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TORSION-FREE, GENUS-ONE, CONGRUENCE SUBGROUPS
OF PSL (2,R) AND MULTIPLICATIVE η-PRODUCTS

C.J. CUMMINS

ABSTRACT. This paper contains a classification of the
torsion-free, genus-one, congruence subgroups of PSL (2,R).
We find that there are eight classes of such subgroups which
are in one-to-one correspondence with the eight weight 2 mul-
tiplicative η-products, first classified by Dummit, McKay and
Kisilevsky. An intriguing connection with McKay’s second
monstrous E8 corresponding is described.

1. Introduction. In this paper we will consider subgroups of
PSL (2,R) which are commensurable with PSL (2,Z), but which are
not necessarily subgroups of PSL (2,Z). We will call such a subgroup a
congruence subgroup if it contains some principal congruence subgroup.
Our aim is to give a classification of the torsion-free, genus-one, con-
gruence subgroups of PSL (2,R). To motivate this result, we first give
some background on congruence subgroups of small genus, moonshine
and η-products.

Following the discovery of Moonshine [6], there has been renewed
interest in the study and classification of congruence subgroups of
low genus. Cox and Parry [7] classified the genus-zero, congruence
subgroups of the modular group. Thompson [39] showed that there
are finitely many congruence subgroups of SL (2,R) of a given genus.

Thompson’s result was made effective by Zograf [41]. Using these
results, the author tabulated the genus-zero and genus-one congruence
subgroups [8, 9]. The results are that there are 506 PSL (2,R)
conjugacy classes of congruence subgroups of genus-zero. More than
half of these classes are thought to be associated with moonshine or
generalized moonshine.

For the congruence subgroups of genus-one, there are 982 PSL (2,R)
conjugacy classes of groups. The connections of these groups with

2010 AMS Mathematics subject classification. Primary 11F03, 11F06, 11F20,
20H05.

Received by the editors on December 23, 2009, and in revised form on August
23, 2010.

DOI:10.1216/RMJ-2013-43-2-443 Copyright c©2013 Rocky Mountain Mathematics Consortium

443



444 C.J. CUMMINS

moonshine is less well understood, and one aim of this paper is to
make a tentative link with moonshine in the case that the groups are
torsion-free. This connection involves η-products and their moonshine
properties and so we next give some background on η-products.

The use of η-products and η-quotients to construct modular func-
tions and forms for Γ0(N) is well known and was first systematically
investigated by Newman [34, 35]. This technique finds many appli-
cations; for example, it was exploited by Conway and Norton [6], and
later by Ford, McKay and Norton [15], to find η-quotient expansions
for many of the Hauptmoduls occurring in moonshine and generalized
moonshine.

In general, the modular forms constructed in this way are not eigen-
forms. Dummit, Kisilevsky and McKay [14] were the first to classify
the η-products which have multiplicative coefficients. There are just
30, and these are shown in Table 1. The more general classification of
multiplicative η-quotients was considered by Martin [28], and Martin
and Ono [29], and again the possibilities are somewhat limited.

The products of Table 1 have interesting moonshine properties. Each
product is associated with a partition of 24, and 21 of these are cycle
types of M24. The resulting connection with M24 has been extensively
studied, see [30] for a more detailed account. Conway and Norton [6]
conjectured a connection with monstrous moonshine in that each such
class gives rise to a class in the Monster group. This was proved by
Kondo and Takashi [21]. Dong and Mason [13] have also shown how
M24 can be used to create a “toy model” for the Moonshine module of
Frenkel, Lepowsky and Meurman.

The multiplicative η-products have another moonshine connection
related to McKay’s second Monstrous E8 observation (cf. [4, page 528]).
McKay’s observation is a correspondence between nine classes in the
monster group and the nodes of an affine E8 diagram. This connection
is still somewhat mysterious, and understanding it is one of Borcherds’
14 problems in moonshine [3]. Some progress has been made by Norton
and Glauberman [16], who have extended McKay’s observation. Also,
Lam, Yamada and Yamauchi [24, 23] and Lam and Yamauchi [22]
have made a connection between McKay’s second correspondence and
certain coset subalgebras of the lattice vertex operator algebra V√2E8

.
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TABLE 1. Multiplicative η-products. Partitions marked with an asterisk are not

cycle types of M24.

Partition Weight Partition Weight Partition Weight

241 ∗ 1/2 141712111 2 46 3

83 ∗ 3/2 121614121 2 62322212 4

23111 1 11212 2 5414 4

22121 ∗ 1 10222 2 4424 4

21131 1 9232 ∗ 2 38 4

20141 ∗ 1 8242 ∗ 2 442214 5

18161 ∗ 1 64 2 3616 6

16181 ∗ 1 82412112 3 212 6

122 1 7313 3 2818 8

151513111 2 6323 ∗ 3 124 12

The author and Duncan [10] have recently observed that there are
nine multiplicative η-products of weight 4 or more and that these
products correspond in a natural way to the nodes of an affine E8

diagram. The fixing groups of these products are (up to 24th roots
of unity), with one exception, the discrete groups corresponding to
McKay’s nine monstrous classes. A slightly more involved construction
yields the groups which occur in McKay’s correspondence.

Thus, the η-products of Table 1 of weight at least 4 and their fixing
groups are closely tied to McKay’s second correspondence. It is thus
intriguing that, by the results of this paper, the torsion-free, genus-one,
congruence subgroups are “up to isogeny” classified by the η-products
of weight 2, the only remaining even weight forms in Table 1. This
gives an interesting analogy between the two cases. While this is not a
definitive moonshine connection, the situation is certainly noteworthy
and gives a fuller picture of the properties of the multiplicative η-
products. It suggests that further investigation is warranted.

The classification is based on a novel method introduced by Seb-
bar to classify the torsion-free, genus-zero, congruence subgroups of
PSL (2,R) [36]. Sebbar’s approach makes use of Larcher groups [26,
27]. In this paper, we refine Sebbar’s method by introducing mini-
mum Larcher subgroups. For a subgroup G of PSL (2,R), its minimum
Larcher subgroup is, roughly speaking, the intersection of all congru-
ence subgroups of G which have the same parabolic elements of G. The
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virtue of these groups is that they have an explicit description and their
signatures are known. They are thus in some sense “nice” congruence
subgroups. The idea of the classification is to deal first with these
tractable groups, and then to relate them to less tractable groups.

It is perhaps worth noting that, in the genus-zero case, the torsion-
free, congruence groups are precisely the torsion-free, minimum Larcher
subgroups. These groups have been extensively studied by Sebbar [37]
and Sebbar and McKay [31 33], and they have some interesting moon-
shine properties. As the results of the current paper show that the
genus-one, minimum Larcher subgroups also have interesting proper-
ties, this suggests that further study of these groups will be profitable.

The structure of the paper is as follows. In Section 2 we define
generalized Larcher subgroups and minimum Larcher subgroups, and
find some basic properties. In Section 3 these results are applied to find
the set of minimum Larcher subgroups which are (projectively) torsion-
free, genus-one and regular (contain −12, where 12 is the identity of
SL (2,R)). In Section 4 it is shown that there is a certain maximum
group corresponding to each such minimum Larcher group and that
each such maximum group is the fixing group, up to conjugacy, of
one of the weight 2, multiplicative η-products. Finally, the PSL (2,R)
conjugacy classes of torsion-free, genus-one, congruence subgroups are
found and the results are presented in a set of tables and diagrams.

In the rest of this paper we shall find it convenient to refer to
genus-one, regular, congruence subgroups of SL (2,R) whose images
in PSL (2,R) are torsion-free as T -subgroups. There groups are in
one-to-one correspondence with the genus-one, torsion-free, congruence
subgroups of PSL (2,R).

2. Generalized Larcher subgroups. In the rest of this paper Γ
will denote SL (2,R) and we will use C to denote the set of regular,
congruence subgroups of SL (2,R).

Definition 2.1. For any subgroup H of C, and for any subgroup K
ofH which is also in C, we say thatK is a generalized Larcher subgroup
(GLS) ofH if and only ifH andK contain the same parabolic elements.

Next we define the set LS of Larcher groups. For positive integers
p, q, r, χ and τ such that p | qr and χ | gcd (p, qr/p), let
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H(p, q, r;χ, τ) =

{(
1 + ap bq
cr 1 + dp

)
∈ Γ |

a, b, c, d ∈ Z, c ≡ τa (mod χ)

}
.

Define LS to be the set of all the groups of the form ±H(p, q, r;χ, τ),
where if G is a subgroup of SL (2,R), we define ±G to be the group
generated by G and −12. Larcher’s original set of groups is a subset of
LS, but this larger set is easier to describe.

Larcher showed that every element of C ∩ Γ contains a GLS which
is, up to conjugacy in Γ, an element of LS. So the properties of the
set of cusp widths of a general congruence subgroup of Γ follow by
establishing the corresponding properties for the groups in LS. Since
LS is given explicitly, the properties of the set of cusp widths of the
groups in LS are easier to obtain than the properties of the set of
cusp widths of a general congruence subgroup of Γ. This was Larcher’s
original motivation for introducing these groups. The signature and
level of the groups in LS are known [11, 12].

Sebbar observed that any torsion-free, genus-zero, congruence sub-
group of PSL (2,R) is necessarily conjugate in PSL (2,R) to (the image
of) a Larcher group. This yields a classification of these groups. Our
aim here is to extend this result to the case of genus-one subgroups.
It is no longer the case that these groups are conjugate to elements of
LS. However, Larcher subgroups turn out once again to enter into the
classification. In fact we will find that a more “canonical” set S, the
set of minimum Larcher groups of Γ, is the key to the classification.

Definition 2.2. Let H be a group in C. We define the minimum
Larcher subgroup Lmin(H) of H to be the intersection of all the
generalized Larcher subgroups of H .

Lemma 2.3. Suppose H is a group in C. Then Lmin(H) is a GLS
of H.

Proof. Lmin(H) is regular and contains the same parabolic elements
as H , so we have to show that it is a congruence subgroup. If K is a
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GLS of H , then K∩Γ is a congruence subgroup. Since K has the same
parabolic elements as H , the set of cusp widths of K ∩ Γ is the same
as the set of cusp widths of H ∩ Γ. So, by Wolhfahrt’s theorem [40],
the level of K ∩ Γ is the same as the level of H ∩ Γ. If this level is n,
then Lmin(H) contains Γ(n), as required.

Lemma 2.4. If G is a group in C, then Lmin(G) is a normal subgroup
of G.

Proof. As G is commensurable with Γ, it has the same cusps as Γ,
namely, Q ∪ {∞}. It follows that every element of G is a multiple of
an integer matrix. So, if H is a regular, congruence subgroup of G, so
is any conjugate of H in G. Moreover, if m is a parabolic element of G
and g is any element of G, then gmg−1 is in H , since H is a GLS of G.
Hence, m is in Hg and so Hg is a GLS of G. So the set of generalized
Larcher subgroups of G is invariant under conjugation in G, and so
Lmin(G) is a normal subgroup, as required.

Lemma 2.5. If K is a GLS of H, then Lmin(K) = Lmin(H).

Proof. As Lmin(K) is a GLS of H , we have Lmin(H) ⊆ Lmin(K). But
Lmin(H) is also a GLS of K, and so Lmin(K) ⊆ Lmin(H).

Corollary 2.6. For K in C, K is Lmin(H) for some H in C if and
only if K = Lmin(K). Moreover, if K is a GLS of some group H in C
and Lmin(K) = K, then K = Lmin(H).

Let S be the set of minimum Larcher subgroups which are contained
in Γ. The previous corollary shows that S = {H ∈ C ∩ Γ | Lmin(H) =
H}. We also have the following useful result:

Lemma 2.7. Every element of S is contained, up to conjugacy in
SL (2,Z), in the set LS.

Proof. Suppose H is an element of S, then by Corollary 2.6, we
have Lmin(H) = H . So H is the only generalized Larcher subgroup
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of H . Now Larcher’s result is that every group in C ∩ Γ contains, up
to conjugacy in SL (2,Z), a subgroup L which is contained in LS and
such that H and L have the same parabolic elements. Thus, in the
terminology used in this paper, L is a GLS of H . But as H is the only
GLS of H we have H = L and so some conjugate of H in Γ is contained
in LS.

As we will see later, every minimum Larcher subgroup is conjugate
in SL (2,R) to an element of S. For this we will require the following
technical lemma.

Lemma 2.8. If G is a group in C and g is an element of SL (2,R)
such that Gg is commensurable with Γ, then Gg is also in C and
Lmin(G

g) = (Lmin(G))
g .

Proof. As G and Gg are commensurable with Γ, by considering the
action of g on cusps, we deduce that g is a multiple of an integer
matrix. It follows that Gg is in C. If m is a parabolic element of Gg,
then gmg−1 is in Lmin(G). So Lmin(G)

g is a GLS of Gg, and hence

Lmin(G
g) ⊆ Lmin(G)

g . Similarly, Lmin(G) ⊆ (Lmin(G
g))g

−1

and so the
required equality follows.

Lemma 2.9. The set S contains ±Γ(n), n = 1, 2, 3, . . . . The set S
also contains all of the genus-zero, regular, congruence subgroups of Γ
whose images in PSL (2,R) are torsion-free.

Proof. If H is a GLS of ±Γ(n), then it has level n and so contains
Γ(n) and, by definition, it also contains −12. Hence, H = ±Γ(n).
So Lmin(±Γ(n)) = ±Γ(n), and so ±Γ(n) ∈ S, n = 1, 2, 3, . . . , by
Corollary 2.6. The latter half of the proposition is due to Sebbar [36].

3. The classification of T -subgroups: Minimum groups. In
this section our aim is to start the classification of the T -subgroups
of SL (2,R) which, as explained in the introduction, we have defined
to be the genus-one, regular, congruence subgroups of SL (2,R) whose
images in PSL (2,R) are torsion-free. We start with a definition.
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Definition 3.1.

Γ0(f)
+ = {e−1/2

(
ae b
cf de

)
∈ SL (2,R)

∣∣∣
a, b, c, d, e, f ∈ Z, e > 0, f > 0, e||f}.

When f is square-free, the group Γ0(f)
+ is the normalizer of Γ0(f)

in SL (2,R). The importance of these “Helling groups” is illustrated
by the following theorem:

Theorem 3.2 (Helling [5, 17, 18]). If G is a subgroup of SL (2,R)
which is commensurable with SL (2,R), then G is conjugate to a sub-
group of Γ0(f)

+ for some square-free f . The groups Γ0(f)
+ are dis-

tinct, maximal discrete subgroups of SL (2,R).

We shall also need Sebbar’s lemma.

Lemma 3.3. If t is a parabolic element of Γ0(f)
+ with f square-free,

then t ∈ Γ.

Proof. If t is a parabolic matrix, then tr (t) = ±2. So, if t =

e−1/2
(

ae b

cf de

)
, then ae+ de = ±2e1/2. But ae+ de is an integer and e

divides the square-free integer f . It follows that e = 1, and so t ∈ Γ.

Proposition 3.4. If G is a group in C and G is a subgroup of Γ0(f)
+

for some square-free f , then Lmin(G) = Lmin(G ∩ Γ).

Proof. By Lemma 3.3, G ∩ Γ has the same parabolic elements of G
and so it follows that it is a GLS of G. The result now follows from
Lemma 2.5.

The following corollary will be used to establish a link between the
T -subgroups and the set S of minimum Larcher subgroups introduced
in Section 2.
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Corollary 3.5. If G is a group in C, then up to conjugacy in
SL (2,R), Lmin(G) is contained in S.

Proof. By Theorem 3.2 and Lemma 2.8, we can reduce to the case
that G is a subgroup of Γ0(f)

+ for some square-free f . Then, by
Proposition 3.4, Lmin(G) = Lmin(G∩Γ) = H , say, with Lmin(H) = H .
As noted in Section 2, this implies that H is in S up to conjugacy
in Γ, so Lmin(G) is contained in S up to conjugacy in SL (2,R), as
required.

We will also make use of the following result.

Lemma 3.6. Let G be a subgroup of SL (2,R) which is commen-
surable with SL (2,Z). Then the normalizer of G in SL (2,R) is, up
to conjugacy in SL (2,R), a subgroup of Γ0(f)

+ for some square-free
integer f .

Proof. Since G is a non-cyclic, discrete subgroup of SL (2,R), it
follows that N is a discrete subgroup of SL (2,R). See, for example,
[19, Theorem 5.7.5]. Then, by Siegel’s theorem (see, for example, [2,
Theorem 10.4.5]) the index of G in N is finite. So N is commensurable
with SL (2,Z). The result now follows from Theorem 3.2.

We next show that the minimum Larcher subgroup of a T -subgroup
is also a T -subgroup. We start with the following well-known theorem.

Theorem 3.7 (Riemann-Hurwitz formula). Let φ : B′ → B be
a surjective holomorphic mapping of degree n between two compact
Riemann surfaces. Let g be the genus of B and g′ the genus of B′.
Then

2g′ − 2 = n(2g − 2) +
∑
z∈B′

(ez − 1),

where ez is the ramification index of the covering at z ∈ B′.

As explained, for example, in [38, Section 1.5], if G is a discrete
subgroup of SL (2,R) such that G\H∗ is compact and G′ is a subgroup
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of G of finite index, then Theorem 3.7 may be applied to the covering

map φ : G′\H∗ → G\H∗. If G and G
′
are the images of G and G′

in PSL (2,R), then the degree of this covering is Index (G : G
′
). By

[38, Proposition 1.37], the ramification index ez, z ∈ B′, is equal to 1,
except possibly at points which are images of elliptic or parabolic fixed
points of G. More precisely, if z ∈ B′ is the image of w ∈ H∗, then ez is

equal to the index of G
′
w in Gw, where G

′
w is the subgroup of G

′
which

fixes w and Gw is the subgroup of G which fixes w.

We immediately obtain the required property of Lmin(G), when G is
a T -subgroup, as follows.

Proposition 3.8. Let G be a T -subgroup. Then Lmin(G) is also a
T -subgroup.

Proof. The fact that G is projectively torsion-free implies that
Lmin(G) is projectively torsion-free. Consider the covers of G\H∗ and
Lmin(G)\H∗. Since the groups are projectively torsion-free, there is
no ramification at the images of elliptic points. Moreover, the groups
contain the same parabolic elements and so there is no ramification at
the images of cusps. By assumption, the genus of G\H∗ is one. So,
by Theorem 3.7, the genus of H\H∗ is one. Since G is regular and
congruence, so is Lmin(G) and so the proposition follows.

These results provide some of the tools needed to classify the T -
subgroups up to conjugacy. If G is one such group, then, by Proposi-
tion 3.8, so is Lmin(G), and the inclusion is normal. By Corollary 3.5,
Lmin(G) is, up to conjugacy, in S. So we can classify T -subgroups by
first finding all the genus-one, projectively torsion-free elements of S.
By Lemma 2.7, these are, up to conjugacy in Γ, contained in LS (the
set of Larcher groups). The genus-one elements of LS were listed in
[12]. For convenience we reproduce the proof here.

The signature of a subgroupH of SL(2,Z) is a tuple (μ, ν2, ν3, ν∞, ν′∞),
where μ is the index of ±H in SL (2,Z); ν2 is the number of inequiv-
alent elliptic fixed points of H of order 2; ν3 is the number of in-
equivalent elliptic fixed points of H of order 3; ν∞ is the number of
regular cusps of H ; and ν′∞ is the number of irregular cusps of H . Let
H(p,N ;χ) = H(p,N, 1;χ, 1); then the following lemma shows that to
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find the signature of H(p, q, r;χ, τ), we can reduce to computing the
signature of H(p,N ;χ).

Lemma 3.9. Suppose p, q, r, χ and τ are positive integers such that
p | qr and χ | gcd (p, qr/p). Let g = gcd (χ, τ). Then the groups
H(p, q, r;χ, τ) and H(p, gqr;χ/g) have the same signature.

To give the signatures of H(p,N ;χ), we let k = lcm [gcd (p2, N)χ,N ]
and define c(p,N ;χ) by

c(p,N ;χ) =
χNφ(p)

φ(N)

∑
d|k/χ

φ(d)φ(d′)
lcm [d, d′, pk/N ]

,

where d d′ = k/χ and φ is Euler’s function. Also define ν2(N) and
ν3(N) to be the number of inequivalent elliptic fixed points of order 2
and 3, respectively, of Γ0(N). See, for example, [38, Proposition 1.43]
for explicit formulas. Then the required signatures are given by the
following theorem.

Theorem 3.10 [11]. Suppose p,N and χ are positive integers such
that p | N and χ | gcd (p,N/p). Let c = c(p,N ;χ) and

ψ(N) = N
∏
�|N

� prime

(
1 +

1

�

)
.

The signature (μ, ν2, ν3, ν∞, ν′∞) of H(p,N ;χ) is

μ =

⎧⎪⎨
⎪⎩
χφ(p)ψ(N) if p = 2 and χ = 1,

or p = 1,

1
2
χφ(p)ψ(N) otherwise.

ν2 =

⎧⎪⎨
⎪⎩
ν2(N) if p = 1,

or p = 2 and 2||N ,

0 otherwise.

ν3 =

⎧⎪⎨
⎪⎩
ν3(N) if p = 1,

or p = 3 and 3||N,
0 otherwise.
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(ν∞, ν′∞) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(c, 0) if p = 2 and χ = 1,

or p = 1,

(25c,
1
5c) if p = 2, χ = 2, 2|| (N/p),

(14c,
1
2c) if p = 2, χ = 2, 2k|| (N/p), k odd, k > 1,

(13c,
1
3c) if p = 2, χ = 2, 2k|| (N/p), k even,

(25c,
1
5c) if p = 4, 2 � (N/p), (so χ = 1),

(12c, 0) otherwise.

The signature of ±H is (μ, ν2, ν3, ν∞ + ν′∞, 0).

As is well known, the formula for the genus of a subgroup of SL (2,Z)
is given by

g = 1 +
μ

12
− ν2

4
− ν3

3
− ν∞

2
− ν′∞

2
.

So Theorem 3.10 also gives an explicit formula for the genus of
±H(p, q, r;χ, τ). There are only finitely many groups of the form
±H(p, q, r;χ, τ) of any given genus, as is shown in the next theorem.

Theorem 3.11. If the group ±H(p, q, r;χ, τ) has genus g, then for
some τ ′ which is congruent to τ modulo χ, we have ±H(p, q, r;χ, τ) =
±H(p, q, r;χ, τ ′) and 1 ≤ τ ′ ≤ χ ≤ p ≤ qr < 128(g + 1).

Proof. Suppose H is a congruence subgroup of SL (2,Z). Then Zograf
has shown in [41] that g+1 > (1/128)I, where g is the genus of H and
I is the index of H in SL (2,Z). By Theorems 3.9 and 3.10, the index
of ±H(p, q, r;χ, τ) is χφ(p)ψ(qr) if p = 1, or p = 2 and χ = 1, or p = 2,
χ = 2 and τ is even. For these cases we get a bound qr < 128(g + 1),
since qr is a lower bound for χφ(p)ψ(qr). Otherwise, the index is
1/2χφ(p)ψ(qr). If p ≥ 3, then φ(p) ≥ 2, and so again we get the bound
qr < 128(g + 1). This leave the case p = 2, χ = 2 and τ is odd.
But, since χ = 2, we again get the same bound for qr. This yields the
required result since p is bounded above by qr, χ is bounded by p and
we can take 1 ≤ τ ′ ≤ χ where τ ′ ≡ τ (mod χ).

Theorem 3.11 gives an explicit, finite list of values of the parameters
p, q, r, χ and τ for which the group ±H(p, q, r;χ, τ) has genus g. As the
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signature of ±H(p, q, r;χ, τ) is given in Theorem 3.10, it follows that
a list of all the groups in LS of any given genus can be computed. In
particular, a list of all the genus-one, projectively torsion-free groups
in LS can be found. In principle, this calculation can be done by hand,
but the results of [12] were done by computer. After removing groups
which do not satisfy Lmin(H) = H and some obvious conjugations in
SL (2,R), the remaining cases are listed in the first column of Table 2.
There remains the possibility some of these groups are conjugate in
SL (2,R). We can rule out this possibility by finding the normalizers
of these groups as follows.

Definition 3.12. For positive integers p, q and r such that p divides
qr, let H(p, q, r) = H(p, q, r; 1, 1).

Atkin and Lehner [1] have found the normalizer of Γ0(N) = H(1, 1, N)
and Lang [25] has found the normalizer of Γ1(N) = H(N, 1, N). It
would be interesting to find the normalizers of all the Larcher sub-
groups; however, here we will need only the following special case.

Theorem 3.13. Suppose f is a square-free integer. Let H =
H(p, r, rf) with p | rf and either r | p or r | 24. Then H is normal in
Γ0(f)

+.

Proof. Let A = e−1/2
(

ae b

cf de

)
be an element of Γ0(f)

+ and B =(
α βr

γrf δ

)
be an element of H(p, r, rf). Then

ABA−1 =

(
adeα− bc(f/e)δ + k1rf ab(δ − α) + k2r
cfd(α− δ) + k3rf adeδ − bc(f/e)α+ k4rf

)

for some integers k1, k2, k3 and k4. Now ade − cb(f/e) = 1 and
α ≡ δ ≡ 1 (mod p), and so the diagonal entries of ABA−1 are
congruent to 1 modulo p since by assumption p divides rf . If r
divides p, then the congruence α ≡ δ ≡ 1 (mod p) yields α − δ ≡ 0
(mod r). If r divides 24, then the exponent of (Z/rZ)∗ is 2 and, since
αδ − βγr2f = 1, it follows that again α − δ ≡ 0 (mod r). In either
case, ABA−1 is in H(p, r, rf) as required.
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Corollary 3.14. If ±H is one of the groups given in column Lmin

of Table 2, then the normalizer of H in SL (2,R) is Γ0(f)
+, where f is

given in Table 2. In particular, the groups in column Lmin of Table 2
are in distinct SL (2,R) conjugacy classes.

Proof. By Proposition 3.13, H , and hence ±H , are normal in Γ0(f)
+

where f is one of 1, 2, 3, 5, 6, 11, 14 or 15. In each case f is square-
free. So, by Theorem 3.2, Γ0(f)

+ is a maximal, discrete subgroup of
SL (2,R) and so is the full normalizer of H .

If two of the groups in column Lmin of Table 2 were conjugate in
SL (2,R), then their normalizers would be conjugate in SL (2,R) also.
However, the groups Γ0(f)

+ and Γ0(f
′), with f and f ′ square-free

integers, are not conjugate in SL (2,R) if f is not equal to f ′. This is
shown in [18, Section 3].

Corollary 3.15. If G is a T -subgroup of SL (2,R), then, up to
conjugacy in SL (2,R), Lmin(G) is one of the eight groups listed in the
Lmin column of Table 2.

To summarize, Proposition 3.8 tells us that, if G is a T -subgroup,
then it contains Lmin(G) and Lmin(G) is a T -subgroup. The inclusion
is normal and so every T -subgroup of SL (2,R) is, up to conjugacy
in SL (2,R), a group between one of the groups in Table 2 and its
normalizer in SL (2,R) as given in Corollary 3.14.

4. The classification of T -subgroups: Maximum groups.
Since there are only finitely many groups between each minimum
Larcher group and its normalizer, Corollary 3.15 gives an algorithm for
computing the T -subgroups G up to conjugacy in SL (2,R). However,
there is a strong constraint on these groups, as we show in the next
proposition.

Proposition 4.1. Suppose L is a projectively torsion-free, genus-
one group in S (and hence regular and congruence). Let R be the set
of discrete, regular, genus-one congruence subgroups of SL (2,R) which
have L as minimum Larcher subgroup. Then the elements of R are
T -subgroups, R has a unique maximum element Lmax and the quotient
Lmax/L is abelian.
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Proof. SupposeG1 andG2 are discrete, regular, genus-one congruence
subgroups of SL (2,R) such that L = Lmin(G1) = Lmin(G2). By
Theorem 3.7, G1 and G2 are projectively torsion-free and hence T -
subgroups. Both groups contain L normally by Lemma 2.4. Thus,
if G is the group generated by G1 and G2, then G is contained in
the normalizer of L in SL (2,R), and so, by Lemma 3.6, the index of
L in G is finite. So G is discrete and regular. It is also genus-one
by the following argument. The group G1/L acts on C = L\H∗ as
a finite subgroup of the automorphism group of C and the quotient
surface (G1/L)\C is isomorphic to G1\H∗ as a Riemann surface.
See, for example, [19, Theorem 5.9.4 and page 312]. Let t be an
element of G1. Then t induces an automorphism of C. Now C is
isomorphic as a Riemann surface to C′ = C/Ω for some lattice Ω and
the automorphisms of C′ have the form [z] �→ [az + b] where a and b
are complex numbers such that aΩ = Ω and [z] is the image of z ∈ C in
the quotient C′. See, for example, [19, Theorem 4.18.2]. So t induces
an automorphism [z] �→ [az + b] of C′ for some a and b. If a �= 1,
then b/(1− a) is a fixed point and so t has a fixed point on C. This is
impossible, since the quotient surface obtained from the action of G1

is genus 1 and by Theorem 3.7 the covering map has no ramification.
Let A′ be the subgroup of automorphisms of C′ whose elements have
the form [z] �→ [z + b]. Then A′ is an abelian group which has a fixed-
point-free action on C′. Let A be the corresponding abelian subgroup
of automorphisms of C. Thus, the action of t on C is an element of
A. By the same argument, the action of every element of G2 on C is
also an element of A. So G/L is an abelian group which has a fixed-
point-free, effective action on C. By Theorem 3.7, the quotient surface
(G/L)\C, and hence G\H∗, has genus 1.

As R contains only finitely many groups, we may repeat this argu-
ment finitely many times to show that the group generated by all the
groups inR is still inR and so is the required unique maximum element
Lmax and that Lmax/Lmin is an abelian group.

By Proposition 4.1, the T -subgroups containing a given minimum
Larcher subgroup L = Lmin are precisely the groups between Lmin and
Lmax. Moreover, Lmax is the genus-one subgroup of the normalizer of
L of minimum index.

As the list of possible minimum Larcher subgroups and their normal-
izers is given in Table 2, it would be a straightforward task to find the
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TABLE 2. Lmin structure. The second column gives the structure of Lmin(f) with

notation described in the text. The column “Label” is the name of this group in

[8]. The column “Cusps” gives the structure of the cusps of Lmin(f), as a subgroup

of Γ0(f)+, in partition notation. So 612 means Lmin(1) has 12 cusps of width 6 as

a subgroup of SL (2,Z). The last two columns give the index of Lmin(f) in Γ0(f)+

and SL (2,Z), respectively.

f Lmin Label Cusps |Γ0(f)
+/Lmin| IΓ

1 ±H(1, 6, 6) 6F 1
1 612 72 72

2 ±H(8, 4, 8) 8AH1
2 416 64 96

3 ±H(9, 3, 9) 9H1
3 318 54 108

5 ±H(5, 2, 10) 10F 1
5 212 24 72

6 ±H(12, 2, 12) 12U1
6 216 32 96

11 ±H(11, 1, 11) 11A1
11 110 10 60

14 ±H(7, 1, 14) 7B1
14 112 12 72

15 ±H(15, 1, 15) 15A1
15 116 16 96

corresponding groups Lmax by a direct computation. There is, however,
a more illuminating way to characterize the groups Lmax. The idea is
that each of the groups between Lmin and Lmax have the same space
of weight two cusp forms, which is one-dimensional. Choosing a form
in this space, normalized so that its first Fourier coefficient is equal to
1, allows us to characterize Lmax as the subgroup of SL (2,R) which
fixes this form. More interestingly, the resulting eight forms turn out
to have a nice description. They are essentially the eight weight 2,
multiplicative η-products [14, 28, 29], as we now show.

Recall that a sequence λ = (λ1, . . . , λk), λ1 ≤ λ2 ≤ · · · ≤ λk,
is called a partition of the number N = λ1 + λ2 + · · · + λk. The
numbers λ1, λ2, . . . , λk are called the parts of the partition λ. The
number of parts of λ is called the length of the partition. For example,
λ = (4, 4, 8, 8) is a partition of 24 into 4 parts. This partition may also
be denoted 4282 in an obvious exponential notation. To each partition
λ we can associate an η-product,

∏
i η(λiz). So, for example, the η-

product associated with the partition 4282 is η(4z)2η(8z)2.
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Proposition 4.2. it Let Pf (z), for f = 1, 2, 3, 5, 6, 11, 14 and 15,
denote the following η-products:

P1(z) = η(6z)4

P2(z) = η(4z)2η(8z)2

P3(z) = η(3z)2η(9z)2

P5(z) = η(2z)2η(10z)2

P6(z) = η(2z)η(4z)η(6z)η(12z)

P11(z) = η(z)2η(11z)2

P14(z) = η(z)η(2z)η(7z)η(14z)

P15(z) = η(z)η(3z)η(5z)η(15z).

These are the eight weight 2 η-products with multiplicative coefficients,
see [14, 28, 29]. If λ(f) is the partition corresponding to Pf , let
rf = λ(f)1 be the smallest part of λ, and let Nf be the product of the
smallest and largest parts of λ(f). For each value of f listed above, let
Lmin(f) and Lmax(f) denote the corresponding groups listed in Tables
2 and 3, respectively. Then Lmax(f) is the subgroup of SL (2,R) which
fixes Pf (z/rf ).

Proof. By a result of Newman in [35], each of these η-products
is a weight 2 cusp form on Γ0(Nf ). Moreover, for each of these
values of Nf , Γ0(Nf ) is projectively torsion-free and genus-one. This
follows, for example, from Propositions 1.40 and 1.43 of Shimura [38].
Now, the group Γ0(Nf ) is, in the notation of this paper, the group
H(1, 1, Nf). So the product Pf (z/rf ) is a weight 2 cusp form on the
group H(1, rf , Nf/rf ). From Table 2, we see that each of these groups
contains the group Lmin(f), so that the product Pf (z/rf) is a weight 2
cusp form on Lmin(f). By [38, Theorem 2.23], the spaces of weight 2
cusp forms on Lmin(f) and Lmax(f) are both one-dimensional, and so
these two spaces coincide. In particular, Pf (z/rf ) is a form on Lmax(f).
Moreover, Lmax(f) is the subgroup of SL (2,R) which fixes Pf (z/rf )
(as a weight 2 modular form). We can show this as follows. Knopp
has shown that if a subgroup G of SL (2,R) has a modular form f(z)
which has even integral weight, has trivial multiplier system and which
is not a polynomial, then G is a discrete subgroup of SL (2,R). See [20,
Theorem 1]. Thus, if G is the fixing group of Pf (z/rf ) as a weight 2
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modular form, then, since Pf (z/rf ) is not a polynomial, G must be
a discrete subgroup of SL (2,R). By Siegel’s theorem, the area of a
fundamental domain of G is bounded from below and so the index of
Lmax(f) in G is finite. So by the Riemann-Hurwitz theorem the genus
of G is either zero or one. So the genus of G must be one, since groups
of genus-zero have no weight 2 cusp forms. The Riemann-Hurwitz
formula then implies that G is projectively torsion-free and that G and
Lmax(f) have the same parabolic elements. So Lmin(f) is the minimum
Larcher subgroup of G by Lemma 2.6. This implies that G = Lmax(f),
since, by Proposition 4.1, Lmax(f) is the maximum group with these
properties.

We can summarize these results in the following theorem.

Theorem 4.3. There is a one-to-one correspondence between the
following sets:

• The eight SL (2,R) conjugacy classes of projectively torsion-free,
genus-one, minimum Larcher subgroups.

• The eight SL (2,R) conjugacy classes of projectively torsion-free,
genus-one, congruence subgroups with a given minimum Larcher sub-
group.

• The eight multiplicative weight two η-products.

• The eight groups Γ0(N) which are genus-one and projectively
torsion-free.

The problem remains of finding the SL (2,R) conjugacy classes of T -
subgroups. We now construct these groups and their conjugacy classes
explicitly.

Proposition 4.4. The generators of Lmax over Lmin are given in
the second and third columns of Table 4.

Proof. Using the standard transformation properties of η(z), the
matrices listed in Table 4 fix Pf (z/rf) for each value of f . More-
over, these matrices commute modulo Lmin(f) and their images mod-
ulo Lmin(f) generate an abelian group with the abelian invariants listed
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TABLE 3. Lmax structure. The first column gives the standard name of Lmax(f)

if it is known. See [6] for an explanation of the notation. If the structure of the

group is not known, it is denoted Mf . The column “Rank” gives the rank of Lmax

as a free group. The column “Label” gives the name of Lmax(f) in [8]. The column

“Cusps” gives the structure of the cusps of Lmax(f), as a subgroup of Γ0(f)+, in

the same notation as Table 2. The last two columns give the index of Lmax(f) in

Γ0(f)+ and the index of Lmin(f) in Lmax(f), respectively.

f Lmax Rank Label Cusps |Γ0(f)+/Lmax| |Lmax/Lmin|
1 Γ′ 2 6A1

1 61 6 12

2 M2 2 4A1
2 41 4 16

3 M3 3 3A1
3 32 6 9

5 M5 2 2A1
5 21 2 12

6 M6 2 2A1
6 21 2 16

11 11− 3 1A1
11 12 2 5

14 14 + 2 3 1A1
14 12 2 6

15 15 + 3 3 1A1
15 12 2 8

in the table. This gives an upper bound on the index of Lmax(f) in
Γ0(f)

+ given by the sixth column of Table 3. But, as the groups are
projectively torsion-free, a lower bound for the index is the LCM of
the projective orders of the torsion elements of Γ0(f)

+. These orders
are given in Table 5. The LCMs of these projective orders are again
given by the numbers in the sixth column of Table 3. Thus, the groups
generated by the matrices in Table 4 over Lmin(f) are precisely the
groups Lmax(f).

If G is a T -subgroup, then by Corollary 3.15 it is conjugate in
SL (2,R) to a group containing one of the eight groups Lmin of Table 2.
So, by Proposition 4.1, G is conjugate to a group between Lmin and
Lmax. Moreover, Lmax/Lmin is abelian and, by Proposition 4.4, is
generated by the images of the elements listed in Table 4. Thus, G
corresponds to some subgroup of Lmax/Lmin. These subgroups and
their generators over Lmin can be explicitly computed which gives a
list which contains all the T -subgroups up to conjugacy. However,
there remains the question of which of these groups are conjugate in
SL (2,R).

By Lemma 2.8 and Corollary 3.14, if G1 and G2 contain, up to con-
jugacy, different minimum Larcher subgroups, then G1 and G2 are not
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TABLE 4. Generators of Lmax over Lmin. The orders of the images of the elements

in Lmax/Lmin are indicated by the subscripts. For the case of two generators,

their images in Lmax/Lmin generate cyclic subgroups with trivial intersection. The

column labeled “Ab” gives the structure of Lmax/Lmin as an abelian group. The

column labeled “Auto” gives the induced action of the normalizer of Lmax and Lmin

on the generators of Lmax/Lmin. The order of this automorphism group is given in

the next column. The column labeled “N1” gives the numbers of subgroups between

Lmin and Lmax, and the column labeled “N2” gives the number up to conjugacy

in SL(2,R), or equivalently up to equivalence modulo the group generated by the

transformations of column “Auto.”

f Generators over Lmin Ab Auto |Auto| N1 N2

1 ( 1 2
2 5 )2 ( 1 1

1 2 )6 2231
x �→x,y �→y−1

x �→xy3,y �→xy4 6 10 6

2 ( 2 −1
−2 2 )4 ( 0 1−2 4 )4 42

x �→x−1,y �→y−1

x �→y−1,y �→x 4 15 10

3 ( 1 1
3 4 )3 ( 2 1

3 2 )3 32
x �→x−1,y �→y−1

x �→xy−1,y �→x 6 6 4

5 ( 5 2
10 5 )2 ( 3 1

5 2 )6 2231 x �→ x, y �→ y−1 2 10 10

6 ( 15 −2
24 −3 )2 ( 4 1

6 2 )8 2181 x �→ x, y �→ y−1 2 11 11

11 ( 4 1
11 3 )5 51 x �→ x−1 2 2 2

14 ( 4 1
14 4 )2 ( 5 1

14 3 )3 2131 x �→ x, y �→ y−1 2 4 4

15 ( 6 1
15 3 )8 81 x �→ x−1 2 4 4

conjugate in SL (2,R). Thus, it is only necessary to consider the
case where G1 and G2 contains the same Lmin as minimum Larcher
subgroup. Suppose g−1G1g = G2 for some g ∈ SL (2,R). Then, by
Lemma 2.8, Lmin = Lmin(G2) = Lmin(G1)

g = Lg
min. Thus, g is an

element of the normalizer of Lmin in SL (2,R). Since Lmax is a normal
subgroup of this normalizer, it follows that g induces an automorphism
of Lmax/Lmin. Hence, we have shown the following.

Theorem 4.5. The T -subgroups are classified up to conjugacy in
SL (2,R) by the subgroup lattices of Lmax/Lmin up to automorphisms
induced by the normalizer of Lmin.
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TABLE 5. Generators of Γ0(f)+. The last column gives the structure, in partition

notation, of the conjugacy classes of cyclic subgroups in the corresponding projective

groups. So 3121 means the projective group contains one conjugacy class of cyclic

subgroups of order 3 and one of order 2.

f Generators Torsion

1 ( 0 −1
1 0 ) ( 0 −1

1 −1 ) 3121

2 ( 0 −1
2 0 ) ( 0 −1

2 −2 ) 4121

3 ( 0 −1
3 0 ) ( 0 −1

3 −3 ) 6121

5 ( 0 −1
5 0 ) ( 2 −1

5 −2 ) ( 5 −3
10 −5 ) 23

6 ( 0 −1
6 0 ) ( 2 −1

6 −2 ) ( 3 −2
6 −3 ) 23

11 ( 0 −1
11 0 ) ( 11 −4

33 −11 ) ( 11 −6
22 −11 ) ( 22 −15

33 −22 ) 24

14 ( 0 −1
14 0 ) ( 7 −2

28 −7 ) ( 14 −5
42 −14 ) ( 7 −4

14 −7 ) 24

15 ( 0 −1
15 0 ) ( 5 −2

15 −5 ) ( 15 −8
30 −15 ) ( 10 −7

15 −10 ) 24

The generators of the normalizers are listed in Table 5. The induced
action of these generators is given in Table 4 in the column “Auto.” For
f = 1, 2 and 3, there are two automorphisms corresponding to the two
generators of Γ0(f)

+. For the other values of f there is only one non-
trivial induced transformation. The induced action on the generators
of Lmax/Lmin gives rise to an action on the subgroup lattices. This
action is non-trivial only for f = 1, 2 and 3. The number of subgroups
is given by the column “N1” of Table 4 and the number modulo the
induced action of conjugation in SL (2,R) is given in column “N2” of
Table 4.

The explicit classification is given in the form of eight diagrams
corresponding to the eight possible groups Lmin. Each diagram gives
the structure of the subgroup lattice Lmax/Lmin up to equivalence by
conjugation by the normalizer of Lmin. The generators over Lmin are
listed as words in x and y (or just x) where x and y are the two
generators in Table 4. For convenience, the order of each generator
modulo Lmin is indicated by subscripts. The corresponding group label
from the tables of [8] is also listed. As the computations of [8] are
independent of the results of this paper, the fact that the results are in
agreement provides a useful check.
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As noted above, for each minimum Larcher group ±H(p, q, r) in
Table 2, there is a corresponding group Γ0(qr) which is genus-one and
projectively torsion-free and which, up to conjugacy, has ±H(p, q, r) as
its minimum Larcher subgroup. In each diagram, the group which is
conjugate to Γ0(qr) is marked with a superscript asterisk.
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