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NON-COMMUTING PAIRS OF SYMMETRIES
OF RIEMANN SURFACES

EWA KOZ�LOWSKA-WALANIA

ABSTRACT. In this paper we study Riemann surfaces
with the group of automorphisms being mainly a nonabelian
dihedral 2-group. Our aim is to give the upper and lower
bounds for the maximal possible power of 2 which can be
realized as the order of the product of a pair of non-conjugate
(M − q)- and (M − q′)-symmetries on a Riemann surface of
genus g ≥ 2. The results we obtain refine earlier results
of Bujalance, Costa, Singerman and Natanzon, and depend
strongly on the parity structure of g and the total number of
ovals of the symmetries.

1. Introduction. Let X be a compact Riemann surface of genus
g > 1. By a symmetry of X we mean an antiholomorphic involution
σ of X which has fixed points. As is known, by the classical result of
Harnack, the set of fixed points of σ consists of at most g + 1 disjoint
simple closed curves, which are called ovals. If σ has g + 1 − q ovals,
then we shall call it an (M − q)-symmetry, following the terminology of
Natanzon, the pioneer in the modern study of symmetries of Riemann
surfaces.

Studying Riemann surfaces and their symmetries is important due to
the categorical equivalence under which a compact, connected Riemann
surfaceX corresponds to a smooth, complex, projective and irreducible
algebraic curve CX . Moreover, under this equivalence, a Riemann
surface X admits a symmetry σ if and only if the corresponding curve
CX has a real form CX(σ) and two such symmetries give rise to real
forms non-isomorphic over the reals R if and only if they are not
conjugate in the group Aut±(X) of all, including antiholomorphic,
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automorphisms of X . Finally, the set Fix (σ) is homeomorphic to a
smooth projective model of the corresponding real form CX(σ).

In this paper we shall study pairs of non-conjugate symmetries of
Riemann surfaces, mainly non-commuting ones. As is known by the
Sylow theorem, all Sylow 2-groups are conjugate and so we shall restrict
ourselves to the study of symmetries which generate a dihedral 2-group.
The starting point for our studies is the main theorem of Bujalance,
Costa and Singerman from [5] (see also [13]), by which we know that
the total number of ovals of two symmetries on a Riemann surface of
genus g, whose product has order 2n, does not exceed g/2n−2+2. Here
we make the further study of this result, and we show that if integers
g ≥ 2 and 0 ≤ q ≤ q′ ≤ g hold 2g − g/2n−2 ≤ q + q′ < 2g − g/2n−1,
then the product of a pair of (M − q)- and (M − q′)-symmetries on a
Riemann surface of genus g has order at most 2n. In order to investigate
the attainment of this bound, we introduce μg(q, q

′) to be the maximal
exponent of the power of 2 to be realized as the order of the product
of two non-conjugate (M − q)- and (M − q′)-symmetries on a Riemann
surface of genus g. The main goal of the paper is the study of μ, and
the results we obtain depend strongly on the parity structure of g. Here
we also remind the reader of the known fact that, for q + q′ < g, two
(M − q)- and (M − q′)-symmetries on a Riemann surface of genus g
always commute; hence, μg(q, q

′) = 1 in such a case. In [12] we have
shown that μg(q, q

′) ≥ 2 for q+ q′ ≥ g, except for the case μg(1, g) = 1
for g > 2, which allows us to restrict our studies to non-commuting
symmetries with the order of the product being mainly at least 8. In
this paper we also point out a gap from [12], concerning q = q′ = g− 1
for g = 3 and g = 2. In the first case the result stays correct, but the
construction has to be changed; in the second one μ2(1, 1) = 1, as the
symmetries constructed in [12] are in fact conjugate, which follows from
the proof of Theorem 3.7 in this paper. We also treat separately the
case of two symmetries with 1 oval each, as the mentioned Bujalance,
Costa and Singerman original result does not cover it. Such symmetries
shall be called 1-symmetries throughout the paper.

On the other hand, our work also relates with the results of Izquierdo
and Singerman from [9], where the authors study Riemann surfaces
admitting pairs of symmetries with given numbers of ovals and they find
some necessary and sufficient conditions for such pairs to exist. The
examples constructed in [9] are pairs for which the order of the product
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of the symmetries is smallest possible; often these are commuting pairs
of symmetries. Here, we bring up the problem of finding the maximal
possible order of the product of two symmetries, but we also give the
lower bound for μg(q, q

′).

Problems similar to the ones brought up here are also studied in the
last part of paper [11], where we allow our symmetries to be fixed
point free, which requires a different approach. The extensive study of
symmetric Riemann surfaces can be found in [2].

Throughout the paper, the letter μ stands both for the area of the
fundamental region of an NEC group and for the principal function
considered here, which however does not lead to distinction problems.

2. Preliminaries. We shall prove our results using the theory
of non-Euclidean crystallographic groups (NEC groups in short), by
which we mean discrete and cocompact subgroups of the group G of all
isometries of the hyperbolic plane H. The algebraic structure of such
a group Λ is determined by the signature:
(1)
s(Λ) = (h;±; [m1, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk)}),

where the brackets (ni1, . . . , nisi) are called the period cycles, the
integers nij are the link periods, mi-proper periods, and, finally, h is
the orbit genus of Λ.

A group Λ with signature (1) has the presentation with the following
generators, called canonical generators:

x1, . . . , xr, ei, cij , 1 ≤ i ≤ k, 0 ≤ j ≤ si

and
a1, b1, . . . , ah, bh

if the sign is + or d1, . . . , dh otherwise, and relators:

xmi

i , i = 1, . . . , r,

c2ij−1, c
2
ij , (cij−1cij)

nij , ci0e
−1
i cisiei, i = 1, . . . , k, j = 1, . . . , si

and
x1 · · ·xre1 · · · eka1b1a−1

1 b−1
1 · · · ahbha−1

h b−1
h

or
x1 · · ·xre1 · · · ekd21 . . . d2h,
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according to whether the sign is + or −. The elements xi are elliptic
transformations, ai, bi hyperbolic translations, di glide reflections and
cij hyperbolic reflections. Reflections cij−1 and cij are said to be
consecutive. Every element of finite order in Λ is conjugate either to a
canonical reflection, to a power of some canonical elliptic element xi or
to a power of the product of two consecutive canonical reflections.

Now an abstract group with such a presentation can be realized as
an NEC group Λ if and only if the value below is positive

2π

(
εh+ k − 2 +

r∑
i=1

(
1− 1

mi

)
+

1

2

k∑
i=1

si∑
j=1

(
1− 1

nij

))
,

where ε = 2 or 1 according to the sign being + or −. This value turns
out to be the hyperbolic area μ(Λ) of an arbitrary fundamental region
for such a group, and we have the following Hurwitz-Riemann formula

[Λ : Λ′] =
μ(Λ′)
μ(Λ)

for a subgroup Λ′ of finite index in an NEC group Λ.

NEC groups having no orientation reversing elements are classi-
cal Fuchsian groups. They have signatures (g; +; [m1, . . . ,mr]; {−}),
which are abbreviated as (g;m1, . . . ,mr). Given an NEC group Λ,
the subgroup Λ+ of Λ consisting of the orientation preserving elements
is called the canonical Fuchsian subgroup of Λ and, for a group with
signature (1) it has, by [16], signature

(2) (εh+ k − 1;m1,m1, . . . ,mr,mr, n11, . . . , nksk).

Recall that an NEC group Λ is called maximal if there is no other
NEC group containing it properly. The complete list of all signatures
which lead to non-maximal NEC groups can be found in [1, 7, 15] by
Bujalance, Estevez and Izquierdo, and Singerman, respectively.

A torsion free Fuchsian group Γ is called a surface group, and it has
signature (g;−). Any Riemann surface can be represented asH/Γ, with
Γ a surface Fuchsian group. Furthermore, given a Riemann surface so
represented, a finite group G is a group of automorphisms of X if and
only if G = Λ/Γ for some NEC group Λ. Observe that, if Λ is maximal,
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then G is the full group of automorphisms. From now on, we shall
consider Riemann surfaces uniformized by surface Fuchsian groups.

The following result from [8] is crucial for the paper.

Proposition 2.1. Let X = H/Γ be a Riemann surface, with Γ a
Fuchsian surface group, and let G be the group of all automorphisms of
X, where G = Λ/Γ for some NEC group Λ with θ : Λ → G being the
canonical epimorphism. Then, the number of ovals of a symmetry σ of
X equals ∑

[C(G, θ(ci)) : θ(C(Λ, ci))],

where the sum is taken over a set of representatives of all conjugacy
classes of canonical reflections whose images under θ are conjugate to σ.

For a symmetry σ we shall denote by ‖σ‖ the number of its ovals.
The index wi = [C(G, θ(ci)) : θ(C(Λ, ci))] will be called a contribution
of ci to ‖σ‖.

Lemma 2.2 (see also [5, Theorem 2]). Let D2n = Λ/Γ be the 2-
group of automorphisms of a Riemann surface X = H/Γ generated by
two non-central symmetries σ and τ , and let C = (n1, . . . , ns) be a
period cycle of Λ. Then reflections corresponding to C contribute to
‖σ‖ and ‖τ‖ at most s ovals in total if s ≥ 1 and at most 2 ovals if C
is empty.

Proof. The centralizer of any non-central involution in D2n has
order 4. Since ci ∈ C(Λ, ci), we have that wi ≤ 2, and since σ and
τ are not conjugate, we can assume that s ≥ 2 or s = 1 and n1 is
even. If c belongs to an even link period n′ and cc′ has order n′, then
(cc′)n

′/2 ∈ C(Λ, c). Now θ((cc′)n
′/2c) �= 1, since ker θ is a Fuchsian

group, and therefore we see that θ(C(Λ, c)) has order 4. Observe
also, that an empty period cycle contributes 2 ovals to the respective
symmetry if and only if the image of the corresponding connecting
generator is trivial.

3. The order of the product of two symmetries of a Riemann
surface. The starting point for this paper is the result of Bujalance,
Costa and Singerman from [5] (see also Natanzon in [13]), which
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we reproduce below. In this work we study some consequences of
this result, concerning the bound for the order of the product of two
symmetries of a Riemann surface.

Theorem 3.1 [5, 13]. Let σ and τ be two symmetries of a Riemann
surface X of genus g, whose product has order N . Then σ and τ have
at most 2(g−1)/N+4 and 4g/N+2 ovals in total for N odd and even,
respectively.

The bounds given in the previous theorem were shown in [5] to be
attained for arbitrary N and g for which N divides g − 1 and 4g,
respectively. Theorem 3.1 gives, in particular, bounds [2(g− 1)/N ] + 4
and [4g/N ]+ 2 (where [·] denotes the integer part), which were studied
in [12]. In particular, the first bound turned out to be attained only for
N dividing g− 1 and, in contrast, the second is attained also for N not
dividing 4g. The following corollary, concerning pairs of commuting
symmetries, is a direct consequence of the above theorem.

Corollary 3.2. Arbitrary (M − q)- and (M − q′)-symmetries of a
Riemann surface of genus g commute for g ≥ q + q′ + 1.

Proof. Observe that, for the total number t of ovals of both sym-
metries, t = 2g + 2 − q − q′ ≥ g + 3. Let N denote the order of the
product of our symmetries, and assume that N �= 2. By Theorem 3.1,
for even N we get g + 3 ≤ 4g/N + 2 ≤ g + 2, a contradiction. For odd
N , g + 3 ≤ 2(g − 1)/N + 4 ≤ 2(g − 1)/3 + 4 and so g ≤ 1 which is not
our case.

In this paper we focus our attention on the pairs of non-commuting
and non-conjugate symmetries of a Riemann surface. In fact, by the
Sylow theorem, we may assume that these symmetries generate a
dihedral 2-group, as we know that all Sylow 2-groups are conjugate.
Now we define a function

μg : {0, . . . , g} × {0, . . . , g} −→ N,

where μg(q, q
′) = n if and only if 2n is the biggest power of 2 being

realized as the order of the product of a pair of non-conjugate (M − q)-
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and (M − q′)-symmetries on a Riemann surface of genus g. Clearly,
there might be some configurations of g, q, q′ for which it is impossible
to construct a pair of (M − q)- and (M − q′)-symmetries on a Riemann
surface of genus g, and for these values we understand μg(q, q

′) = 0.
However, the next result from [9] shows that these exceptions occur if
and only if q = 0, which mainly is not our case in this paper as, by
Theorem 3.1, if a Riemann surface of genus g admits two symmetries,
one with g+1 ovals, then the product of these symmetries is at most 4.

Theorem 3.3 [9, 13]. Let g ≥ 2, q, q′ be integers such that 0 ≤ q ≤
q′ ≤ g. Then there exists a Riemann surface of genus g admitting a
pair of (M − q)- and (M − q′)-symmetries if and only if q ≥ 1 or q = 0
and either g, q′ are even, or else g is odd and q′ = g or q′ is even.

From now on, we shall assume that σ and τ are two (M − q)- and
(M−q′)-symmetries on a Riemann surface of genus g ≥ 2 and, without
loss of generality, q ≤ q′ throughout the paper. In order to give some
bounds for μg(q, q

′), one has to take the parameters q, q′ into account.
Throughout the paper assume, unless directly stated otherwise, that
the parameters g ≥ 2, q, q′ satisfy

(3) 2g − g/2n−2 ≤ q + q′ < 2g − g/2n−1

for some positive integer n. Observe that the case q = q′ = g shall be
treated separately, as there is no integer n such that (3) holds and so,
for the first part of the paper, we assume that q+q′ < 2g. Now we shall
give an upper bound for μg(q, q

′), depending on the parity structure of
g, and show its attainment. Immediately, by Theorem 3.1, we obtain

Theorem 3.4. The order of the product of two (M−q)- and (M−q′)-
symmetries on a Riemann surface of genus g ≥ 2, for integers g, q, q′

and n satisfying (3), does not exceed 2n, and so μg(q, q
′) ≤ n in such

a case.

Proof. Observe, as above, that the total number t of ovals of both
symmetries holds t = 2g+2−q−q′ > 2g+2−2g+g/2n−1 = 2+g/2n−1.
Let d denote the order of the product of the symmetries and assume,
to the contrary, that d is a power of 2 such that d ≥ 2n+1. Now,
by Theorem 3.1, we have t ≤ 4g/d + 2 ≤ g/2n−1 + 2, which leads
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to a contradiction as at the same time t > g/2n−1 + 2. Clearly, for
q+ q′ < 2g−g/n−2, the order of the product cannot exceed 2n−1 < 2n,
and so μg(q, q

′) ≤ n− 1 < n in such a case.

Remark 3.5. It is also necessary to remind the reader here that in
[12] we have shown that, for any g ≥ 2, q, q′ such that g ≤ q + q′ but
{q, q′} = {1, g}, g > 2 there exists a Riemann surface having a pair
of (M − q)- and (M − q′)-symmetries, whose product has order 4 and
that (M − 1)- and 1-symmetry on a Riemann surface of genus g > 2
always commute. However, there is an error, concerning g = 2 and
q = q′ = 1, in the proof of Theorem 4.1 in [12]. In fact, on a Riemann
surface of genus 2, two non-conjugate symmetries with 2 ovals each,
must commute. This, roughly speaking, follows from the fact that the
signature of an NEC group, used for the construction in [12], is not
maximal and does not lead to the full group of automorphisms of the
surface in question. The second part of the proof of Theorem 3.7 in
this paper gives an explanation for this fact.

Summing up this remark, the previous results and the definition of
μg(q, q

′), we obtain

Corollary 3.6. For g ≥ 2 and 0 ≤ q ≤ q′ ≤ g such that there
exists a Riemann surface having a pair of non-conjugate (M − q)- and
(M − q′)-symmetries, the following conditions hold:

1. μg(1, g) = 1 for g > 2 and μ2(1, 1) = 1;

2. μg(q, q
′) = 1 for g ≥ q + q′ + 1;

3. μg(q, q
′) ≥ 2 for g ≤ q+q′ and {q, q′} �= {1, g} or {1, 1} with g > 2

or g = 2, respectively.

In Table 1 we give an example of μ2(q, q
′) for all values 0 ≤ q ≤ q′ ≤ 2.

The computations for most of the cases can be found in [5, 9, 12].

It is much more difficult to give some conditions under which the
previously given bound is attained. Let us first consider the pair of
integers g ≥ 2, n ∈ N such that 2n−2 divides g, which means that the
Bujalance, Costa and Singerman bound for the total number of ovals
of two symmetries on a Riemann surface of genus g, where the product
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TABLE 1.

q q′ µ2(q, q′)
0 0 1

0 1 0

0 2 2

1 1 1

1 2 3

2 2 2

is of order 2n, is an integer. In such a case g = 2ua, where n−2 ≤ u and
a is an odd integer. Observe that, for n > 2, this means that g is even,
and we shall assume that n > 2 as the case of n = 1 was treated before
in [9, 10] and the case of n = 2 in [12], where we have shown that,
for {q, q′} �= {1, g} for g > 2 there always exists a Riemann surface
having a pair of (M − q)- and (M − q′)-symmetries with the product of
order 4; in the second part of the proof we shall correct the error from
[12], concerning the case g = 2, q = q′ = 1.

Theorem 3.7. Let g, q, q′ and n > 2 be integers satisfying the
conditions that 2n−2 divides g and (3), given before. Then μg(q, q

′) = n,
that is, there exists a Riemann surface of genus g having a pair of non-
conjugate (M − q)- and (M − q′)-symmetries σ, τ with the product of
order 2n, except for the cases when q = q′ = g − 1 and g = 2n−1 or
g = 3 · 2n−2. For these two cases, μg(q, q

′) = n− 1.

Proof. In the first part of the proof, we shall cover the case when
μg(q, q

′) = n. Assume that q+ q′ = 2g− g/2n−2+x, where x ≥ 0 is an
integer. To simplify the proof, we employ the following convention: for
the canonical epimorphism θ : Λ → D2n , we take θ(xi) = (στ)2

n−1

on
all the elliptic generators xi and omit the generators which are mapped
to 1.

First let x = 2α. Consider an NEC group Λ with signature

(0;+; [2, α. . ., 2]; {(2, g−q. . . , 2, 2n, 2, g−q′. . . , 2, 2n)})
and an epimorphism θ : Λ → G = D2n = 〈σ, τ | σ2, τ2, (στ)2

n 〉 defined
as follows for the consecutive canonical reflections corresponding to the
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nonempty period cycle:

σ, σ(στ)2
n−1

, σ, σ(στ)2
n−1

, . . . , σ or σ(στ)2
n−1

,︸ ︷︷ ︸
g+1−q

. . .

. . . τ, τ(στ)2
n−1

, τ, τ(στ)2
n−1

, . . . , τ or τ(στ)2
n−1

,︸ ︷︷ ︸
g+1−q′

σ.

By writing ‘or’ in the definition of the epimorphism for consecutive
canonical reflections, as above, we shall understand that the image of
this particular reflection, here the last in the sequence of reflections sent
alternatively to σ and σ(στ)2

n−1

, depends on the parity of the length of
the sequence, i.e., if g+1− q is even, then the last of the reflections in
the bracket is sent to σ(στ)2

n−1

and, if g+1− q is odd, then the image
is σ. We shall use this convention throughout the paper. Furthermore,
if α is odd, we take θ(e) = (στ)2

n−1

. Such a definition of θ gives rise
to the configuration of two (M − q)- and (M − q′)-symmetries on a
Riemann surface X = H/ker θ of genus g, whose product has order
2n. Observe that, for x > 0 or q + q′ < 2g − 2, which means that
the symmetries have more than 4 ovals in total, the signature of Λ is
maximal, by [7], and so the symmetries are non-conjugate and generate
the full group of automorphisms for X . For x = 0 and q = g−2, q′ = g
or q = g − 1, q′ = g, we have symmetries with different numbers of
ovals and so the symmetries are indeed non-conjugate, as desired.

We shall deal with the case x = 0 and q = q′ = g − 1 in the second
part of the proof as, for these parameters, we have 2g − 2 = q + q′ =
2g − g/2n−2 and so g = 2n−1.

Now let x = 2α+ 1. Assume first that q′ < g, and consider an NEC
group Λ with signature

(0;+; [2, α. . ., 2]; {(2, g−1−q. . . , 2, 4, 2n, 2, g−1−q′. . . , 2, 4, 2n)})
and an epimorphism θ : Λ → D2n = 〈σ, τ〉 for which the consecutive
canonical reflections corresponding to the nonempty period cycle are
mapped to

σ, σ(στ)2
n−1

, σ, σ(στ)2
n−1

, . . . , σ or σ(στ)2
n−1

, σ(στ)2
n−2

,︸ ︷︷ ︸
g+1−q

. . .

. . . τ, τ(στ)2
n−1

, τ, τ(στ)2
n−1

, . . . , τ or τ(στ)2
n−1

, τ(στ)2
n−2

,︸ ︷︷ ︸
g+1−q′

σ,
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and for α odd, as before, we take θ(e) = (στ)2
n−1

. Again, θ defines the
configuration of two (M − q)- and (M − q′)-symmetries on a Riemann
surface H/ker θ of genus g, whose product has order 2n. Similarly, as in
the previous case, if x > 1 or q ≤ g − 2, then the symmetries generate
the full group of automorphisms of X , by [7].

The case x = 1, q = q′ = g− 1 gives 2g− 2 = q+ q′ = 2g− g/2n−2+1
and so g = 3 · 2n−2, which shall be considered in the second part of the
proof.

Now let q′ = g and q < g−1. In such a case one takes an NEC group
Λ with signature

(0;+; [2, α. . ., 2]; {(2, g−2−q. . . , 2, 4, 4, 2n, 2n)}),

and an epimorphism θ : Λ → D2n = 〈σ, τ〉 defined for the consecutive
canonical reflections corresponding to the nonempty period cycle as

σ, σ(στ)2
n−1

, σ, σ(στ)2
n−1

, . . . , σ or σ(στ)2
n−1

,︸ ︷︷ ︸
g−1−q

σ(στ)2
n−2

, σ, τ, σ.

Now, if α is odd, as before we take θ(e) = (στ)2
n−1

. Once again, θ
defines a configuration of two (M − q)- and (M − q′)-symmetries on
a Riemann surface of genus g, with the product of order 2n. Again,
observe that, for x > 1 or q < g − 2, the signature of Λ is maximal,
by [7], and the symmetries σ, τ are non-conjugate, generating the full
automorphism group for X . Now for x = 1 and q = g − 2, q′ = g again
we have symmetries with different numbers of ovals and so they cannot
be conjugate.

Now we shall study the two exceptional cases for q = q′ = g− 1, that
is, g = 2n−1 and g = 3 · 2n−2. Let Λ denote an NEC group with sig-
nature (0;+; [−]; {(2ε, 2n, 2ε, 2n)}), where ε = 1 or 2, and consider an
epimorphism θ : Λ → D2n which sends the consecutive canonical reflec-
tions ci, respectively, to σ, σ(στ)2

n−ε

, τ, τ(τσ)2
n−ε

, σ. The signature of
Λ is not maximal and Λ is an index 2 subgroup of an NEC group Λ′ with
maximal, by [7], signature (0;+; [2]; {(2ε, 2n)}) and canonical genera-
tors x, c′0, c′1. Let G′ = 〈σ, τ, ρ | σ2, τ2, ρ2, (στ)2

n

, ρσρτ 〉, and consider
an epimorphism θ′ : Λ′ → G′ for which θ′(x) = ρ, θ′(c′0) = σ, θ′(c′1) =
σ(στ)2

n−ε

. This extends the epimorphism θ after taking an embedding
of Λ into Λ′ defined as c0 = c′0, c1 = c′1, c2 = xc′0x, c3 = xc′1x. Now, for
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ε = 1, we have g = 2n−1 and, for ε = 2, we have g = 3 · 2n−2. In both
cases we obtain a pair of symmetries with 2 ovals, but the symmetries
are conjugate. Moreover, letting n = 2 for the case ε = 1 corrects an
error for the case of g = 2, q = q′ = 1, discussed earlier in the context
of paper [12]. Observe also that there is no epimorphism from Λ′ to
G′′ = D2n � Z2 = 〈σ, τ〉 � 〈ρ〉 such that σ and τ are non-conjugate.
Indeed, if such an epimorphism would exist, then, without loss of gen-
erality, we may assume that the reflections c′1, c

′
2 are mapped to σ and

τ . But c′0 is conjugate to c′2 and so c′0 must be mapped to a symme-
try η conjugate with τ . On the other hand, the order of ησ equals
2ε, with ε = 1, 2 a contradiction. From [7] it follows that Λ can also
be seen as an index 2 subgroup of an NEC group Λ′′ with signature
(0;+; [−]; {(2, 2, 2ε, 2n)}) and canonical generators c′′i , i = 0, 1, 2, 3. We
shall also show that, in this case, θ cannot be extended to θ′′ : Λ′′ → G′′,
where G′′ is as above. Assume, to the contrary, that such an epimor-
phism exists. In such a case at least one of the canonical reflections is
mapped to a symmetry η /∈ 〈σ, τ〉. As σ, τ have 2 ovals each, it follows
that one of them, say σ, gets ovals from only one reflection. First let
c′′3 and c′′0 contribute to σ and τ , respectively, and assume, without loss
of generality, that the images of these reflections are σ and τ . The
centralizer of c′′3 in Λ′′ contains c′′3 , (c

′′
3c

′′
0)

2n−1

and (c′′2c
′′
3)

2ε−1

. Now the
centralizer of σ in G′′ has order 8 and so, by Proposition 2.1, for the
symmetry σ to have 2 ovals, it has to be that the image of (c′′2c′′3 )2

ε−1

equals (στ)2
n−1

. It follows that θ′′(c′′2 ) is conjugate to σ, a contradic-
tion as c′′3 is the only reflection contributing to σ. Assume now that no
two consecutive canonical reflections contribute to σ and τ , respectively
(here we consider c′′3 and c′′0 consecutive). It follows that two among
the canonical reflections are mapped to symmetries η1, η2 /∈ 〈σ, τ〉 and
each of σ, τ gets ovals from only one reflection. Now, if ε = 1, then,
without loss of generality, we may assume that the canonical reflections
are mapped respectively to η1, τ, η2, σ. Observe that η1, η2 and τ are
in the image of the centralizer of the reflection c′′1 . So, for τ to have
2 ovals, it must be that η1 = η2, as the order of the centralizer of τ
in G′′ is equal to 8. This, however, leads to a contradiction, as η1σ
is an involution and, on the other hand, has order 2n. Assume now
that ε = 2. Here the consecutive canonical reflections can be mapped,
without loss of generality, to η1, τ, η2, σ or σ, η1, τ, η2. In the first case,
as above, η1 = η2, and we have a contradiction. In the second case,
observe that the image of the centralizer of c′′2 in Λ′′ contains τ, η1τ
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and (η2τ)
2. Moreover, for τ to have 2 ovals, it must that η1 = η2τη2

or τ = η2τη2, a contradiction again. We have shown that the only
epimorphism extending θ leads to conjugate symmetries σ and τ .

The only thing that we still need to do is to prove that, in fact,
μg(q, q

′) = n − 1 for q = q′ = g − 1 and g is one of the ex-
ceptional cases. Here it is enough to take an NEC group Λ with
maximal signature (0;+; [2, ε. . ., 2]; {(2, 2n−1, 2, 2n−1)}) and an epimor-
phism onto D2n−1 which maps the consecutive canonical reflections to
σ, σ(στ)2

n−2

, τ, τ(στ)2
n−2

and, for ε = 1, we take θ(e) = (στ)2
n−2

=
θ(xi). This completes the proof.

Remark 3.8. There is one more gap in the proof of Theorem 4.1
in [12], which this time, however, fortunately does not lead to an er-
ror. In fact, the NEC signature (0;+; [−]; {(4, 4, 4, 4)}) used in that
paper for the construction of a pair of symmetries with 2 ovals each
for g = 3 is also not maximal, and the corresponding NEC group Λ
is an index 4 subgroup of an NEC group Λ′ with maximal signature
(0;+; [−]; {(2, 2, 2, 4)}) and canonical generators c′i, i = 0, 1, 2, 3. Con-
sider a group G′ = G × H where G = D4 = 〈σ, τ | σ2, τ2, (στ)4〉,
H = Z2 × Z2 = 〈ρ, η | ρ2, η2, (ρη)2〉, and take an epimorphism
θ′ : Λ′ → G′, mapping the consecutive canonical reflections, respec-
tively, to σ, ρ, η, τ . Now consider an embedding given by c0 = c′0,
c1 = c′3, c2 = c′2c

′
0c

′
2, c3 = c′1c

′
3c

′
1, where ci denote the canonical gen-

erators for Λ. With such definitions, θ′ leads to the non-conjugate
symmetries σ, τ having 2 ovals each, by Proposition 2.1.

Recall that in this part we assume that g = 2ua for some odd integer a
and an integer u such that n−2 ≤ u. The results above give us a natural
lower bound for μg(q, q

′). Observe that in our constructions actually
we have only used the inequality q + q′ ≥ 2g − g/2n−2 to assure that
the length of the nonempty period cycle is positive and, if we omit the
condition q+ q′ < 2g− g/2n−1, all the proofs remain correct; however,
for q + q′ ≥ 2g − g/2n−1, they only give us a lower bound for μg(q, q

′).
In particular, for any g, q, q′ not being the exceptional cases, we have
the following result.
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Proposition 3.9. For g = 2ua and q + q′ ≥ 2g − g/2u, but
q = q′ = g − 1 with a = 2 or 3, we have μg(q, q

′) ≥ u+ 2, and the
equality holds for q + q′ < 2g − g/2u+1. Moreover, for any m ≤ u + 2
and 2g − g/2m−2 ≤ q + q′ < 2g − g/2m−1, we have μg(q, q

′) = m.

Observe, however, that with our assumption n ≥ 3 all the values of
g divisible by 2n−2 are even. Now we shall try to investigate the case
when the bound from Theorem 3.1 is not an integer. By the results
from [12], we know that in such a case the natural bound [4g/N ] + 2
holds for the total number of ovals of a pair of symmetries. We shall
consider the case when g is of the form g = 2ua+ 1 with some odd a.
Let n ≥ 3 be an integer such that 2 ≤ n− 1 ≤ u. Here g = 2n−1b + 1
for some (possibly even) integer b. Note that g/2n−2 = 2b + 1/2n−2

and [g/2n−2] = 2b. By Theorem 3.1, in such a case the largest possible
total number of ovals of a pair of symmetries, whose product has order
2n, equals 2b + 2. Let q, q′ be integers such that (3) holds. Observe
that, in our case, it means that 2g − 2b ≤ q + q′ < 2g − b.

Theorem 3.10. Let g, q and q′ be integers such that g = 2n−1b + 1
and (3) holds. Then n − 1 ≤ μg(q, q

′) ≤ n, and the upper bound is
attained if and only if one of the following is true:

1. q + q′ ≥ 2g + 2− 2b;

2. q + q′ = 2g + 1− 2b and q′ ≥ g − 1 or n ≤ 4;

3. q + q′ = 2g − 2b and q′ = g − 1 or n = 3.

Proof. Observe that in particular we shall also show that, for the
sets of parameters not holding conditions 1 3 of the theorem, the lower
bound for μg(q, q

′) is attained as μg(q, q
′) = n− 1 in these cases. The

upper bound is true by virtue of Theorem 3.4. Now we shall show
that in fact for any of the cases 1 3 given in the theorem, the equality
μg(q, q

′) = n holds. To simplify and shorten the proof, throughout the
constructions of respective surfaces, we define all elliptic generators to
be mapped to the only nontrivial central element in the corresponding
dihedral group, all the glide reflections are mapped to σ and we omit
in the definitions all the generators which are mapped to 1.

In case 1 our study will depend on the parity of q + q′. Assume first
that q + q′ = 2g + 2 − 2b + 2α. Now it is enough to consider an NEC
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group Λ with maximal, by [7] signature

(0;+; [2, α. . ., 2]; {(2, g+1−q. . . , 2), (2, g+1−q′. . . , 2)})

and an epimorphism θ which maps the consecutive canonical reflections
corresponding to the first period cycle alternatively to σ and σ(στ)2

n−1

,
the reflections corresponding to the second period cycle alternatively
to τ and τ(στ)2

n−1

. In addition, if α is even, q, q′ are odd, then

we take θ(e1) = θ(e2)
−1 = (στ)2

n−2

. If α is odd and q, q′ are

even, we take θ(e2) = (στ)2
n−1

and finally, if α, q, q′ are odd, we

put θ(e1) = θ(e2) = (στ)2
n−2

. In each case we obtain a pair of non-
conjugate (M−q)- and (M−q′)-symmetries σ, τ on the Riemann surface
H/ker θ of genus g with the product of order 2n.

Now let q+q′ = 2g+2−2b+2α+1. As q+q′ is odd, q, q′ have different
parity. Assume first that q is even and q′ is odd, and observe that, in
such a case, (M − q)-symmetry σ has at least two ovals. Consider an
NEC group Λ with maximal signature:

(0;+; [2, α. . ., 2]; {(2, g−1−q. . . , 2, 4, 4), (2, g+1−q′. . . , 2)})

and an epimorphism θ which maps the consecutive canonical reflections
corresponding to the first period cycle, respectively, to

σ, σ(στ)2
n−1

, σ, σ(στ)2
n−1

, . . . , σ,︸ ︷︷ ︸
g−q

σ(στ)2
n−2

, σ(στ)2
n−1

,

and the reflections corresponding to the second cycle alternatively to τ
and τ(στ)2

n−1

, finishing with τ(στ)2
n−1

. If α is even, we take θ(e1) =

θ(e2)
−1 = (στ)2

n−2

and, for α odd, we take θ(e1) = θ(e2) = (στ)2
n−2

.
Now, if q is odd and q′ is even, we use the analogous definitions,
exchanging roles of σ and τ .

For case 2, first let q′ = g − 1 and observe that, in such a case, q is
an odd integer and so the number g + 1 − q of ovals of symmetry σ is
also odd and, by assumption q ≤ q′, not smaller than 3. Now consider
an NEC group Λ with maximal signature

(0;+; [−]; {(2, g−1−q. . . , 2, 4, 4), (−)})
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and an epimorphism which maps the consecutive canonical reflections
corresponding to the nonempty period cycle to

σ, σ(στ)2
n−1

, σ, σ(στ)2
n−1

, . . . , σ(στ)2
n−1

,︸ ︷︷ ︸
g−q

σ(στ)2
n−2

, σ

and θ(c20) = τ . With such a definition, by Lemma 2.2, symmetry σ
has g + 1 − q ovals and symmetry τ has 2 ovals, and the product of
the symmetries is an element of order 2n. By [7], these symmetries
generate the full group of automorphisms for our surface.

For q′ = g we take an NEC group with signature

(4) (0;+; [−]; {(2, g+1−q. . . , 2), (−)})

and an epimorphism θ which sends the consecutive canonical reflections
of the nonempty period cycle alternatively to σ and σ(στ)2

n−1

with

θ(e1) = θ(e2) = (στ)2
n−1

. Observe that, for q < g − 1, the signature of
Λ is maximal, by [7], and so we get a pair of non-conjugate symmetries
with g+1− q and 1 oval, by Lemma 2.2, and the product has order 2n.
Now, if q = g − 1, then the symmetries in question are non-conjugate
as they have different numbers of ovals.

Let us now deal n ≤ 4, q′ < g − 1 for case 2. First let n = 4, and
consider an NEC group with maximal, by [7], signature

(0;+; [−]; {(2, g−1−q. . . , 2, 4, 16, 2, g−1−q′. . . , 2, 8, 16)})

and an epimorphism sending the consecutive canonical reflections to

σ, τ(στ)7, σ, τ(στ)7 , . . . , σ or τ(στ)7 , τ(στ)3︸ ︷︷ ︸
g+1−q

. . .

. . . τ, σ(τσ)7, τ, σ(τσ)7 , . . . , τ or σ(τσ)7, στσ,︸ ︷︷ ︸
g+1−q′

σ.

This definition gives rise to the desired configuration of symmetries.

For n = 3, consider an NEC group with signature

(0;+; [−]; {(2, g−1−q. . . , 2, 8, 2, g−1−q′. . . , 2, 8, 8, 8)}).
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This signature is maximal by [7], as both symmetries have at least
three ovals due to q′ < g − 1. Take an epimorphism θ sending the first
g − q consecutive canonical reflections alternatively to σ and σ(στ)4,
the next g − q′ reflections alternatively to τ and τ(στ)4, and the last
three reflections, respectively, to σ, τ and σ. This definition gives rise
to the configuration we looked for.

Now we shall treat case 3 for q′ = g − 1. Observe, that q is an even
integer, as g is odd. Therefore, the number g+1−q of ovals of symmetry
σ is also even. To obtain the configurations we are looking for, consider
an NEC group with signature (4) and an epimorphism θ : Λ → D2n

defined as in case 2 for q′ = g on all the consecutive canonical reflections
with θ(e1) = θ(e2) = 1. Recall that the above signature is maximal
if g + 1 − q > 2 and so, with such a definition, we obtain a Riemann
surface having non-conjugate symmetries σ, τ with g + 1 − q > 2 and
2 ovals respectively, by Lemma 2.2. Now, for q = g − 1, the signature
for Λ is (0;+; [−]; {(2, 2), (−)}), which is not maximal. Consider Λ′

with signature (0;+; [−]; {(2, 2, 2, 2, 2)}), where [Λ′ : Λ] = 2, and take
an epimorphism θ′ : Λ′ → 〈σ, τ, ρ | σ2, τ2, ρ2, (στ)2

n

, (ρσ)2, (ρτ)2〉
defined on the canonical generators c′0, c

′
1, c

′
2, c

′
3, c

′
4 of Λ′ by sending

them, respectively, to ρ, σ, σ(στ)2
n−1

, ρ, τ . Now take an embedding
of Λ with canonical generators c10, c11, e1, c20, e2 into Λ′ by defining
c10 = c′1, c11 = c′2, c20 = c′4, e1 = c′3c

′
0 = e−1

2 . After restricting θ′ to
Λ, we obtain the original epimorphism θ. Moreover, here σ has 2 ovals
and τ has 2 ovals, as desired, with the symmetries in question being
non-conjugate (see also [12, Theorem 3.4]).

For n = 3, regardless of q′, consider an NEC group with signature

(0;+; [−]; {(2, g−1−q. . . , 2, 4, 8, 2, g−q′. . . , 2, 8)}),
and observe that the symmetries have at least 4 ovals in total. There-
fore, by [7], our signature is maximal. We define θ : Λ → D2n = 〈σ, τ〉
to map the consecutive canonical reflections to

σ, τ(στ)3 , σ, τ(στ)3, . . . , σ or τ(στ)3,︸ ︷︷ ︸
g−q

σ(στ)2 . . .

. . . τ, σ(τσ)3 , τ, σ(τσ)3, . . . , τ or σ(τσ)3,︸ ︷︷ ︸
g+1−q′

σ.

This leads to the configuration we were looking for.
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Observe now that, to prove the necessary condition, it is enough to
show that, for the total number of ovals t = 2g+2−q−q′ = 2b+1 with
q′ < g− 1, n > 4 and t = 2g+2− q− q′ = 2b+2 with q′ �= g− 1, n > 3,
there is no Riemann surface of genus g = 2ua + 1 = 2n−1b + 1
having a pair of non-conjugate (M − q)- and (M − q′)-symmetries
with the product of order 2n. For, assume to the contrary that such a
configuration indeed exists for one of these cases. Let G = 〈σ, τ〉 = D2n .
Now G = Λ/Γ for some surface Fuchsian group Γ and an NEC group
Λ with signature

(h;±; [m1, . . . ,mr]; {C1, . . . , Ck, (−), l. . ., (−)}).

By the Hurwitz-Riemann formula, μ(Λ)/2π = (g − 1)/2n = a/2n−u =
b/2 and, by Lemma 2.2, t ≤ 2l + s, where t denotes the total number
of ovals of σ and τ and s denotes the total number of link periods in
the signature of Λ. Therefore, we have

(5)

2π(g − 1)/2n = μ(Λ)

≥ 2π(εh− 2 + r/2 + k + l + s/4)

≥ 2π(εh− 2 + r/2 + k + l/2 + t/4),

which gives
b/2 ≥ εh− 2 + r/2 + k + l/2 + t/4,

and in turn εh+ r/2 + k + l/2 ≤ 7/4 or εh+ r/2 + k + l/2 ≤ 3/2 for
t = 2b+ 1 and t = 2b+ 2, respectively. Hence, the only configurations
we have to consider are:

(a) k = l = 1, r = h = 0;

(b) k = r = 1, l = h = 0;

(c) k = 1, l = r = h = 0;

(d) k = 0, l ≥ 2, r ≤ 1.

In case (a), first let t = 2b + 1. Observe that there must be at least
two link periods equal 2n in the nonempty period cycle, as otherwise,
by Lemma 2.2, one of the symmetries has 1 or 2 ovals which is not our
case. Thus, b/2 ≥ −1/2+b/2+1/4−2/4+1−1/2n, and so 1/4 ≤ 1/2n,
which is impossible as n > 2.

Now let t = 2b + 2. First of all, the reflection corresponding to the
empty period cycle contributes two ovals as, otherwise, by Lemma 2.2,
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t − 1 ≤ s and, by (5), b/2 ≥ −2 + 2 + (t − 1)/4, which in turn gives
t ≤ 2b+1, a contradiction. Therefore, as r = 0 and there are two period
cycles, the condition θ(e1) = θ(e2) = 1 must hold. Now, as above, if
there is at least one link period greater than 2 in the nonempty period
cycle, then b/2 ≥ −2+2+(2b−1)/4+1/2−1/8, a contradiction again.
Hence, we arrive at the signature of the form

(0;+; [−]; {(2, 2b. . ., 2), (−)},

which is not our case, as q′ = g − 1 here.

In case (b) we have only one, nonempty, period cycle. As the order of
two conjugates of the same symmetry is strictly smaller than 2n, there
are at least two link periods equal to 2n in our signature. Now, again
by (5), if there is a third link period greater than 2, then

b/2 ≥ −1/2 + (t− 3)/4 + 1/2− 1/8 + 1− 1/2n ≥ b/2 + 3/8− 1/2n

since t = 2b + 1 or 2b + 2. This leads to a contradiction as n > 3.
Therefore, we arrive at an NEC group Λ with a signature of the form

(0;+; [2l]; {(2, . . . , 2, 2n, 2, . . . , 2, 2n)})

with 0 < l ≤ n. However, here b/2 = (g − 1)/2n = (t − 2)/4 − 1/2n +
1− 1/2l, and so 3/4 ≤ 1/2n + 1/2l, a contradiction.

In case (c) we also have exactly one, nonempty, period cycle, and
we may assume that there are at least two link periods equal to 2n.
Recall that we always have an even number of these as the first and
the last reflections are conjugate. If there are at least four, then by
Lemma 2.2 both symmetries have at least two ovals and so q′ ≤ g − 1.
Now, since t ≥ 2b + 1, we have b/2 ≥ −1 + (t − 4)/4 + 2 − 1/2n−1 ≥
(2b+1)/4−1/2n−1, and the equality holds only if t = 2b+1 and n = 3,
which is not our case here. So we may assume that there are exactly
two maximal link periods. Now, if four of the remaining link periods
are greater than 2, we get a contradiction since, in such a case, by (5),
we have b/2 ≥ t/4− 1/2n ≥ b/2 + 1/4− 1/2n and, on the other hand,
n > 2. Hence, we may assume that there are at most three link periods
n′ ≤ n′′ ≤ n′′′ < 2n greater than 2.

Now let t = 2b + 1. If n′ > 2 and n′′′ ≥ 8, then b/2 ≥ −2 +
1 + (t − 5)/4 + 1 − 1/2n + 3/4 + 7/16 = b/2 + 3/16 − 1/2n and
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3/16 − 1/2n ≤ 0, a contradiction. Now, if n′ = n′′ = n′′′ = 4, we get
b/2 = b/2+1/2−1/2n−3/8 and the equality holds only for n = 3 which
is not our case again. Now let n′ = 2, n′′ ≥ 8. Similarly to the previous
case, we obtain b/2 ≥ b/2 + 1/2 − 1/2n − 1/4− 1/8, and the equality
holds for n = 3 which is not our case. For n′ = 2, n′′ = 4, n′′′ ≥ 8, we
have b/2 ≥ b/2 + 1/2 − 1/2n − 1/4 − 1/8 − 1/16, and the equality
holds for n = 4, again not our case. Moreover, in the remaining
cases by the Hurwitz-Riemann formula respectively we would have: if
n′ = 2, n′′ = n′′′ = 4, then b/2 = (2b− 3)/4− 1/2n+3/4 = b/2− 1/2n,
if n′ = n′′ = 2, n′′′ = 4, then b/2 = b/2 − 1/2n − 1/8, and if
n′ = n′′ = n′′′ = 2, then b/2 = b/2− 1/2n− 1/4, giving a contradiction
in all the cases for t = 2b + 1. We omit the proof for t = 2b + 2, as it
is also based on the Hurwitz-Riemann formula and assumption n > 3.

The only case left is (d), when k = 0, and the possibilities for the
signature are l = 2, r = 1 and l = 3, r = 0. In the first case,
observe that the only proper period must be equal to 2 and exactly
one of the generators ei has a nontrivial image under θ for the relation
θ(x1e1e2) = 1 to hold. Hence, by Lemma 2.2, one of the symmetries
has 1 and the other 2 ovals, so the total number of ovals is odd and
equal 2b + 1 with q′ = g, a contradiction. Now, if l = 3, r = 0, then,
by the Hurwitz-Riemann formula, g = 2n+1 and the maximal possible
number of ovals is 2b + 2 = 6. For the relation θ(e1e2e3) = 1 to hold,
either none, or exactly two, of the generators ei have nontrivial image
under θ. If the first occurs, then one of the symmetries has exactly two
ovals and so q′ = g − 1, which is not our case. In the second case, the
symmetries have only 4 ovals in total, and so the assumption t ≥ 2b+1
does not hold.

The last thing we need to show is that μg(q, q
′) = n− 1 for 2g + 2−

q− q′ = 2b+1 with q′ < g− 1, n > 4 and 2g+2− q− q′ = 2b+2 with
q′ �= g − 1, n > 3. Therefore, we shall construct, for all possible sets of
parameters in question, a Riemann surface of genus g having a pair of
non-conjugate (M − q)- and (M − q′)-symmetries with the product of
order 2n−1. Consider an NEC group Λ with maximal signature

(0;+; [2, m. . ., 2]; {(2, 2)ε, (−)l})
for some m, l, ε ≥ 0, and let θ be an epimorphism θ : Λ → G = D2n−1 =
〈σ, τ | σ2, τ2, (στ)2

n−1〉. We shall divide our considerations into cases,
depending on the parity of q and q′.
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First let q and q′ be even. Here we take m = 2, ε = 0 and l = b+1 in
the definition of Λ. We also define θ to map the canonical reflections
corresponding to the first (g + 1 − q)/2 empty period cycles to σ and
reflections corresponding to the remaining (g + 1− q′)/2 empty period
cycles to τ .

Now let q and q′ be odd. We take m = ε = 0 and l = b + 2
in the definition of Λ. Moreover, define θ as θ(ci0) = σ for i =
1, . . . , (g+2−q)/2, θ(ci0) = τ for all the remaining canonical reflections

and θ(e1) = θ(eb+2) = (στ)2
n−2

. Then, by Lemma 2.2, reflections
corresponding to the first and the last period cycle contribute with only
one oval to the symmetry σ and τ , respectively, while the remaining
canonical reflections contribute with two ovals each.

Now let q be odd and q′ even. Here we take m = ε = 1, l = b in
the signature of Λ. The epimorphism θ is given by θ(e2) = (στ)2

n−2

,

θ(c10) = θ(c12) = σ, θ(c11) = σ(στ)2
n−2

, θ(ei) = 1 for i �= 2. Also, ci0 is
mapped to σ for 2 ≤ i ≤ (g+2−q)/2 and to τ for the remaining values
of i. Observe also that, for q even and q′ odd, it suffices to take the same
definitions of Λ and θ changing only θ(ci0) = τ for 2 ≤ i ≤ (g+4−q′)/2
and θ(ci0) = σ for the remaining empty period cycles.

Each of these definitions leads to a Riemann surface X = H/ker θ,
which, by the Hurwitz-Riemann formula, has genus g, having a pair of
non-conjugate (M − q)- and (M − q′)-symmetries σ, τ , generating the
full group of automorphisms for X , with the product of order 2n−1.
This finishes the proof of the theorem.

Remark 3.11. The above theorem gives a lower bound on μg(q, q
′) for

g = 2ua + 1, u ≥ 2 and q + q′ ≥ 2g − g/2u−1. In such case we have
μg(q, q

′) ≥ u.

4. Pairs of symmetries with one oval. Here we shall consider
(M − q)-symmetries for q = g, i.e., symmetries with one oval. For
convenience, we shall refer to them as 1-symmetries. In the beginning
of the previous section we mentioned that this case has to be considered
separately, as there is no n such that the inequalities on q+ q′ given in
(3) hold. The result below gives an upper bound for μg(g, g).



1010 EWA KOZ�LOWSKA-WALANIA

Theorem 4.1. Let g and n ≥ 2 be integers such that 2n−1 ≤ g < 2n.
Then μg(g, g) ≤ n, and this bound is attained only for g = 2n − 2n−l

for some 0 < l ≤ n.

Proof. Let n, g be integers satisfying the condition 2n−1 ≤ g < 2n. To
show that the bound μg(g, g) ≤ n holds, assume to the contrary that we
have a Riemann surface of genus g, having a pair of 1-symmetries with
the product of order 2v for v > n. Also let G = 〈σ, τ〉 = D2v = Λ/Γ for
some surface Fuchsian group Γ and an NEC group Λ with signature

(6) (h;±; [m1, . . . ,mr]; {C1, C2, . . . , Ck}).

Note that, by Lemma 2.2, there are at most two period cycles, as each
of our symmetries has exactly 1 oval. Hence, 1 ≤ k ≤ 2. By the
Hurwitz-Riemann formula, we know that (g − 1)/2v = μ(Λ)/2π. Now,
as g < 2n and v ≥ n+ 1, we see that

(7) μ(Λ)/2π = (g − 1)/2v < 1/2− 1/2v,

and so there are proper or link periods in the signature of Λ. First
let k = 2. If both cycles are empty, then there must be at least two
proper periods in the signature for the epimorphism θ : Λ → G to
exist. Indeed, both symmetries have 1 oval and so, by Lemma 2.2,
the connecting generators must be mapped to (στ)2

v−1

, which is the
only nontrivial central element in G. Now, for r ≥ 2, we see that
μ(Λ)/2π ≥ 1 and (7) does not hold, a contradiction.

Now let just one of the cycles be nonempty. Similarly to the previous
case, the connecting generator of the empty cycle must be mapped
to (στ)2

v−1

. By Lemma 2.2, there is only one link period, say 2l,
l < v, in the nonempty cycle, as each of the symmetries has exactly
one oval. It follows that the connecting generator of the nonempty
cycle is mapped to some non-central element in G as the images of
the first and second reflections in the cycle are distinct, but conjugate.
Recall that we have the relation θ(x1 . . . xre1e2) = 1 in G. This means
that there is at least one proper period xi ≥ 4 in Λ. But, then
μ(Λ)/2π ≥ 3/4 + 1/2− 1/2l+1 ≥ 1 and (7) again does not hold.

If we have two nonempty cycles, then by Lemma 2.2, each of them
has just one link period for the symmetries to have 1 oval each. Let
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these link periods be equal to 2l, 2u where 1 ≤ l ≤ u < v. Now
μ(Λ)/2π ≥ 1− 1/2l+1 − 1/2u+1 ≥ 1/2, which again contradicts (7).

So let us assume that there is only one, nonempty, period cycle in
the signature of Λ. Observe that, as q = q′ = g, this cycle must be
of the form (2v, 2v), by Lemma 2.2. Now, as μ(Λ) > 0, it follows that
h+ r > 0. But then μ(Λ)/2π ≥ 1/2− 1/2v, again a contradiction.

Observe that, in the considerations above, we have only used the
inequality g < 2n. Similarly, one might prove that, for g < 2n−1, the
order is strictly smaller than 2n.

Now we shall deal with the attainment of this bound. Let 2n−1 ≤
g < 2n. To find the values of g for which the bound can be attained,
one has to look for the possible NEC groups Λ for which 1/2− 1/2n ≤
μ(Λ)/2π < 1 − 1/2n, as the epimorphism θ : Λ → D2n must exist.
Observe that, from the first part of the proof, it follows that the only
such NEC signatures are (0;+; [−]; {(2l), (2u)}) for some 0 < l ≤ u < n
and (0;+; [2l]; {(2n, 2n)}) for some 0 < l ≤ n. We shall show that, in
fact, the only possible values of g for which the bound is attained are
of the form given in the theorem.

First let Λ have signature (0;+; [−]; {(2l), (2u)}) for 0 < l ≤ u < n.
For the epimorphism θ onto G = D2n to exist, it must be l = u. Define

θ as θ(e1) = θ(e2)
−1 = (τσ)2

n−l−1

, θ(c10) = σ, θ(c11) = σ(στ)2
n−l

,

θ(c21) = τ , θ(c20) = τ(στ)2
n−l

. However, the signature of Λ is not
maximal and, by [7], Λ is a subgroup of index 2 of an NEC group Λ′

with maximal signature (0;+; [2, 2]; {(2l)}) and canonical generators
x1, x2, c

′
0. Moreover, there is an epimorphism θ′ : Λ′ → G′ = G � 〈ρ〉,

where ρ is an involution acting on G by ρσρ = τ , defined by θ′(x1) = ρ,

θ′(x2) = ρ(στ)2
n−l−1

, θ′(c′0) = σ. This epimorphism extends θ after
embedding Λ in Λ′ as c10 = c′0, e1 = x2x1 = e−1

2 , c20 = x2c
′
0x2.

Observe, however, that the symmetries σ, τ are conjugate inG′, which is
the full group of automorphisms of the surface in question. Moreover, as
c′0 and c′1 are conjugate, there is no epimorphism extending θ such that
σ, τ are non-conjugate. Therefore, the signature (0;+; [−]; {(2l), (2l)})
does not give the configuration we looked for.

Now let Λ have signature (0;+; [2l]; {(2n, 2n)}) for some 0 < l ≤ n.
We also have an epimorphism θ : Λ → G = D2n for which the
consecutive canonical reflections c0, c1, c2 are sent alternatively to σ, τ

and σ(τσ)2
n−l+1

, θ(e) = θ(x)−1 = (στ)2
n−l

. Here again, by [7],
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the signature of Λ is not maximal and Λ is an index 2 subgroup of
Λ′ with signature (0;+; [−]; {(2, 2l, 2, 2n)}) and canonical generators
c′i, i = 0, 1, 2, 3. The last signature is maximal for l < n. For
l = n, the group Λ′ is an index 2 subgroup of an NEC group Λ′′

with maximal signature (0;+; [2]; {(2, 2n)}). Assume to the contrary
that the symmetries are conjugate. Take G′ = D2n � 〈ρ | ρ2〉 = D2n+1

and G′′ such that [G′′ : G] = 4. There is no epimorphism from Λ′ to
G′, as there are only two conjugacy classes of symmetries in D2n+1 and
the product of non-conjugate symmetries has order 2n+1. Therefore,
for l < n, the proof is finished. Now for l = n and G′′ = G �H such
that H = Z2 × Z2 = 〈η1, η2〉 or H = Z4 = 〈γ〉 with γ2σγ2 conjugate
to τ , we can take G′ = 〈σ, τ〉 � 〈ρ〉, where ρ ∈ H is an involution
which makes σ conjugate to τ , and the proof is also finished. The last
case is when γ is an element of order 4 such that γ ∈ G′′ \ G with
γσγ−1 = τ conjugate to τ , γτγ−1 = σ conjugate to σ but σ, τ not
being conjugate in G � 〈γ2〉. Observe that, in fact, σ, τ ∈ G. Indeed,
if not, then τ = γ2λ, where λ ∈ G, as otherwise we would have that
γ ∈ G. But now γ2λ /∈ G is a symmetry conjugate to τ and so it equals
γτ1γ

−1 for some τ1 in G, conjugate to τ . We get a contradiction, as
it follows that σ is conjugate to τ in G. Hence, σ, τ ∈ G. Observe
now that, in G′′, there are no involutions of the form γδ or γ−1δ, for
δ ∈ G. Indeed, otherwise we would have 1 = γδγδ = (γδγ−1)γ2δ. In
turn, we obtain that γ2 ∈ G, as γδγ−1 ∈ G, a contradiction. Hence,
the epimorphism from Λ′′ to G′′ cannot exist, as γ cannot be in the
image. Therefore, in the construction of θ : Λ → G, the symmetries σ
and τ are non-conjugate 1-symmetries on a Riemann surface of genus
2n − 2n−l.

Now we shall give some results concerning a lower bound for μg(g, g).
First let g = 2ua for some u ≥ 1 and a odd.

Proposition 4.2. With g as above, μg(g, g) ≥ u+ 1.

Proof. We shall construct a pair of 1-symmetries with the product of
order 2u+1 on a Riemann surface of genus g = 2ua as in the proposition.
Consider an NEC group Λ with maximal signature

(0;+; [2, a. . ., 2]; {(2u+1, 2u+1)}),
where a ≥ 3, and an epimorphism θ : Λ → D2u+1 = 〈σ, τ〉 which sends
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all the canonical elliptic generators and the only connecting generator
e1 to (στ)2

u

and the consecutive canonical reflections alternatively to
σ and τ . With such a definition, we obtain a Riemann surface H/ker θ,
which, by the Hurwitz-Riemann formula, has genus g, admitting a pair
of 1-symmetries σ, τ , with στ of order 2u+1. For a = 1, the proof
follows from the previous theorem as g = 2u in such a case.

Now let g = 2ua+ 1 where u ≥ 1 and a ≥ 3 is odd.

Proposition 4.3. For g being of the form above, μg(g, g) ≥ u+ 1.

Proof. Similarly to the previous result, we shall construct the config-
uration of symmetries in question. For, consider an NEC group Λ with
maximal signature

(0;+; [2, a−1. . . , 2]; {(2), (2)})

and an epimorphism θ : Λ → D2u+1 = 〈σ, τ〉 for which θ(xi) = (στ)2
u

,

i = 1, . . . , a − 1, θ(e1) = θ(e2)
−1 = (τσ)2

u−1

, θ(c10) = σ, θ(c11) =
σ(στ)2

u

, θ(c20) = τ , θ(c21) = τ(στ)2
u

. This definition leads to the
configuration we looked for.

Remark 4.4. Observe that the bound above is attained in a sense that
there exist infinitely many values of g of the form g = 2u for which the
maximal possible order of the product of two 1-symmetries is 2u+1.
Indeed, as we know, for g < 2u+1, the inequality μg(g, g) ≤ u+ 1
holds. On the other hand, for g, as above μg(g, g) ≥ u+ 1 by the
previous results. Hence, the equality holds.
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