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EXISTENCE OF PSEUDO ALMOST AUTOMORPHIC MILD
SOLUTIONS TO SOME NONAUTONOMOUS SECOND

ORDER DIFFERENTIAL EQUATIONS

TOKA DIAGANA

ABSTRACT. In this paper we make extensive use of
Schauder fixed point principle and exponential stability tools
to obtain the existence of pseudo-almost automorphic solu-
tions to some classes of nonautonomous first and second-order
abstract differential equations. To illustrate our abstract re-
sults, the existence of pseudo almost automorphic solutions
to the so called Sine-Gordon boundary value problem will be
discussed.

1. Introduction. Fix a Banach space X. This paper is mainly
motivated by the paper by Goldstein and N’Guérékata [21], in which
the existence of almost automorphic solutions to the autonomous dif-
ferential equation

(1.1)
du

dt
= Au +G(t, u), t ∈ R

where A : D(A) ⊂ X �→ X is a closed linear operator on X which
generates an exponentially stable C0-semigroup T = (T (t))t≥0 and the
function G : R × X �→ X is given by G(t, u) = P (t)Q(u) with P,Q
being continuous functions satisfying some additional conditions, was
established. The main tools utilized in [21] are fractional powers of
linear operators and the well-known Schauder fixed point principle.

This paper has two main goals. The first objective consists of
generalizing the result obtained in [21] by studying the existence of
pseudo almost automorphic solutions to the nonautonomous differential
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equation

(1.2)
du

dt
= A(t)u + F (t, u), t ∈ R

where A(t) for t ∈ R is a family of closed linear operators with domains
D(A(t)) satisfying the so called Acquistapace-Terreni conditions, and
the function F : R×X �→ X is compact pseudo almost automorphic in
t ∈ R uniformly in the second variable. For that, we will make extensive
use of ideas and techniques utilized in [21], exponential stability tools
and the Schauder fixed point theorem.

LetH be an infinite-dimensional separable Hilbert space over the field
of complex numbers. The second goal in this paper consists of making
use of the existence results for equation (1.2) to study the existence
of pseudo almost automorphic solutions to the class of second-order
differential equations

(1.3)
d2u

dt2
+ a(t)

du

dt
+ b(t)Au = f(t, u), t ∈ R,

where A : D(A) ⊂ H �→ H is a self-adjoint linear operator whose
spectrum consists of isolated eigenvalues: 0 < λ1 < λ2 < · · · <
λn → ∞ with each eigenvalue having a finite multiplicity γj equaling
the multiplicity of the corresponding eigenspace, the functions a, b :
R �→ (0,∞) are continuous, and f : R ×H �→ H is jointly continuous
satisfying some additional conditions.

For that, the main idea consists of rewriting equation (1.3) as a
nonautonomous first-order differential equation in D(A)×H involving
the family of 2 × 2-operator matrices {A(t)}t∈R. Indeed, Setting
z :=

( u

u′
)
, equation (1.3) can be rewritten in the following form

(1.4)
dz

dt
= A(t)z + G(t, z), t ∈ R,

where A(t) is the family of 2× 2-operator matrices defined by

A(t) =

(
0 IH

−b(t)A −a(t)IH

)

whose domain D(A(t)) is constant in t ∈ R and is given by
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D = D(A)×H

for all t ∈ R.

Moreover, the semilinear term G appearing in equation (1.4) is defined
on R×D by

G(t, z) =
(

0
f(t, u)

)
.

The concept of pseudo almost automorphy is a powerful generaliza-
tion of both the notion of almost automorphy due to Bochner [8] and
that of pseudo almost periodicity due to Zhang (see [14]), which had
been introduced in the literature a few years ago by Liang, Xiao and
Zhang [27, 37, 38]. Such a concept, since its introduction in the liter-
ature, has recently generated several developments, see, e.g., [11, 12,
19, 20, 26].

The existence of almost periodic, almost automorphic, pseudo-almost
periodic, and pseudo-almost automorphic constitute some of the most
attractive topics in qualitative theory of differential equations due to
their applications. Some contributions on pseudo-almost automorphic
solutions to abstract differential and partial differential equations have
recently been made; among them are [11, 12, 19, 20, 26, 27, 37,
38]. However, the use of the Schauder fixed point theorem to deal
with the existence of pseudo-almost automorphic (mild) solutions to
evolution equations of the form (1.3) in the nonautonomous setting is
an untreated original question, which in fact is the main motivation of
the present paper.

The paper is organized as follows. Section 2 is devoted to preliminary
facts related to the existence of an evolution family. Some preliminary
results on intermediate spaces are also stated there. In addition, basic
definitions and results on the concept of pseudo-almost automorphic,
respectively, compact pseudo-almost automorphic, functions are given.
In Sections 3 and 4, we first state and prove the main result. In
Section 5, we give a few examples to illustrate our main result.

2. Preliminaries. Let H be an infinite-dimensional separable
Hilbert space over the field of complex numbers equipped with norm
‖ · ‖ and inner product 〈·, ·〉. In this paper, A : D(A) ⊂ H �→ H stands
for a self-adjoint (possibly unbounded) linear operator on H whose
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spectrum consists of isolated eigenvalues

0 < λ1 < λ2 < · · · < λl → ∞ as l → ∞,

with each eigenvalue having a finite multiplicity γj equaling the mul-
tiplicity of the corresponding eigenspace. Let {ekj } be a (complete)
orthonormal sequence of eigenvectors associated with the eigenvalues
{λj}j≥1.

Clearly, for each u ∈ D(A) whereD(A) := {u ∈ H :
∑∞

j=1 λ
2
j‖Eju‖2 <

∞}, we have

Au =

∞∑
j=1

λj

γj∑
k=1

〈u, ekj 〉ekj =

∞∑
j=1

λjEju,

where Eju =
∑γj

k=1〈u, ekj 〉ekj . Note that {Ej}j≥1 is a sequence of
orthogonal projections on H. Moreover, each u ∈ H can written as
follows:

u =

∞∑
j=1

Eju.

It should also be mentioned that the operator −A is the infinitesimal
generator of an analytic semigroup {T (t)}t≥0, which is explicitly ex-
pressed in terms of those orthogonal projections Ej by, for all u ∈ H,

T (t)u =
∞∑
j=1

e−λjtEju.

In addition, the fractional powers Ar (r ≥ 0) of A exist and are given
by

D(Ar) =

{
u ∈ H :

∞∑
j=1

λ2rj ‖Eju‖2 <∞
}

and

Aru =

∞∑
j=1

λ2rj Eju, for all u ∈ D(Ar).
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Let (X, ‖·‖) be a Banach space. If L is a linear operator on the Banach
space X, then, D(L), ρ(L), σ(L), N(L) and R(L) stand respectively
for its domain, resolvent, spectrum, null-space or kernel; and range. If
L : D = D(L) ⊂ X �→ X is a closed linear operator, one denotes its
graph norm by ‖ · ‖D. Clearly, (D, ‖ · ‖D) is a Banach space. Moreover,
one sets R(λ, L) := (λI − L)−1 for all λ ∈ ρ(A). If Y,Z are Banach
spaces, then the space B(Y,Z) denotes the collection of all bounded
linear operators fromY into Z equipped with its natural topology. This
is simply denoted by B(Y) when Y = Z. If P is a projection, we set
Q = I − P .

2.1. Evolution families. (H.1). The family of closed linear
operators A(t) for t ∈ R on X with domain D(A(t)) (possibly not
densely defined) satisfies the so called Acquistapace-Terreni conditions,
that is, there exist constants ω ≥ 0, θ ∈ ((π/2), π), K,L ≥ 0 and
μ, ν ∈ (0, 1] with μ+ ν > 1 such that

Sθ ∪ {0} ⊂ ρ(A(t) − ω) � λ, ‖R(λ,A(t)− ω)‖ ≤ K

1 + |λ|

and

‖(A(t)− ω)R(λ,A(t) − ω) [R(ω,A(t))−R(ω,A(s))]‖
≤ L |t− s|μ |λ|−ν

for t, s ∈ R, λ ∈ Sθ := {λ ∈ C \ {0} : | argλ| ≤ θ}.
It should be mentioned that (H.1) was introduced in the literature

by Acquistapace and Terreni in [2, 3] for ω = 0. Among other things,
it ensures that there exists a unique evolution family

U = {U(t, s) : t, s ∈ R such that t ≥ s}

on X associated with A(t) such that U(t, s)X ⊂ D(A(t)) for all t, s ∈ R
with t ≥ s, and

(a) U(t, s)U(s, r) = U(t, r) for t, s, r ∈ R such that t ≥ s ≥ r;

(b) U(t, t) = I for t ∈ R where I is the identity operator of X;

(c) (t, s) �→ U(t, s) ∈ B(X) is continuous for t > s;
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(d) U(·, s) ∈ C1((s,∞), B(X)),

∂U

∂t
(t, s) = A(t)U(t, s)

and ∥∥∥A(t)kU(t, s)
∥∥∥ ≤ K (t− s)−k,

for 0 < t− s ≤ 1, k = 0, 1; and

(e) ∂+s U(t, s)x = −U(t, s)A(s)x for t > s and x ∈ D(A(s)) with
A(s)x ∈ D(A(s)).

It should also be mentioned that the above-mentioned properties were
mainly established in [1, Theorem 2.3] and [40, Theorem 2.1], see also
[3, 39]. In that case, we say that A(·) generates the evolution family
U(·, ·).

Definition 2.1. One says that an evolution family U has an
exponential dichotomy (or is hyperbolic) if there are projections P (t)
(t ∈ R) that are uniformly bounded and strongly continuous in t and
constants δ > 0 and N ≥ 1 such that

(f) U(t, s)P (s) = P (t)U(t, s);

(g) the restriction UQ(t, s) : Q(s)X → Q(t)X of U(t, s) is invertible

(we then set ŨQ(s, t) := UQ(t, s)
−1); and

(h) ‖U(t, s)P (s)‖ ≤ Ne−δ(t−s) and ‖ŨQ(s, t)Q(t)‖ ≤ Ne−δ(t−s) for
t ≥ s and t, s ∈ R.

This setting requires some estimates related to U(t, s). For that,
we make extensive use of the real interpolation spaces of order (α,∞)
between X and D(A(t)), where α ∈ (0, 1). We refer the reader to the
excellent books [4, 18, 28] for proofs and further information on these
interpolation spaces.

Let A be a sectorial operator on X (for that, in assumption (H.1),
replace A(t) with A) and let α ∈ (0, 1). Define the real interpolation
space

XA
α := {x ∈ X : ‖x‖Aα := supr>0 ‖rα(A− ω)R(r, A− ω)x‖ <∞},
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which, by the way, is a Banach space when endowed with the norm
‖ · ‖Aα . For convenience, we further write

XA
0 := X, ‖x‖A0 := ‖x‖, XA

1 := D(A)

and
‖x‖A1 := ‖(ω −A)x‖.

Moreover, let X̂A := D(A) of X. In particular, we have the following
continuous embedding

(2.1) D(A) ↪→ XA
β ↪→ D((ω −A)α) ↪→ XA

α ↪→ X̂A ↪→ X,

for all 0 < α < β < 1, where the fractional powers are defined in the
usual way.

In general, D(A) is not dense in the spaces XA
α and X. However, we

have the following continuous injection

XA
β ↪→ D(A)

‖·‖A
α

for 0 < α < β < 1.

Given the family of linear operators A(t) for t ∈ R, satisfying (H.1),
we set

Xt
α := XA(t)

α , X̂t := X̂A(t)

for 0 ≤ α ≤ 1 and t ∈ R, with the corresponding norms. Then the
embedding in equation (2.1) holds with constants independent of t ∈ R.
These interpolation spaces are of the class Jα ([28, Definition 1.1.1 ])
and hence there is a constant c(α) such that

‖y‖tα ≤ c(α)‖y‖1−α‖A(t)y‖α, y ∈ D(A(t)).

We have the following fundamental estimates for the evolution family
U(t, s).

Proposition 2.2 [5]. Suppose the evolution family U = U(t, s) has
exponential dichotomy. For x ∈ X, 0 ≤ α ≤ 1 and t > s, the following
hold:
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(i) There is a constant c(α), such that

(2.2) ‖U(t, s)P (s)x‖tα ≤ c(α)e−δ(t−s)/2(t− s)−α‖x‖.

(ii) There is a constant m(α), such that

(2.3) ‖ŨQ(s, t)Q(t)x‖sα ≤ m(α)e−δ(t−s)‖x‖.

It should be mentioned that, if U(t, s) is exponentially stable, then
P (t) = I and Q(t) = I −P (t) = 0 for all t ∈ R. In that case, (2.2) still
holds and can be rewritten as follows: for all x ∈ X,

(2.4) ‖U(t, s)x‖tα ≤ c(α)e−δ(t−s)/2(t− s)−α‖x‖.

In addition to the above we also assume that the following assump-
tions hold:

(H.2). The evolution family U = U(t, s) is exponentially stable, that
is, there exist constants M, δ > 0 such that ‖U(t, s)‖ ≤ Me−δ(t−s) for
all t ≥ s.

(H.3). There exist α, β with 0 < α < β < 1 and such that

Xt
α = Xα and Xt

β = Xβ ,

for all t ∈ R, with uniform equivalent norms.

2.2. Pseudo-almost automorphic functions. Let BC(R,X)
(respectively, BC(R × Y,X)) denote the collection of all X-valued
bounded continuous functions (respectively, the class of jointly bounded
continuous functions F : R×Y �→ X). The space BC(R,X) equipped
with its natural norm, that is, the sup norm defined by

‖u‖∞ = sup
t∈R

‖u(t)‖,

is a Banach space. Furthermore, C(R,Y) (respectively, C(R×Y,X))
denotes the class of continuous functions from R into Y (respectively,
the class of jointly continuous functions F : R×Y �→ X).
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Definition 2.3. A function f ∈ C(R,X) is said to be almost
automorphic, respectively, compact almost automorphic, if, for every
sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N

such that

g(t) := lim
n→∞ f(t+ sn)

and

lim
n→∞ g(t− sn) = f(t)

pointwise on R (respectively, uniformly on compacts of R).

If the convergence above is uniform in t ∈ R, then f is almost periodic
in the classical Bochner’s sense. Denote by AA(X), respectively,
KAA(X), the collection of all almost automorphic functions R �→ X,
respectively, compact almost automorphic functionsR → X. Note that
AA(X) equipped with the sup-norm ‖ · ‖∞ turns out to be a Banach
space.

Among other things, almost automorphic functions satisfy the follow-
ing properties.

Theorem 2.4 [29, 30]. If f, f1, f2 ∈ AA(X), then:

(i) f1 + f2 ∈ AA(X),

(ii) λf ∈ AA(X) for any scalar λ,

(iii) fα ∈ AA(X) where fα : R → X is defined by fα(·) = f(·+ α),

(iv) the range Rf := {f(t) : t ∈ R} is relatively compact in X; thus,
f is bounded in norm,

(v) if fn → f uniformly on R where each fn ∈ AA(X), then
f ∈ AA(X) too.

In addition to the above-mentioned properties, we have the following
property due to Bugajewski and Diagana [9]:

(vi) if g ∈ L1(R), then f ∗ g ∈ AA(R), where f ∗ g is the convolution
of f with g on R.

Let (Y, ‖ · ‖Y) be another Banach space.
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Definition 2.5. A jointly continuous function F : R×Y �→ X is said
to be almost automorphic, respectively, compact almost automorphic
functions, in t ∈ R if t �→ F (t, x) is almost automorphic, respectively,
compact almost automorphic functions, for all x ∈ K (K ⊂ Y being
any bounded subset). Equivalently, for every sequence of real numbers
(s′n)n∈N, there exists a subsequence (sn)n∈N such that

G(t, x) := lim
n→∞F (t+ sn, x)

and
lim
n→∞G(t− sn, x) = F (t, x)

pointwise on R, respectively, uniformly on compacts of R and x ∈ K.

The collection of such functions will be denoted by AA(Y,X), re-
spectively, KAA(Y,X).

For more on almost automorphic functions and related issues, we refer
the reader to the excellent book by N’Guérékata [29].

Define

PAP0(R,X) :=

{
f ∈ BC(R,X) : lim

T→∞
1

2T

∫ T

−T

‖f(s)‖ ds = 0

}
.

Similarly, PAP0(Y,X) will denote the collection of all bounded
continuous functions F : R×Y �→ X such that

lim
T→∞

1

2T

∫ T

−T

‖F (s, x)‖ ds = 0

uniformly in x ∈ K, where K ⊂ Y is any bounded subset.

Definition 2.6 (Liang et al. [27, 37]). A function f ∈ BC(R,X) is
called pseudo almost automorphic if it can be expressed as f = g + φ,
where g ∈ AA(X) and φ ∈ PAP0(X). The collection of such functions
will be denoted by PAA(X).

The functions g and φ appearing in Definition 2.6 are respectively
called the almost automorphic and the ergodic perturbation components
of f .
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Definition 2.7. A function f ∈ BC(R,X) is called compact
pseudo almost automorphic if it can be expressed as f = g + ϕ, where
g ∈ KAA(X) and ϕ ∈ PAP0(X). The collection of such functions will
be denoted by KPAA(X).

Definition 2.8. A bounded continuous function F : R × Y �→ X
belongs to AA(Y,X) whenever it can be expressed as F = G+Φ, where
G ∈ AA(Y,X) and Φ ∈ PAP0(Y,X). The collection of such functions
will be denoted by PAA(Y,X).

We now collect a few useful properties of pseudo almost automorphic
functions.

Proposition 2.9. If g ∈ L1(R), f ∈ PAA(R), then f∗g ∈ PAA(R),
where f ∗ g is the convolution of f with g on R.

The proof of Proposition 2.9 is based upon Bugajewski and Diagana
[9] and Bugajewski, Diagana and Mahop [10].

A substantial result is the next theorem, which is due to Liang et al.
[37].

Theorem 2.10 [37]. The space PAA(X) equipped with the sup norm
‖ · ‖∞ is a Banach space.

The next composition result, that is, Theorem 2.11, is a consequence
of [26, Theorem 2.4].

Theorem 2.11. Suppose f : R × Y �→ X belongs to PAA(Y,X);
f = g+h, with x �→ g(t, x) being uniformly continuous on any bounded
subset K of Y uniformly in t ∈ R. Furthermore, we suppose that there
exists an L > 0 such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖Y

for all x, y ∈ Y and t ∈ R.

Then the function defined by h(t) = f(t, ϕ(t)) belongs to PAA(X),
provided ϕ ∈ PAA(Y).
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We also have:

Theorem 2.12 [37]. If f : R×Y �→ X belongs to PAA(Y,X) and
if x �→ f(t, x) is uniformly continuous on any bounded subset K of Y
for each t ∈ R, then the function defined by h(t) = f(t, ϕ(t)) belongs
to PAA(X) provided ϕ ∈ PAA(Y).

3. Main results. Throughout the rest of the paper we fix the real
numbers α, β such that 0 < α < β < 1 with 2β > α+ 1.

Consider the nonautonomous differential equation

(3.1)
du

dt
= A(t)u + F (t, u), t ∈ R,

where F : R×X �→ X is jointly continuous.

Definition 3.1. A continuous function u : R �→ X is said to be a
mild solution to equation (3.1) provided that

u(t) = U(t, s)u(s) +

∫ t

s

U(t, r)F (r, u(r)) dr.

for all t ∈ R.

If F is a bounded jointly continuous function, it is not difficult to
show that

(3.2) u(t) =

∫ t

−∞
U(t, s)F (s, u(s)) ds, t ∈ τ

is a mild solution for (3.1).

To study the existence of pseudo almost automorphic solutions to
equation (3.1), in addition to the previous assumptions, we suppose
that the injection

Xβ ↪→ X

is compact and that the following additional assumptions hold:

(H.4) R(ω,A(·)) ∈ KAA(B(X)).
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(H.5) The function F : R × X �→ X is compact pseudo almost
automorphic in the first variable uniformly in the one. Furthermore,
u �→ F (t, u) is uniformly continuous on any bounded subset K of X for
each t ∈ R. Finally,

‖F (t, u)‖∞ ≤ M(‖u‖∞),

where M : R+ �→ R+ is a continuous, monotone increasing function
satisfying

lim
r→∞

M(r)

r
= 0.

Throughout the rest of the paper, we set

Su(t) =

∫ t

−∞
U(t, s)F (s, u(s)) ds, t ∈ R.

Lemma 3.2 [16]. Under assumptions (H.1) (H.5), the mapping
S : BC(R,X) �→ BC(R,Xβ) is well-defined and continuous.

Lemma 3.3. Under the assumptions (H.1) (H.5), the integral oper-
ator S defined above maps KPAA(X) into itself.

Proof. Let u ∈ KPAA(X). Setting φ(t) = F (t, u(t)) and using
Theorem 2.11, it follows that φ ∈ KPAA(X). Set φ = g + h where
g ∈ KAA(X) and h ∈ PAP0(X). Write Su = S1u+ S2u, where

S1u(t) =

∫ t

−∞
U(t, s)g(s) ds and S2u(t) =

∫ t

−∞
U(t, s)h(s) ds.

We next show that S1u ∈ KAA(X) and S2u ∈ PAP0(X). Indeed,
since g ∈ KAA(X), for every sequence of real numbers (τ ′n)n∈N, there
exists a subsequence (τn)n∈N such that

ψ(t) := lim
n→∞ g(t+ τn)

and
lim
n→∞ψ(t− τn) = g(t)
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uniformly on compacts of R.

Set

M(t) =

∫ t

−∞
U(t, s)g(s) ds

and

N(t) =

∫ t

−∞
U(t, s)ψ(s) ds

for all t ∈ R.

Now

M(t+ τn)−N(t) =

∫ t+τn

−∞
U(t+ τn, s)g(s) ds

−
∫ t

−∞
U(t, s)ψ(s) ds

=

∫ t

−∞
U(t+ τ, s+ τn)g(s+ τn) ds

−
∫ t

−∞
U(t, s)ψ(s) ds

=

∫ t

−∞
U(t+ τn, s+ τn)(g(s+ τn)− ψ(s)) ds

+

∫ t

−∞
(U(t+ τn, s+ τn)− U(t, s))ψ(s) ds.

Using the exponential stability of U(t, s) and the Lebesgue dominated
convergence theorem, one can easily see that∥∥∥∥

∫ t

−∞
U(t+ τn, s+ τn)(g(s+ τn)− ψ(s)) ds

∥∥∥∥ −→ 0

as n→ ∞, uniformly on compacts of R.

Similarly, from [6], it follows that∥∥∥∥
∫ t

−∞
(U(t+ τn, s+ τn)− U(t, s))ψ(s) ds

∥∥∥∥ −→ 0

as n→ ∞, uniformly on compacts of R.
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Therefore,

N(t) = lim
n→∞M(t+ τn), uniformly on compacts of R.

Similarly,

M(t) = lim
n→∞N(t− τn), uniformly on compacts of R.

Therefore, t �→ S1u(t) belongs to KAA(X).

To complete the proof, we have to show that t �→ S2u(t) ∈ PAP0(X).
First, note that t �→ S2u(t) is a bounded continuous function. It
remains to show that

lim
T→∞

1

2T

∫ T

−T

‖S2u(t)‖ dt = 0.

Using the fact that the evolution family U(t, s) is exponentially stable
it follows that

lim
T→∞

1

2T

∫ T

−T

‖S2u(t)‖ dt

≤ lim
T→∞

M

2T

∫ T

−T

∫ +∞

0

e−δs‖h(t− s)‖ ds dt

≤ lim
T→∞

M

∫ +∞

0

e−δs 1

2T

∫ T

−T

‖h(t− s)‖ dt ds.

Let Ls(T ) = (1/2T)
∫ T

−T
‖h(t − s)‖ dt. Since PAP0(X) is translation

invariant, it follows that t �→ h(t − s) belongs to PAP0(X) for each
s ∈ R, and hence

lim
T �→∞

1

2T

∫ T

−T

‖h(t− s)‖ dt = 0

for each s ∈ R.

One completes the proof by using the well-known Lebesgue domi-
nated convergence theorem and the fact that Ls(T ) �→ 0 as T → ∞ for
each s ∈ R.
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We need the following technical lemma:

Lemma 3.4. For x ∈ X, let α, β be real numbers such that
0 < α < β < 1 and 2β > α + 1. Then, for all t > s, there is a
constant r(α, β), such that

(3.3) ‖A(t)U(t, s)x‖β ≤ r(α, β)e−δ(t−s)/4(t− s)−β‖x‖.

Proof. Let x ∈ X. First of all, note that ‖A(t)U(t, s)‖B(X,Xβ) ≤
K(t− s)−(1−β) for all t, s such that 0 < t− s ≤ 1 and β ∈ [0, 1].

Letting t− s ≥ 1 and using (H.2) and the above-mentioned approxi-
mate, we obtain

‖A(t)U(t, s)x‖β = ‖A(t)U(t, t− 1)U(t− 1, s)x‖β
≤ ‖A(t)U(t, t− 1)‖B(X,Xβ)‖U(t− 1, s)x‖
≤MKeδe−δ(t−s)‖x‖
= K1e

−δ(t−s)‖x‖
= K1e

−3δ(t−s)/4(t− s)β(t− s)−βe−δ(t−s)/4‖x‖.

Now since e−3δ(t−s)/4(t − s)β → 0 as t → ∞, it follows that there
exists c4(β) > 0 such that

‖A(t)U(t, s)x‖β ≤ c4(β)(t − s)−βe−δ(t−s)/4‖x‖.

Now, let 0 < t − s ≤ 1. Using equation (2.2) and the fact that
2β > α+ 1, we obtain

‖A(t)U(t, s)x‖β = ‖A(t)U
(
t,
t+ s

2

)
U

(
t+ s

2
, s

)
x‖β

≤
∥∥∥∥A(t)U

(
t,
t+ s

2

)∥∥∥∥
B(X,Xβ)

∥∥∥∥U
(
t+ s

2
, s

)
x

∣∣∣∣
≤ k1

∥∥∥∥A(t)U
(
t,
t+ s

2

)∥∥∥∥
B(X,Xβ)

∥∥∥∥U
(
t+ s

2
, s

)
x

∥∥∥∥
α

≤ k1K

(
t− s

2

)β−1

c(α)

(
t− s

2

)−α

e−δ(t−s)/4‖x‖

= c5(α, β)(t − s)β−1−αe−δ(t−s)/4‖x‖
≤ c5(α, β)(t − s)−βe−δ(t−s)/4‖x‖.
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In summary, there exists an r(α, β) > 0 such that

‖A(t)U(t, s)x‖β ≤ r(α, β)(t − s)−βe−δ(t−s)/4‖x‖

for all t, s ∈ R with t ≥ s.

Let γ ∈ (0, 1], and let BCγ(R,Xα) be the collection of all bounded
continuous functions from R into Xα equipped with the following
distance:

Δ(f, g) =
∞∑

n=1

2−n ρn(f, g)

1 + ρn(f, g)
,

where, for h = f − g,

Δn(f, g) =Δn(h, 0)

=‖h‖C[−n,n]+γ · sup
{
‖h(t)−h(s)‖α

|t−s|γ : t, s ∈ [−n, n], t �= s

}
.

LetHγ(R,Xα) be the locally convex Fréchet space (BC
γ(R,Xα),Δ).

Lemma 3.5 [16]. Under assumptions (H.1) (H.5), the mapping S
defined previously maps bounded sets of BC(R,X) into bounded sets of
BCγ(R,Xβ) for some 0 < γ < 1.

Proof. Follows the same lines as in Diagana [16].

The proof of the next lemma follows along the same lines as that of
Lemma 3.3 and hence is omitted.

Lemma 3.6. The integral operator S maps bounded sets of KPAA(X)
into bounded sets of BC1−β(R,Xβ) ∩KPAA(X).

Similarly, the next lemma is a consequence of [21, Proposition 3.3].

Lemma 3.7. The set BC1−β(R,Xβ) is compactly contained in
BC(R,X), that is, the canonical injection id : BC1−β(R,Xβ) �→
BC(R,X) is compact, which yields that

id : BC1−β(R,Xβ) ∩KPAA(X) �→ KPAA(X)

is compact, too.
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Theorem 3.8. Suppose assumptions (H.1) (H.5) hold. Then the
nonautonmous differential equation (3.1) has at least one pseudo almost
automorphic solution.

Proof. The proof follows along the same lines as that of [21, Propo-
sition 3.4]. Let us recall that, in view of Lemma 3.5, we have

‖Su‖β,∞ ≤ d(β, δ)M(‖u‖∞

and

‖Su(t2)− Su(t1)‖β ≤ s(α, β, δ)M(‖u‖∞)|t2 − t1|

for all u ∈ BC(R,Xβ), t1, t2 ∈ R with t1 �= t2, where d(β, δ) and
s(α, β, δ) are positive constants. Consequently, u ∈ BC(R,X) and
‖u‖∞ < R yield Su ∈ BC1−β(R,Xβ) and Δ(Su, 0) < R1 where
R1 = c(α, β, δ)M(R). Using the fact that ‖x‖ ≤ c‖x‖β for all x ∈ Xβ ,
it follows that there exists an r > 0 such that, for all R ≥ r, the
following hold

S
(
BKPAA(X)(0, R)

)
⊂ BBC1−β(R,Xβ)(0, R) ∩BKPAA(X)(0, R).

In view of the above, it follows that S : D �→ D is continuous and
compact, where D is the ball in KPAA(X) of radius R with R ≥ r.
Using the Schauder fixed point theorem it follows that S has a fixed-
point, which obviously is a pseudo almost automorphic mild solution
to (3.1).

4. Pseudo almost automorphic solutions to some second-
order differential equations. In this section, we study the existence
of pseudo almost automorphic solutions to some classes of nonauton-
mous second-order abstract differential equations based on the theory of
operator matrices and the previous existence results for equation (3.1).
For more on the basic theory of operator matrices, we refer the reader
to [5, 7, 18, 24, 25, 32 36].

In this section, we take X = D(A) × H. We have previously seen
that each u ∈ H can be written in terms of the sequence of orthogonal
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projections En as follows:

u =

∞∑
n=1

γn∑
k=1

〈u, ekn〉ekn =

∞∑
n=1

Enu.

Moreover, for each u ∈ D(A),

Au =

∞∑
j=1

λj

γj∑
k=1

〈u, ekj 〉ekj =

∞∑
j=1

λjEju.

Theorem 4.1. Under the previous assumptions and if G satisfies
(H.5), then the nonautonomous differential equation (1.4) has at least
one bounded solution (

u
v

)
∈ D(A)×H,

which in addition is pseudo almost automorphic.

Proof. The proof is slightly similar to the higher-order case (Diagana
[15, 16]). Indeed, for all z :=

( u

v

)
∈ D = D(A(t)) = D(A) × H, we

obtain the following

A(t)z =

(
0 IH

−b(t)A −a(t)IH

)(
u
v

)

=

(
v

−b(t)Au− a(t)v

)
=

⎛
⎜⎜⎜⎝

∞∑
n=1

Env

−b(t)
∞∑
n=1

λnEnu− a(t)

∞∑
n=1

Env

⎞
⎟⎟⎟⎠

=

∞∑
n=1

(
0 1

−b(t)λn −a(t)

)(
En 0
0 En

)(
u
v

)

=

∞∑
n=1

An(t)Pnz,

where

Pn :=

(
En 0
0 En

)
, n ≥ 1,
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and

An(t) :=

(
0 1

−b(t)λn −a(t)

)
, n ≥ 1.

Now, the characteristic equation for An(t) is given by

(4.1) λ2 + a(t)λ+ λnb(t) = 0.

Throughout the rest of the paper, we suppose

0 < ã0 := inf
t∈R

a(t) ≤ sup
t∈R

a(t) := a0, inf
t∈R

b(t) := b0 > 0,

and

(4.2) a20 < 4λ1b0.

From equation (4.2) it easily follows that the discriminant of equation
(4.1) defined by Ln(t) = a2(t) − 4λnb(t) < 0 for all t ∈ R, n ≥ 1, and
hence all roots of (4.1) are nonzero (with nonzero real and imaginary
parts) complex roots given by

λn1 (t) =
−a(t) + i

√
−Ln(t)

2

and

λn2 (t) = λn1 (t) =
−a(t)− i

√
−Ln(t)

2
,

that is,

σ(An(t)) = {λn1 (t), λn2 (t)}.

In addition to the above, suppose

a0 ∈
(
0, 2π

√
λ1b0
1 + π2

)
.
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Setting

1

d
:= sup

t∈R
n≥1

[
1√

−Ln(t)

]
,

one can easily see that 1/d ≤ 1/
√
4λ1b0 − a20; and hence, if we set

ω̃ := tan−1

(
a0

2
√
4λ1b0 − a20

)
,

then

0 < ω̃ <
π

2
.

Define

Sω = {z ∈ C \ {0} : | arg z| ≤ ω},

where ω = (π/2) + ω̃ ∈ ((π/2), π).

On the other hand, one can show without difficulty that An(t) =
K−1

n (t)Jn(t)Kn(t), where Jn(t),Kn(t) and K−1
n (t) are respectively

given by

Jn(t) =

(
λn1 (t) 0
0 λn2 (t)

)
, Kn(t) =

(
1 1

λn1 (t) λn2 (t)

)
,

and

K−1
n (t) =

1

λn1 (t)− λn2 (t)

(
−λn2 (t) 1
λn1 (t) −1

)
.

For λ ∈ Sω and z ∈ X, one has

R(λ,A(t))z =

∞∑
n=1

(λ−An(t))
−1Pnz

=
∞∑

n=1

Kn(t)(λ− Jn(t)Pn)
−1K−1

n (t)Pnz.



814 TOKA DIAGANA

Hence,

‖R(λ,A(t))z‖2

≤
∞∑

n=1

‖Kn(t)Pn(λ− Jn(t)Pn)
−1K−1

n (t)Pn‖2B(X)‖Pnz‖2

≤
∞∑

n=1

‖Kn(t)Pn‖2B(X)‖(λ− Jn(t)Pn)
−1‖2B(X)

× ‖K−1
n (t)Pn‖2B(X)‖Pnz‖2.

Moreover, for z :=
( z1
z2

)
∈ X, we obtain

‖Kn(t)Pnz‖2 = ‖Enz1 + Enz2‖2

+ ‖λn1 (t)Enz1 + λn2 (t)Enz2‖2

≤ 3(1 + λn1 (t)
2)‖z‖2.

Thus, there exists a C1 > 0 such that

‖Kn(t)Pnz‖ ≤ C1λ
n
1 (t)‖z‖ for all n ≥ 1 and t ∈ R.

Similarly, for z :=
( z1
z2

)
∈ X, one can show that there is a C2 > 0 such

that

‖K−1
n (t)Pnz‖ ≤ C2

λn1
‖z‖ for all n ≥ 1 and t ∈ R.

Now, for z ∈ X, we have

‖(λ− JnPn)
−1z‖2 =

∥∥∥∥
(
1/(λ− λn1 ) 0

0 1/(λ− λn2 )

)(
z1
z2

)∥∥∥∥
2

≤ 1

|λ− λn1 |2
‖z1‖2 +

1

|λ− λn2 |2
‖z2‖2.

Let λ0 > 0. Define the function

η(λ) :=
1 + |λ|
|λ− λn2 |

.

It is clear that η is continuous and bounded on the closed set

Σ := {λ ∈ C : |λ| ≤ λ0, | argλ| ≤ ω}.
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On the other hand, it is clear that η is bounded for |λ| > λ0. Thus, η
is bounded on Sω. If we take

N = sup

{
1 + |λ|
|λ− λnj |

: λ ∈ Sω, n ≥ 1; j = 1, 2, t ∈ R

}
.

Therefore,

‖(λ− JnPn)
−1z‖ ≤ N

1 + |λ| ‖z‖, λ ∈ Sω.

Consequently,

‖R(λ,A(t))‖ ≤ K

1 + |λ|
for all λ ∈ Sω and t ∈ R.

First of all, note that the domain D = D(A(t)) is independent of t.
Now note that the operator A(t) is invertible with

A(t)−1 =

(
−a(t)b(t)−1A−1 −b(t)−1A−1

IH 0

)
, t ∈ R.

Hence, for t, s, r ∈ R, one has

(A(t) −A(s))A(r)−1

=

(
0 0

[−a(r)b(r)−1(b(s) − b(t)) + (a(s) − a(t))]IH −b(r)−1(b(s) − b(t))

)
,

and hence, assuming that there exist L0, L1 ≥ 0 and μ ∈ (0, 1] such
that

|a(t)− a(s)| ≤ L0|t− s|μ, |b(t)− b(s)| ≤ L1|t− s|μ,

it easily follows that there exists a C > 0 such that

‖(A(t)−A(s))A(r)−1z‖ ≤ C|t− s|μ‖z‖.

In summary, the family of operators {A(t)}t∈R satisfy Acquistpace-
Terreni conditions. Consequently, there exists an evolution family
U(t, s) associated with it. Let us now check that U(t, s) has exponential
dichotomy. First of all, note that, for every t ∈ R, the family of linear
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operators A(t) generate an analytic semigroup (eτA(t))τ≥0 on X given
by

eτA(t)z =

∞∑
n=0

Kn(t)
−1Pne

τJnPnKn(t)Pnz, z ∈ X.

On the other hand, we have

‖eτA(t)z‖ =
∞∑
n=0

‖Kn(t)
−1Pn‖B(X)‖eτJnPn‖B(X)‖Kn(t)Pn‖B(X)‖Pnz‖,

with, for each z =
( z1
z2

)
,

‖eτJnPnz‖2 =
∥∥∥∥
(
eλ

n
1 τEn 0
0 eλ

n
2 τEn

)(
z1
z2

)∥∥∥∥
2

≤ ‖eλn
1 τEnz1‖2 + ‖eλn

2 τEnz2‖2

≤ e−2δτ‖z‖2,

where δ = ã0/4. Therefore,

(4.3) ‖eτA(t)‖ ≤ Ce−δτ , τ ≥ 0.

Using the continuity of a, b and the equality

R(λ,A(t)) −R(λ,A(s)) = R(λ,A(t))(A(t) −A(s))R(λ,A(s)),

it follows that the mapping J � t �→ R(λ,A(t)) is strongly continuous
for λ ∈ Sω where J ⊂ R is an arbitrary compact interval. Therefore,
A(t) satisfies the assumptions of [31, Corollary 2.3], and thus the
evolution family (U(t, s))t≥s is exponentially stable.

It remains to check assumption (H.4). For that, we need to show
that A−1(·) ∈ KAA(B(X)). Since t �→ a(t), t �→ b(t) and t �→ b(t)−1

are compact almost automorphic for every sequence of real numbers
(s′n)n∈N, there exists a subsequence (sn)n∈N such that

ã(t) := lim
n→∞ a(t+ sn),

lim
n→∞ ã(t− sn) = a(t),
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b̃(t) := lim
n→∞ b(t+ sn)

and
lim
n→∞ b̃(t− sn) = b(t)

uniformly on compacts of R.

Consider

B(t) =

(
0 IH

−b̃(t)A −ã(t)IH

)
, t ∈ R

and

B̃(t) =

(
−ã(t)̃b(t)−1A−1 −b̃(t)−1A−1

IH 0

)
, t ∈ R.

We have the following identity:

(4.4) A(t+ sn)
−1 − B̃(t) = A−1(t+ sn)(A(t + sn)− B(t))B̃(t).

Now

A(t+ sn)−B(t) =

(
0 0

−(b(t+ sn)− b̃(t))A −(a(t+ sn)− ã(t))IH

)
.

Therefore, for z :=
( z1
z2

)
∈ D, one has

‖(A(t+ sn)−B(t))z‖
≤ ‖(b(t+ sn)− b̃(t))Az1‖+ ‖(a(t+ sn)− ã(t))z2‖
≤ ε(‖Az1‖+ ‖z2‖)
≤ ε‖z‖D,

and, using equation (4.4), we obtain

‖A(t+ sn)
−1y − B̃(t)y‖
≤ ‖A(t+ sn)

−1(A(t+ sn)−B(t))B̃(t)y‖
≤ ‖A(t+ sn)

−1‖B(X)

+ ‖(A(t+ sn)−B(t))‖B(D,X)‖Ã(t)−1y‖D, y ∈ X.
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Since ‖B̃(t)y‖D ≤ c‖y‖, then

‖A(t+ sn)
−1y − B̃(t)y‖ ≤ c′ε‖y‖.

Similarly, one can show that

‖B̃(t− sn)y −A(t)−1y‖ ≤ c′′ε‖y‖.

Therefore, t �→ A(t)−1 is compact almost automorphic with respect to
operator topology.

Therefore, if G satisfies (H.5), then then the nonautonomous differen-
tial equation (1.4) has at least one bounded solution, which in addition
is pseudo almost automorphic.

Remark 4.2. In view of the previous proof, it follows that equa-
tion (1.3) has at least one solution, which in addition is pseudo almost
automorphic.

5. Existence of pseudo almost automorphic solutions to
some second-order boundary value problems. Let Ω ⊂ RN

be an open bounded subset. In this section, we study the existence
of pseudo almost automorphic mild solutions to modified versions of
the so-called (nonautonomous) Sine-Gordon equations. For that, we
suppose that a0, a1 : R×Ω �→ (0,∞) are compact almost automorphic
functions and satisfy the previous assumptions satisfied by a and b.
(Here, we take a1 = a and a0 = b.) Moreover, we suppose that there
exists a δ0 > 0 such that

inf
t∈R
x∈Ω

a1(t, x) ≥ δ0.

In both examples, we make extensive use of the fact that the injection

(5.1) D((−ΔD)1/2) =W 1,2
0 (Ω) = H1

0 (Ω) ↪→ L2(Ω)

is compact, where ΔD is the Laplace operator on L2(Ω) equipped with
Dirichlet boundary conditions.

We have
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Proposition 5.1. Let (X, ‖·‖) and (Y, ‖·‖0) be Banach spaces such
that X is compactly embedded into Y: X ⊂⊂ Y. Then

(Y,X)θ,q0 ⊂⊂ Y

whenever 0 < q0 ≤ ∞ and 0 < θ < 1.

Proof. Suppose that we are given a bounded subset {xl}∞l=1 ⊂
(Y,X)θ,1. We shall show that {xl}∞l=1 is convergent in Y if we pass to
a subsequence.

We choose xl,j,1 ∈ X and xl,j,2 ∈ Y so that

xl = xl,j,1 + xl,j,2, ‖xl,j,1‖+ 2j‖xl,j,2‖0 ≤ 2K(xl, 2
j).

Passage to a subsequence allows us to assume that {xl,j,1}∞l=1 is con-
vergent in Y for each j ∈ Z. We claim that {xl}∞l=1 is convergent in
Y. To prove this, we let l1, l2 ∈ N. Then we have

‖xl1 − xl2‖0 ≤ ‖xl1,j,1 − xl2,j,1‖0 + ‖xl1,j,2 − xl2,j,2‖0
≤ ‖xl1,j,1 − xl2,j,1‖0 + ‖xl1,j,2‖0 + ‖xl2,j,2‖0
≤ C(‖xl1,j,1 − xl2,j,1‖0 + 2−jθ‖x‖(Y,X)θ,1).

If we let l1, l2 → ∞, then we have

lim sup
l1,l2→∞

‖xl1 − xl2‖0 ≤ C2−jθ‖x‖(Y,X)θ,1

for all j ∈ Z. If we let j → ∞, then we have

lim sup
l1,l2→∞

‖xl1 − xl2‖0 ≤ 0.

Consequently, the compactness of (Y,X)θ,q0 ⊂⊂ Y was established.

Corollary 5.2. If β ∈ (0, 1) and q ∈ (0,∞], then the injection

(L2(Ω), H1
0 (Ω) ∩H2(Ω))β,q ↪→ L2(Ω)

is compact.
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Proof. Since the injection H1
0 (Ω) ↪→ L2(Ω) is compact, it follows

that H1
0 (Ω) ∩ H2(Ω) ↪→ L2(Ω) is compact, too. One obtains the

result by taking Y = L2(Ω) and X = H1
0 (Ω) ∩ H2(Ω) and using

Proposition 5.1.

Clearly, letting q = ∞, it follows that the injection

(5.2) Hβ = (L2(Ω), H1
0 (Ω) ∩H2(Ω))β,∞ ↪→ L2(Ω)

is compact.

5.1. One-dimensional nonautonomous sine-Gordon equa-
tions. Let l > 0, and let H = L2(0, l) when it is equipped with its
natural topology. Our main objective in this subsection is to study the
existence of pseudo almost automorphic solutions to a slightly modified
version of the so called Sine-Gordon equation with Dirichlet boundary
conditions, which had been studied in the literature especially by Leiva
[23] in the following form:

∂2u

∂t2
+ c

∂u

∂t
− d

∂2u

∂x2
+ k sinu = p(t, x), t ∈ R, x ∈ (0, l)

(5.3)

u(t, 0) = u(t, l) = 0, t ∈ R(5.4)

where c, d, k are positive constants, p : R × (0, l) �→ R is continuous
and bounded.

Namely, we are interested in the system of second-order partial
differential equations given by:

∂2u

∂t2
+ a1(t, x)

∂u

∂t
− a0(t, x)

∂2u

∂x2
= Q(t, x, u), t ∈ R, x ∈ (0, l)

(5.5)

u(t, 0) = u(t, l) = 0, t ∈ R(5.6)

where a1, a0 : R × (0, l) �→ (0,∞) are compact almost automorphic
functions and Q : R × (0, l) × L2(0, l) �→ L2(0, l) is compact pseudo
almost automorphic.

Let us take

Av = −Δv = −v′′ for all v ∈ D(A) = H1
0 (0, l) ∩H2(0, l).
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Suppose Q : R × (0, l)× L2(0, l) �→ L2(0, l) is compact pseudo almost
automorphic in t ∈ R uniformly in x ∈ (0, l) and u ∈ L2(0, l).
Furthermore, u �→ Q(t, x, u) is uniformly continuous on any bounded
subset K of L2(0, l) for all t ∈ R and x ∈ (0, l). Finally,

‖Q(t, x, u)‖∞ ≤ M(‖u‖∞),

where M : R+ �→ R+ is a continuous, monotone increasing function
satisfying

lim
r→∞

M(r)

r
= 0.

Consequently, taking into account the previous facts including equa-
tion (5.2), then system (5.5) (5.6) has at least one pseudo almost au-
tomorphic mild solution.

5.2. N-dimensional nonautonomous sine-Gordon equations.
Let Ω ⊂ RN (N ≥ 1) be an open bounded subset with C2 bound-
ary ∂Ω, and let H = L2(Ω) be equipped with its natural topology.
In this subsection, we are interested in the so called N -dimensional
nonautonomous sine-Gordon equation, which generalizes the previous
example, that is, the system of second-order partial differential equa-
tions given by

∂2u

∂t2
+ a1(t, x)

∂u

∂t
− a0(t, x)Δu = R(t, x, u), t ∈ R, x ∈ Ω

(5.7)

u(t, x) = 0, t ∈ R, x ∈ ∂Ω(5.8)

where a1, a0 : R × Ω �→ (0,∞) are compact almost automorphic
functions, and R : R × Ω× L2(Ω) �→ L2(Ω) is compact pseudo almost
automorphic.

Define the linear operator A as follows:

Au = −Δu for all u ∈ D(A) = H1
0 (Ω) ∩H2(Ω).

Suppose that R : R × Ω × L2(Ω) �→ L2(Ω) is compact pseudo almost
automorphic in t ∈ R uniformly in x ∈ Ω and u ∈ L2(Ω). Furthermore,
u �→ R(t, x, u) is uniformly continuous on any bounded subset K of
L2(Ω) for all t ∈ R and x ∈ Ω. Finally,

‖R(t, x, u)‖∞ ≤ N(‖u‖∞),
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where N : R+ �→ R+ is a continuous, monotone increasing function
satisfying

lim
r→∞

N(r)

r
= 0.

Consequently, taking into account the previous facts including (5.2),
then the system 5.7) (5.8) has at least one pseudo almost automorphic
mild solution.
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