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JONES’S POLYNOMIAL FOR LINKS IN THE HANDLEBODY

KHALED BATAINEH AND MUSTAFA HAJIJ

ABSTRACT. In [3] Hoste and Przytycki defined a two
variable polynomial invariant for 1-trivial dichromatic links
by a method similar to that of Kauffman in defining the
Jones polynomial. In this paper we view the invariant of
Hoste and Przytycki as an invariant for knots and links in
the solid torus, and we give a state sum formula for this
invariant. Then we define Jones’s polynomial for links in the
handlebody. In particular, we give formulas for the Jones’s
polynomial for knots and links in the handlebody with two
handles. Moreover, we give a state sum formula for this
invariant.

1. Introduction. Knots and links in three manifolds have been
studied by different authors and from different points of view. For
example, Kalfagianni in [5] studied finite type invariants for knots in
general three manifolds, and Bataineh in [2] studied invariants for knots
in the solid torus of types one and two. In this paper we study a
polynomial invariant for knots in the handlebody.

In 1984, Vaughan Jones gave his revolutionary new polynomial in-
variant for knots and links [4]. This polynomial opened a wide area
of applications to many branches of mathematics and physics. The
Jones’s polynomial succeeded in distinguishing many different knots
and links that could not be distinguished by other invariants including
the well-known Alexander invariant.

Louis Kauffman defined the Jones polynomial in a very natural way
using his well-known bracket polynomial [6]. Moreover, Kauffman gave
a formula (a state sum formula) that makes the calculation of the
Jones’s polynomial easier by looking at what is called the states of
a given diagram of a link. See also [7].

Hoste and Przytycki in [3] defined what can be called the Jones’s
polynomial invariant for 1-trivial dichromatic links by a method similar
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to that of Kauffman. In this paper we view the invariant of Hoste and
Przytycki as an invariant for knots and links in the solid torus, and we
give a state sum formula for this invariant. Then we define the Jones
polynomial for knots and links in the handlebody. In particular, we
give the formulas for the Jones polynomial for knots and links in the
handlebody with two handles, and we give a state sum formula for this
invariant.

In Section 1 we introduce the concepts and terminology that we
will use in the later sections. We give the definition of the Jones’s
polynomial as defined by Kauffman, and we define knots and links in
the solid torus and the handlebody.

In Section 2 we introduce a polynomial invariant for links in the solid
torus; the Y polynomial. This invariant, which has two variables, is
easy to calculate. We give two ways to calculate this invariant, one is
by using the rules by which the invariant is defined and the other is a
state sum formula that makes the calculations much easier. We also
give an example of two knots that are distinguished by this polynomial
invariant, but not by Aicardi’s polynomial invariant defined in [1].

In Section 3 we generalize the Y polynomial invariant to the handle-
body with two handles. This invariant has four variables rather than
two in the case of the solid torus. We again give two ways to calculate
this invariant.

2. Basic concepts and terminology. In this section, we give
Jones’s polynomial as defined by Kauffman [6] in terms of his bracket
polynomial. Then a simple change of the variable will give the original
Jones’s polynomial. We will be mainly following the methodology of [8]
in defining the Jones’s polynomial. We also give a formula, called a state
sum formula, of Kauffman that makes the calculation of Kauffman’s
bracket polynomial easier. We also introduce the terminology for knots
and links in the handlebody. Particularly, we study knots and links in
the handlebody with only one handle; the solid torus.

2.1. Jones’s polynomial and Kauffman’s state sum formula.

Definition 1. The Kauffman bracket polynomial is a function from
unoriented link diagrams in the oriented plane to Laurent polynomials
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with integer coefficients in an indeterminate A. It maps a diagram D
of a link L to 〈D〉 ∈ Z[A,A−1], and it is characterized by three rules:

(i)
〈 〉

= A
〈 〉

+A−1
〈 〉

,

(ii)
〈
D ∪

〉
= (−A2 −A−2)〈D〉,

(iii)
〈 〉

= 1.

In this definition, is the diagram of the unknot with no crossings,

and D ∪ is a diagram consisting of the diagram D together with

an extra closed curve that contains no crossings at all, neither

with itself nor with D. In (i), the formula refers to three diagrams
that are exactly the same except near a point where they differ in the
way indicated. In the case when we have an oriented link D and we
want to calculate the bracket polynomial for this link, we will denote
by |D| the nonoriented diagram that is obtained from D by forgetting
the orientations of all components. A crossing in an oriented diagram
D has a sign of +1 or −1 according to the right-hand rule. The sum
of signs of the crossings for a given diagram D is called the writhe of
D and is denoted by w(D).

Theorem 1. Let D be a an oriented link diagram. Then the X
polynomial defined by

X(D) = (−A)−3w(D) 〈|D|〉
is an invariant of links.

Definition 2. The Jones’s polynomial V (L) of an oriented link
L is the Laurent polynomial in the indeterminate q. With integer
coefficients, defined by

V (L) =
(
(−A)−3w(D) 〈|D|〉

)
q−1/4=A

∈ Z[q−1, q].
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FIGURE 1. Regions of a crossing.

FIGURE 2. An A-split and a B-split of a crossing.

We have seen that the X polynomial for an oriented link diagram D
can be calculated using the three rules in the definition of the bracket
polynomial. An alternative and a more direct way to calculate the X
polynomial is now introduced.

Consider a link diagram. Each crossing divides the plane into four
regions. We label two of them with an A and two of them with a B by
the following rule. The regions labeled by A are those swept out when
we rotate the upper strand in the crossing counterclockwise, and the
regions labeled by B are the other two regions. See Figure 1.

We see that the A regions correspond to a smoothing in the crossing
being considered that “opens the A-channel” while B regions corre-
spond to another smoothing in that crossing that opens the B-channel
(see Figure 2). Thus, we can associate, at each crossing of the link
diagram, two types of splitting: an A-split and a B-split.

Now, given a link diagram D with n crossings. A state S of D is a
choice of how to smooth all of the n crossings in the link diagram D.
Each state is a set of nonoverlapping circles, and we have 2n states.
The following theorem provides us with a formula for calculating 〈D〉
called a state sum formula.
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Theorem 2. The bracket polynomial of the link diagram D is given
by

〈D〉 =
∑
S

Aa(S)−b(S)(−A2 −A−2)|S|−1

where the sum runs over all possible states S, such that |S| is the total
number of unknots in state S, a(S) is the number of A-splits in state S
and b(S) is the number of B-splits in state S.

2.2. Knots and links in the handlebody. Let ST be the closed
solid torus defined by

ST =
{
(x, y, z) ∈ R3 : 1 ≤ x2 + y2 ≤ 9,−1 ≤ z ≤ 1

}
.

Let HBn be the closed handlebody with n handles defined by

HBn = ∪n−1
i=0

{
(x, y, z) ∈ R3 : 1 ≤ (x− 5i)2 + y2 ≤ 9,−1 ≤ z ≤ 1

}
.

Let Pn be the projection to the xy-plane of the handlebody HBn.
So Pn is given by

Pn = ∪n−1
i=0

{
(x, y) ∈ R2 : 1 ≤ (x− 5i)2 + y2 ≤ 9

}
.

Note that ST is just HB1. We will denote links in the solid torus by
LST and links in the handlebody by LHBn.

Definition 3. A knot K in the handlebody HBn is the image
of a piecewise-linear one-to-one mapping f : S1 → HBn such that
f(S1) ⊆ int (HBn).

As in the definition of knots in R3, we might consider a knot in HBn

to be oriented with an orientation induced from that on S1.

Definition 4. Two knots K1 and K2 in HBn are said to be isotopy
equivalent if there exists an orientation-preserving homeomorphism
φ : HBn → HBn such that φ(K1) = K2, φ is the identity function
on the boundary of HBn, and φ preserves the orientation on the knots
(if the knots are oriented).
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FIGURE 3. A knot in the handlebody with two handles and double punctured
diagram.

A knot diagram for a knot K in HBn is a diagram of K in Pn. So a
knot diagram in HB2 can be viewed as a diagram in P 2, as in Figure 3.

Note that, in this research, we work on ordered handlebodies, that is,
each hole in a given handlebody has a number, and this is one reason
why we have a specific formula for our handlebody.

Definition 5. A link L in the handlebody HBn is a finite collection
of knots in HBn that do not intersect each other.

Definition 6. Two links L = {K1,K2, . . . ,Ku} and L′ =
{K1,K

′
2, . . . ,K

′
v} in HBn are said to be isotopy equivalent if the fol-

lowing conditions hold:

(1) u = v, that is, L and L have the same number of components;

(2) There exists an orientation-preserving homeomorphism φ : HBn→
HBn such that φ(Ki) = K ′

j for i = {1, 2, . . . , u}, φ is the identity func-
tion on the boundary of HBn and φ preserves the orientation on the
knots (if the knots are oriented).

Note that taking φ to be the identity function on the boundary of
HBn implies keeping the numbering of the holes unchanged.

A link diagram for a link L in HBn is a usual diagram of L in Pn.

Definition 7. A 1-trivial dichromatic link in S3 is a link having
at least two components, one of which is unknotted and labeled, or
colored, “1,” while all other components are colored “2.”

A link diagram of a 1-trivial dichromatic link L in S3 is a usual
diagram of the components colored 2 in the punctured plane P 1.
The puncture represents the trivial component, since the unknotted
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component can be isotoped to be the z-axis along with the point at
infinity, which projects to a point. A diagram of a 1-trivial dichromatic
link is usually referred to as a punctured diagram.

3. Jones’s polynomial for links in the solid torus. In this
section we introduce a polynomial invariant for links in the solid torus.
This invariant, which we denote by Y , is the same as the invariant for 1-
trivial dichromatic links in R3 that was defined by Hoste and Przytycki
[3]. The Y invariant, which has two variables, is easy to calculate and
has some characteristics that are inherited from the Jones’s polynomial.
We also give a state sum formula for the bracket polynomial involved
in the Y invariant. An example of two knots that are distinguished by
this polynomial invariant, but not by Aicardi’s polynomial invariant
defined in [1], is also given.

The following theorem is due to Hoste and Przytycki [3].

Theorem 3. Two punctured diagrams represent equivalent 1-trivial
dichromatic links if and only if one can be transformed into the other by
a finite sequence of the usual three Reidemeister moves in the punctured
plane P 1, preceded by possibly flipping over one of the diagrams.

Note that the following corollary follows immediately.

Corollary 1. Two links L1 and L2 in the solid torus ST are isotopy
equivalent if and only if a diagram of one can be transformed into a
diagram of the other by a finite sequence of the usual three Reidemeister
moves in the punctured plane P 1.

We will call the knot that circles once around the hole in the solid
torus and has no crossings the dottedcircle, see Figure 4.

Now we give the theorem that introduces the Y invariant of Hoste
and Przytycki [3], but as an invariant of links in the solid torus instead

FIGURE 4. The dottedcircle.
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of 1-trivial dichromatic links in R3, and we use our own terminology
in naming the formulas.

Theorem 4. Let D be a diagram of a link L in the solid torus, and
let 〈D〉 be determined by the following formulas.

(I) The smoothing formulas:

(1)
〈 〉

= A
〈 〉

+A−1
〈 〉

(2)
〈 〉

= A
〈 〉

+A−1
〈 〉

(II) The reduction formulas:

(1)
〈
|D| ∪

〉
= (−A2 −A−2)〈|D|〉

(2)
〈
|D| ∪

⊙〉
= (−A2 −A−2)t〈|D|〉.

(III) The finishing formulas:

(1)
〈 〉

= 1

(2)
〈
|D| ∪

⊙〉
= t.

Then Y (L) = (−A3)−w(D)〈|D|〉 is a Laurent polynomial invariant in
Z[A,A−1, t].

Now we give the state sum formula for this bracket polynomial, which
gives an alternative way of calculating this invariant, and which is
mostly easier to apply.

Theorem 5. Let D be a diagram of a link L in the solid torus. Then
the bracket polynomial of diagram D of the link L is given by

〈D〉 =
∑
S

Aa(S)−b(S)(−A2 −A−2)|S|−1t|T |

where the sum runs over all possible states S of the link diagram, |S|
is the total number of circles and dotted circles in state S, |T | is the
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number of the dotted circles, a(S) is the number of A-splits in state S
and b(S) is the number of B-splits in state S.

Proof. Assume that the link diagram D has n crossings. Pick a cross-
ing in D. By using the smoothing formulas, the bracket polynomial of
D can be determined by the bracket polynomials of two diagrams D1

and D2, each of which has one fewer crossing than D. The diagrams
D1 and D2 are obtained by applying an A-split and a B-split on that
crossing in D. Now use the smoothing formulas again to determine the
bracket polynomials of each of D1 and D2 in terms of the bracket poly-
nomials of four diagrams, each of which has two fewer crossings than
D. Continuing with the same procedure, we eventually get the bracket
polynomial for D in terms of the bracket polynomials for 2n diagrams,
each of which has no crossings. Hence, we have 2n states in the solid
torus. Note that each state in the solid torus is a set of nonoverlapping
circles and dottedcircles.

Now let S be a given state; then, by using the reduction formulas and
the finishing formulas we get directly

〈S〉 = (−A2 −A−2)|S|−1t|T |.

Note that each time we split a crossing, the polynomials of the
resultant diagrams were multiplied by either an A or A−1, depending
on whether the split was an A-split or a B-split. So the polynomial
of S is multiplied by Aa(S)−b(S). Hence, the total contribution to the
bracket polynomial by state S is Aa(S)−b(S)(−A2 −A2)|S|−1t|T |.

So the bracket polynomial of diagram D of link L will be the sum
over all possible states of these contributions. We write this as

〈D〉 =
∑
S

Aa(S)−b(S)(−A2 −A−2)|S|−1t|T |.

This completes the proof.

Example 1. The Y polynomial for a given knot is calculated below
in two different ways of calculating the bracket polynomial. At first we
do not use the state sum formula.〈 〉

= A
〈 〉

+A−1
〈 〉

= A(1) +A−1((−A2 −A−2)t2) = A−At2 −A−3t2.
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Now, using the state sum formula, we get the same answer.

For the state , we have a(S) = 1, b(S) = 0, |S| = 1, |T | = 0.

For the state , we have a(S) = 0, b(S) = 1, |S| = 2, |T | = 2.

Therefore,〈 〉
= A1−0(−A2 −A2)1−1t0 +A0−1(−A2 −A2)2−1t2

= A+ (−A2 −A2)t2 = A−At2 −A−3t2.

Since w(D) = −1, by using the definition of the Y polynomial, we get

Y
( )

= (−A3)−(−1)(A−At2 −A−3t2) = −A4 +A4t2 + t2.

3.1. Aicardi’s invariant [S(K)](t) for knots in the solid torus.
Aicardi’s invariant [S(K)](t) is a Laurent polynomial invariant with
integer coefficients defined for any oriented knot K in the solid torus
by:

[S(K)](t) =
1

2

∑
p

e(p)[ti1(p) + ti2(p)],

where the sum runs over all crossings p of a diagram of a knot K. The
integers i1(p) and i2(p) are defined to be the winding numbers of the
two lobes resulting from replacing the crossing p by a double point.
The integer e(p) is defined to be the sign of the crossing p if both i1(p)
and i2(p) are nonzero, and e(p) is defined to be zero otherwise.

Aicardi shows that S is an isotopy invariant by showing that it is
invariant under the three Reidemeister moves. For the proof, see [1].

Next, we give an example of two knots in the solid torus that are
distinguished by the Y polynomial, but not by Aicardi’s polynomial.

Example 2. Consider the following two knots B and B′, respec-
tively.

One can easily see that Aicardi’s invariant does not distinguish these
two knots, since they differ only at a crossing that does not contribute
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to Aicardi’s sum formula. Calculation of Aicardi’s invariant yields
[S(B)](t) = t1 + t−1 = [S(B′)](t). However, calculation of the Y
invariant of these two knots yields:

Y (B) = A−8 −A−8t2 + t2,

Y (B′) = A−16t2 −A−8t2 +A−4 +A−12 −A−8.

4. Jones’s polynomial for links in the handlebody. In this
section we go further with the work in the previous section to generalize
the Y polynomial invariant to links in the handlebody. For simplicity,
we give the formulas in the double solid torus HB2, and the invariant
will have four variables. Moreover, we give the state sum formula for
the generalized invariant.

We start with the following theorem in which we prove that isotopy
equivalence of knots in the handlebody is characterized by the usual
three Reidemeister moves on diagrams of the knots.

Theorem 6. Two knots K1 and K2 in the handlebody are isotopy
equivalent if we can get from a diagram of one to a diagram of the other
by a finite sequence of the usual three Reidemeister moves.

Proof. Let K1 and K2 be two isotopy equivalent knots in HBn. Let
φ : HBn → HBn be an orientation-preserving homeomorphism as in
the definition. Let N = R3−int (HBn). Let I : N → N be the identity
function. Let ψ : R3 → R3 be defined by

ψ(x) =

{
φ(x) if x ∈ HBn

I(x) if x ∈ N

}
.

Note that ψ is a well-defined function because φ is the identity map
on the boundary of the handlebody. Also, by the Gluing lemma, ψ
is an orientation-preserving homeomorphism of R3 that preserves the
orientation of the knots such that ψ(K1) = K2. Now we are in a
position like that in the proof of Theorem 1 in [3]. Note that φ is
ambient isotopic to the identity map since φ is the identity on the
boundary of HBn. Hence, ψ is ambient isotopic relative to N to the
identity map. So we get an isotopy of R3 relative to N which takes K1
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to K2. Projecting this isotopy into the xy-plane, we see a diagram D1

of K1 in Pn = ∪n−1
i=0 {(x, y) ∈ R2 : 1 ≤ (x − 5i)2 + y2 ≤ 9} taken to a

diagramD2 ofK2 in P
n. The usual proof that this can be accomplished

by a finite sequence of Reidemeister moves can now be employed.

In this section, we need to define some knots that will be used in
the main theorem. We will call the knot that circles once around the
first hole in the handlebody and has no crossings dottedcircle1, the knot
that circles once around the second hole in the handlebody and has no
crossings dottedcircle2, the knot that circles once around both holes in
the handlebody and has no crossings double-dottedcircle. See Figure 5.

FIGURE 5. (a) Dottedcircle1 (b) Dottedcircle2 (c) Double-dottedcircle

4.1. The main theorem.

Theorem 7. Let D be a diagram of a link L in the handlebody with
two handles, and let 〈D〉 be determined by the following formulas:

(I) The smoothing formulas:

(1)
〈 〉

= A
〈 〉

+A−1
〈 〉

(2)
〈 〉

= A
〈 〉

+A−1
〈 〉

(II) The reduction formulas:

(1)
〈
|D| ∪

〉
= (−A2 −A−2)〈|D|〉

(2)
〈
|D| ∪

〉
= (−A2 −A−2)t1〈|D|〉
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(3)
〈
|D| ∪

〉
= (−A2 −A−2)t2〈|D|〉

(4)
〈
|D| ∪

〉
= (−A2 −A−2)s〈|D|〉.

(III) The finishing formulas:

(1)
〈 〉

= 1

(2)
〈 〉

= t1

(3)
〈 〉

= t2

(4)
〈 〉

= s.

Then Y (L) = (−A3)−w(D)〈|D|〉 is a Laurent polynomial invariant in
Z[A,A−1, t1, t1, s].

Proof. Note that the term “(−A3)−w(D)” depends on the writhe of
the link diagram D, and the writhe is invariant under the second and
third Reidemeister’s moves. So all we have to do, in order to prove
that the Y is invariant under the second and the third Reidemeister’s
moves, is to prove that the bracket polynomial 〈 〉 is invariant under
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these two moves respectively as follows:〈 〉
= A

〈 〉
+A−1

〈 〉

= A2
〈 〉

+
〈 〉

+
〈 〉

+A−2
〈 〉

= A2
〈 〉

+ (−A2 −A−2)
〈 〉

+
〈 〉

+A−2
〈 〉

=
〈 〉

.

For the third Reidemeister’s move,

〈 〉
= A

〈 〉
+A−1

〈 〉

= A
〈 〉

+A−1
〈 〉

=
〈 〉

For the invariance of Y under the first Reidemeister’s move, assume
without loss of generality, that we have a link diagram D in the
handlebody, and that D′ is D with a first Reidemeister’s move applied
on D with a positive crossing. Then

Y (L) = (−A3)−w(D
′
)〈|D′ |〉

= (−A3)−(w(D)+1)〈|D′|〉
=

[
(−A3)−(w(D)+1)

] [
(−A3)〈|D|〉]

= (−A3)−w(D)〈|D|〉 = Y (L).
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Note that the order in which we apply the formulas of the bracket
to a diagram of some link is irrelevant, and this follows from the
nice algebraic properties of addition and multiplication of Laurent
polynomials such as commutativity, associativity and distributivity.

4.2. The state sum formula for the Y polynomial. In the
following theorem, we repeat almost the same justification to get the
state sum formula for a link in the handlebody with two handles.

Theorem 8. Let D be a diagram of a link L in the handlebody with
two handles HB2. Then the bracket polynomial of diagram D of the
link L is given by

〈D〉 =
∑
S

Aa(S)−b(S)(−A2 −A−2)|S|−1t
|T1|
1 .t

|T2|
2 .s|H|,

where the sum runs over all possible states S of the link diagram, |S|
is the total number of circles, dottedcircle1s, dottedcircle2s and double-
dottedcircles in the state S. |T1| is the number of the dottedcircle1s,
|T2| is the number of the dottedcircle2s, |H | is the number of double-
dottedcircles, a(S) is the number of A-split in state S and b(S) is the
number of B-split in state S.

Proof. Assume that the link diagram D has n crossings. Pick a cross-
ing in D. By using the smoothing formulas, the bracket polynomial of
D can be determined by the bracket polynomials of two diagrams D1

and D2, each of which has one fewer crossing than D. The diagrams
D1 and D2 are obtained by applying an A-split and a B-split on that
crossing in D. Now use the smoothing formulas again to determine
the bracket polynomials of each of D1 and D2 in terms of the bracket
polynomials of four diagrams, each of which has two fewer crossings
than D. Continuing with the same procedure, we eventually get the
bracket polynomial for D in terms of the bracket polynomials for 2n

diagrams, each of which has no crossings. Hence, we have 2n states in
the handlebody with two handles.

Now let S be a given state. Then, by using the reduction and finishing
formulas, we get directly

〈S〉 = (−A2 −A−2)|S|−1t
|T1|
1 .t

|T2|
1 .s|H|.
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Note that, each time we split a crossing, the polynomials of the
resultant diagrams were multiplied by either an A or A−1, depending on
whether the split was an A-split or a B-split. So the polynomial of S is
multiplied by Aa(S)−b(S). Hence, the total contribution to the bracket

polynomial by state S is Aa(S)−b(S)(−A2 −A−2)|S|−1t
|T1|
1 .t

|T2|
2 .s|H|.

So the bracket polynomial of diagram D of the link L will be the sum
over all possible states of these contributions. We write this as

〈D〉 =
∑
S

Aa(S)−b(S)(−A2 −A−2)|S|−1t
|T1|
1 .t

|T2|
2 .s|H|.

This completes the proof.

We can give the state sum formula for the bracket polynomial of a
link diagram D in the handlebody with n handles HBn. For example,
we give it for the handlebody with 3 handles HB3 as follows:

〈D〉=
∑
S

Aa(S)−b(S)(−A2−A−2)|S|−1t
|T1|
1 .t

|T2|
2 .t

|T3|
3 .s

|H12|
1 .s

|H13|
2 .s

|H23|
3 .q|G|.

|T1| is the number of the dottedcircle1s, |T2| is the number of the
dottedcircle2s, |T3| is the number of the dottedcircle3s, |H12| is the
number of the double-dottedcircle12s, |H13| is the number of the double-
dottedcircle13s, |H23| is the number of the double-dottedcircle23s, |G|
is the number of the triple-dottedcircles, a(S) is the number of A-splits
in state S, and b(S) is the number of B-splits in state S.

Finally, note that one can write down the smoothing, reduction and
finishing formulas for the general case inHBn. The smoothing formulas
are the same in HBn as S3. There will be 2n reduction formulas, the
first of which is

〈
|D| ∪

〉
= (−A2 −A−2)〈|D|〉,

and, for the other 2n − 1 reduction formulas, the expression (−A2 −
A−2)〈|D|〉 is multiplied by some variable. These 2n − 1 variables are
in one-to-one correspondence with the nonempty subsets of the set of
n punctures. At last, there will be 2n finishing formulas.
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