ≡ mk ≡ 0 (mod qe+1), contradicting qe+1 ‖ am. It
follows that aSk(m) �= mk.

Note that, if a /∈ A, then the equation aSk(m) = mk can be solved
completely. The author is not aware of earlier ‘naturally’ occurring
Erdős-Moser type equations that can be solved completely. He expects
that further values of a can be excluded and might come back to this
in a future publication.
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are smooth numbers, then also consider hairy numbers, etc. In this
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I had a wonderful year in Australia and will be always grateful to Alf
for having made that possible.

ENDNOTES

1. A large part of the material in Section 2 is copied verbatim from
Moser’s paper.

2. The Pascaline was originally developed for tax collecting purposes!

3. The proof given in Section 4 is implicit in Moree’s [21] with a = 1.
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. . .+ kn = (k + 1)n modulo k and k2, Integers 11 (2011), 8 pages.

39. J. Urbanowicz, Remarks on the equation 1k+2k+ · · ·+(x−1)k = xk, Nederl.
Akad. Weten. Indag. Math. 50 (1988), 343 348.

40. M. Wyman, Biographical sketch Leo Moser, Rocky Mountain J. Math. 1
(1971), 255 256 (1 plate).

Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn,
Germany
Email address: moree@mpim-bonn.mpg.de



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [432.000 648.000]
>> setpagedevice


