SOME CRITERIA FOR $C_p(X)$ TO BE AN $L\Sigma(\leq \omega)$ -SPACE

V.V. TKACHUK

ABSTRACT. Given a cardinal κ say that X is an $L\Sigma(<\kappa)$ space $(L\Sigma(\leq \kappa)$ -space) if X has a countable network \mathcal{F} with respect to a cover \mathcal{C} of X by compact subspaces of weight strictly less than κ (less than or equal to κ , respectively), i.e., given any $C \in \mathcal{C}$, we have $w(C) < \kappa (w(C) \leq \kappa)$ and, for any $U \in \tau(X)$ with $C \subset U$, there exists $F \in \mathcal{F}$ such that $C \subset F \subset U$. These concepts were introduced and studied by Kubiś, Okunev and Szeptycki. We show that if $C_p(X)$ is a Lindelöf Σ -space and $|X| \leq \mathfrak{c}$, then $C_p(X)$ is an $L\Sigma(\leq \omega)$ -space. This answers two questions of Kubiś, Okunev and Szeptycki. We also prove that if X is a space and $C_p(X)$ has the $L\Sigma(<\omega)$ -property, then X is cosmic, i.e., $nw(X) \leq \omega$. This answers (in a stronger form) a question of Okunev published in Open Problems in Topology II.

0. Introduction. Lindelöf Σ -spaces constitute the smallest class which contains all compact spaces, all second countable spaces and is invariant under continuous images, closed subspaces and finite products. This explains why the Lindelöf Σ -property is so important in topology, functional analysis and descriptive set theory. One of a dozen equivalent definitions says that X is a Lindelöf Σ -space if and only if there exists a second countable space M and an upper semicontinuous compact-valued onto map $\varphi: M \to X$.

Given a class \mathcal{K} of compact spaces, Kubiś, Okunev and Szeptycki introduced and studied in [5] the class $L\Sigma(\mathcal{K})$ of spaces X for which there exists a second countable space M and an upper semicontinuous onto map $\varphi : M \to X$ such that $\varphi(x)$ belongs to the class \mathcal{K} for any $x \in M$. Let κ be a (not necessarily infinite) cardinal. If \mathcal{K} consists of compact spaces of weight at most κ (or strictly less than κ , respectively)

DOI:10.1216/RMJ-2013-43-1-373 Copyright ©2013 Rocky Mountain Mathematics Consortium

²⁰¹⁰ AMS Mathematics subject classification. Primary 54H11, 54C10, 22A05, 54D06, Secondary 54D25, 54C25.

Keywords and phrases. Lindelöf Σ -space, $L\Sigma(<\omega)$ -space, $L\Sigma(\le\omega)$ -space, function space, cosmic space, network, upper semicontinuous map.

Research supported by Consejo Nacional de Ciencia y Tecnologí a (CONACyT) of Mexico grants 94897 and 400200-5-38164-E.

Received by the editors on January 27, 2010, and in revised form on June 10, 2010.

then the class $L\Sigma(\mathcal{K})$ is denoted in [5] by $L\Sigma(\leq \kappa)$ (or by $L\Sigma(< \kappa)$, respectively).

Compact spaces from the class $L\Sigma(\leq \omega)$ were studied (under a different name) by Tkachuk in [11] and Tkachenko in [10]; the paper [5] presents answers to some questions formulated in [10, 11]. Kubiś, Okunev and Szeptycki proved, in particular, that not every Corson compact space of weight ω_1 belongs to the class $L\Sigma(\leq \omega)$ and that all elements of an important subclass of the class of compact $L\Sigma(\leq \omega)$ -spaces have a dense metrizable subspace.

In the paper [9] published in *Open problems in topology* II, Okunev outlined the current progress and some lines of research in the study of $L\Sigma(\leq \kappa)$ -spaces and $L\Sigma(< \kappa)$ -spaces. It is one of the open questions of the paper [9] whether a space X must be cosmic if $C_p(X)$ belongs to the class $L\Sigma(\leq n)$ for some $n \in \omega$. We prove that, if $C_p(X)$ is an $L\Sigma(< \omega)$ -space, then X is cosmic giving thus a positive answer (in a stronger form) to Problem 5 from [9].

Therefore, the next natural step is to study for which X the space $C_p(X)$ has the $L\Sigma(\leq \omega)$ -property. Molina Lara and Okunev proved in [**6**] that every Gul'ko compact space of cardinality at most **c** is an $L\Sigma(\leq \omega)$ -space and established that, for any Eberlein compact space X such that $|X| \leq \mathbf{c}$, the space $C_p(X)$ has the $L\Sigma(\leq \omega)$ -property. We prove that, if X is a Lindelöf Σ -space with the unique non-isolated point and $|X| \leq \mathbf{c}$, then $C_p(X)$ is a Lindelöf Σ -space. This gives a positive answer to Problem 3.5 of [**6**]. We also show that, for any space X for which $C_p(X)$ has the Lindelöf Σ -property, $C_p(X)$ is a $L\Sigma(\leq \omega)$ -space if and only if $|X| \leq \mathbf{c}$. This result and its consequences give a positive answer to Problems 4.5 and 4.6 from [**6**].

1. Notation and terminology. All spaces in this paper are assumed to be Tychonoff. Given a space X, the family $\tau(X)$ is its topology and $\tau(x, X) = \{U \in \tau(X) : x \in U\}$ for any $x \in X$; if $A \subset X$, then $\tau(A, X) = \{U \in \tau(X) : A \subset U\}$. The unexplained notions can be found in [1, 3]; the definitions of cardinal invariants can be consulted in the survey of Hodel [4].

All ordinals are identified with the set of their predecessors and are assumed to carry the interval topology. As usual, **R** is the set of reals, $\mathbf{I} = [0, 1] \subset \mathbf{R}$ and **D** is the doubleton $\{0, 1\}$ with the discrete

topology. For any infinite cardinal κ the space $A(\kappa)$ is the one-point compactification of the discrete space of cardinality κ . We use the symbol \mathfrak{c} to denote the cardinality of the continuum, i.e., $\mathfrak{c} = 2^{\omega}$. The expression $X \simeq Y$ says that the spaces X and Y are homeomorphic; we denote by vX the Hewitt realcompactification of the space X.

For any spaces X and Y the set C(X, Y) consists of continuous functions from X to Y; if it has the topology induced from Y^X then the respective space is denoted by $C_p(X, Y)$. We write C(X) instead of $C(X, \mathbf{R})$ and $C_p(X)$ instead of $C_p(X, \mathbf{R})$. Given a space X, let $C_{p,0}(X) = X$ and $C_{p,n+1}(X) = C_p(C_{p,n}(X))$ for all $n \in \omega$, i.e., $C_{p,n}(X)$ is the *n*th iterated function space of X.

If \mathcal{A} is a family of sets of a space X, then $\wedge \mathcal{A}$ is the family of all finite intersections of the elements of \mathcal{A} and $\mathcal{A} \mid Y = \{A \cap Y : A \in \mathcal{A}\}$ for any $Y \subset X$. Any map φ from a space X to the family $\exp(Y)$ of subsets of Y is called multivalued; we follow the usual practice writing $\varphi : X \to Y$ instead of $\varphi : X \to \exp(Y)$. A multi-valued map $\varphi: X \to Y$ is called compact-valued (finite-valued) if the set $\varphi(x)$ is compact (finite) for any $x \in X$. If $\varphi : X \to Y$ is a multi-valued map, then $\varphi(A) = \bigcup \{ \varphi(x) : x \in A \}$ for any $A \subset X$; we say that the map φ is onto if $\varphi(X) = Y$. A multi-valued map $\varphi: X \to Y$ is called upper semi-continuous if $\varphi^{-1}(U) = \{x \in X : \varphi(x) \subset U\}$ is open in X for any $U \in \tau(Y)$. We will often use the following characterization of Lindelöf Σ -spaces: a space X is Lindelöf Σ if and only if there exists a countable family \mathcal{F} of subsets of X and a cover \mathcal{C} of the space X such that every $C \in \mathcal{C}$ is compact and for any $U \in \tau(C, X)$ we can find a set $F \in \mathcal{F}$ with $C \subset F \subset U$. The family \mathcal{F} is usually called a network with respect to the compact cover \mathcal{C} . If, in the characterization above, we require that all elements of the cover \mathcal{C} belong to a given class \mathcal{K} , then we obtain an equivalent definition for the class $L\Sigma(\mathcal{K})$.

If X is a space then the expression dim X = 0 says that every finite open cover of X has a disjoint open refinement. The spaces X with dim X = 0 are also called *strongly zero-dimensional*. If X has a clopen base then it is called *zero-dimensional*; this is also denoted as ind X = 0. A space X is called *simple* if it has at most one non-isolated point. A map $f : X \to Y$ is called a condensation if it is a continuous bijection; in this case we say that X condenses onto Y. If X condenses onto a subspace of Y, we say that X condenses into Y. If A and B are families of subsets of X, then A is a network with respect to B if, for any $B \in B$ and $U \in \tau(B, X)$, there exists an $A \in \mathcal{A}$ such that $B \subset A \subset U$. A family \mathcal{N} is a network of X if every $U \in \tau(X)$ is the union of some subfamily of \mathcal{N} . The spaces with a countable network are called *cosmic*.

2. $L\Sigma(\mathcal{K})$ -properties in function spaces. We will study the spaces X for which $C_p(X)$ has the $L\Sigma(\leq \omega)$ -property; they are not necessarily cosmic. However, we will prove that, for any X, if $C_p(X)$ is an $L\Sigma(<\omega)$ -space then X is cosmic.

2.1. Proposition. Given a space X and a class \mathcal{K} of compact spaces, $C_p(X)$ belongs to $L\Sigma(\mathcal{K})$ if and only if $C_p(vX)$ belongs to $L\Sigma(\mathcal{K})$.

Proof. Let $\pi : C_p(vX) \to C_p(X)$ be the restriction map. The class $L\Sigma(\mathcal{K})$ is preserved by condensations; since π condenses $C_p(vX)$ onto $C_p(X)$, if $C_p(vX)$ is an $L\Sigma(\mathcal{K})$ -space then so is $C_p(X)$.

Now assume that $C_p(X)$ is an $L\Sigma(\mathcal{K})$ -space and fix a cover $\mathcal{C} \subset \mathcal{K}$ of the space $C_p(X)$ together with a countable network \mathcal{N} with respect to the family \mathcal{C} ; we can consider that \mathcal{N} is closed under finite intersections. The space υX being Lindelöf Σ by [8, Theorem 3.5], we can apply [14, Theorem 2.6] to convince ourselves that $\pi^{-1}(K)$ is compact for any $K \in \mathcal{C}$ so $\pi | \pi^{-1}(K) : \pi^{-1}(K) \to K$ is a homeomorphism and hence $\mathcal{C}' = \{\pi^{-1}(K) : K \in \mathcal{C}\}$ is a compact cover of $C_p(\upsilon X)$ with $\mathcal{C}' \subset \mathcal{K}$.

Let $\mathcal{N}' = \{\pi^{-1}(N) : N \in \mathcal{N}\}$; it suffices to show that \mathcal{N}' is a network with respect to \mathcal{C}' . Suppose not; then we can find a set $K \in \mathcal{C}$ and $U \in \tau(\pi^{-1}(K), C_p(vX))$ such that $N' \setminus U \neq \varepsilon$ for any $N' \in \mathcal{N}'$ with $K' = \pi^{-1}(K) \subset N'$. Consider the family $\mathcal{F} = \{N \in \mathcal{N} : K \subset N\}$ and choose an enumeration $\{F_n : n \in \omega\}$ of \mathcal{F} . By our choice of K there exists a point $z_n \in \pi^{-1}(F_n) \setminus U$ for every $n \in \omega$. Therefore $y_n = \pi(z_n) \in F_n$ for each $n \in \omega$; the family \mathcal{F} being an outer network for K, for the set $Q = \{y_n : n \in \omega\}$ we can find a point $a \in \overline{Q} \cap K$; let $b = \pi^{-1}(a)$. If $P = \{z_n : n \in \omega\}$, then $P \subset C_p(vX) \setminus U$ and hence $\overline{P} \cap K' = \emptyset$ and, in particular, $b \notin \overline{P}$. However, the map $\pi \mid (P \cup \{b\}) : P \cup \{b\} \to Q \cup \{a\}$ is a homeomorphism by [7, Theorem 1] so we obtained a contradiction which shows that \mathcal{N}' is a countable network with respect to the cover $\mathcal{C}' \subset \mathcal{K}$.

The following theorem gives a positive answer to Problem 5 from [9].

2.2. Theorem. If $C_p(X)$ is an $L\Sigma(<\omega)$ -space then X is cosmic.

Proof. Say that a space X is dubious if it is not cosmic and $C_p(X)$ has the $L\Sigma(<\omega)$ -property; striving for a contradiction, assume that there exists a dubious space X. Then $C_p(vX)$ is also an $L\Sigma(<\omega)$ -space by Proposition 2.1 so it follows from the inequalities $nw(vX) \ge nw(X) > \omega$ that the space vX is also dubious. Therefore, we can assume, without loss of generality, that X = vX and hence X is a Lindelöf Σ -space.

Lindelöf Σ -property of $C_p(X)$ and $s(X) \leq \omega$ imply that the space Xis cosmic (see [13, Theorem 3.6]) so we can find a discrete subspace $D \subset X$ with $|D| = \omega_1$. If $Y = \overline{D}$, then normality of X implies that $C_p(Y)$ is a continuous image of $C_p(X)$, and hence $C_p(Y)$ is also an $L\Sigma(<\omega)$ -space, i.e., Y is also dubious. Let Z be the space obtained from Y by collapsing the set $Y \setminus D$ of non-isolated points of Y to a point. If $q : Y \to Z$ is the respective quotient map, then the dual map $q^* : C_p(Z) \to C_p(Y)$ is an embedding of $C_p(Z)$ onto a closed subspace of $C_p(X)$ (recall that $q^*(f) = f \circ q$ for any $f \in C_p(Z)$). As a consequence, $C_p(Z)$ must also be an $L\Sigma(<\omega)$ -space which shows that Z is a dubious space as well.

Let *a* be the unique non-isolated point of *Z*. Consider the topology ν on the set *Z* such that $Z' = (Z, \nu)$ is the one-point compactification of the discrete space *D* and *a* is the unique non-isolated point of the space Z'. It is clear that the identity map $j : Z \to Z'$ is continuous and hence $C_p(Z')$ embeds in $C_p(Z)$. Observe that $C_p(Z')$ is homeomorphic to the space $\Sigma_*(\omega_1) = \{x \in \mathbf{R}^{\omega_1} : \text{ for any } \varepsilon > 0 \text{ the set } \{\alpha < \omega_1 : |x(\alpha)| > \varepsilon\}$ is finite} which is universal for all Eberlein compact spaces of weight $\leq \omega_1$.

In particular, $A(\omega_1)^{\omega}$ embeds in $C_p(Z')$ and hence in $C_p(Z)$; thus, $A(\omega_1)^{\omega}$ must be an $L\Sigma(<\omega)$ -space. However, Theorem 4.11 of [5] says that, if E is a space and E^{ω} has the $L\Sigma(<\omega)$ -property, then X^{ω} is hereditarily separable. Since $A(\omega_1)^{\omega}$ is not even separable, we obtained a contradiction.

2.3. Theorem. Suppose that X is a space with $|X| \leq \mathfrak{c}$ and $a \in X$ is the unique non-isolated point of X. Then the following conditions are equivalent:

- (i) X is a Lindelöf Σ -space;
- (ii) X is an $L\Sigma(\leq 2)$ -space;

V.V. TKACHUK

(iii) there exists a separable metric topology μ on the set $D = X \setminus \{a\}$ such that $U \cap D \in \mu$ for any $U \in \tau(a, X)$.

Proof. Assume that X is a Lindelöf Σ -space, and fix a compact cover C of the space X for which there exists a closed countable network \mathcal{N} with respect to C; let $\mathcal{M} = \{N \cap D : N \in \mathcal{N}\}$. Take a base \mathcal{B} for a separable metric topology on D and consider the topology μ on the set D for which the family $\wedge (\mathcal{M} \cup \mathcal{B})$ is a clopen base. It is clear that μ is second countable; take any set $U \in \tau(a, X)$. If $x \in U \cap D$, then there exists a set $C \in C$ with $x \in C$. The set $H = C \setminus U$ is finite being compact and discrete. Observe that $U \cup H$ is an open neighborhood of C, and hence we can find a set $N \in \mathcal{N}$ such that $C \subset N \subset U \cup H$. The set $N \cap D$ is open in (D, μ) , and hence so is the set $M = N \setminus H$. Since $x \in M \subset U \cap D$, we proved that every point $x \in U \cap D$ has a μ -neighbourhood contained in $U \cap D$. Thus, $U \cap D \in \mu$ for any $U \in \tau(a, X)$ and hence we proved that (i) \Rightarrow (iii).

The implication (ii) \Rightarrow (i) being evident, assume that (iii) holds and take a separable metric topology μ on D as in (iii). Denote by Z the space (D, μ) and let $\varphi(z) = \{z, a\}$ for any $z \in Z$. Then $\varphi : Z \to X$ is a two-valued onto map. Suppose that $z \in Z$ and we are given $U \in \tau(X)$ with $\varphi(z) \subset U$. Then $V = U \cap D \in \tau(Z)$ and $z \in V$. We have $\varphi(V) = V \cup \{a\} \subset U$, and hence φ is upper semi-continuous so X is an $L\Sigma(\leq 2)$ -space.

2.4. *Remark.* The statement (i) \Rightarrow (ii) was proved (by a different method) in a paper of Molina Lara and Okunev (see [6, Corollary 2.4]).

2.5. Proposition. If X is a space with a unique non-isolated point and $C_p(X)$ is a Lindelöf Σ -space, then X is also a Lindelöf Σ -space.

Proof. The space X being normal, we have $\operatorname{ext}(X) \leq \omega$; since X embeds in $C_p(C_p(X))$, Baturov's theorem [2] is applicable so the space X is Lindelöf and hence realcompact. Now, apply [8, Theorem 3.5] to see that X = vX a Lindelöf Σ -space. \Box

The following result on a universal covering of \mathbf{I} is well known for compact spaces (see, e.g., [1, Lemma IV.3.7]); however, it turns out that compactness can be omitted if we assume that X is strongly zero-dimensional.

2.6. Theorem. If X is a space such that dim X = 0, then $C_p(X, \mathbf{I})$ is a continuous image of the space $C_p(X, \mathbf{D}^{\omega})$.

Proof. It follows from dim X = 0 that βX is a zero-dimensional compact space so we can apply [1, Lemma IV.3.6] to find a continuous map $r : \mathbf{D}^{\omega} \to \mathbf{I}$ such that, for any $g \in C(\beta X, \mathbf{I})$ there exists a continuous function $u_g : \beta X \to \mathbf{D}^{\omega}$ for which we have $g = r \circ u_g$.

For any function $h \in C_p(X, \mathbf{D}^{\omega})$, let $\varphi(h) = r \circ h$; it is standard to prove that the map $\varphi : C_p(X, \mathbf{D}^{\omega}) \to C_p(X, \mathbf{I})$ is continuous so it suffices to show that we have the equality $\varphi(C_p(X, \mathbf{D}^{\omega})) = C_p(X, \mathbf{I})$. Take any $f \in C_p(X, \mathbf{I})$; there exists $g \in C_p(\beta X, \mathbf{I})$ with g|X = f. Then $h = u_g|X \in C_p(X, \mathbf{D}^{\omega})$; given any point $x \in X$, we have $f(x) = g(x) = r(u_g(x)) = r(h(x))$ which shows that $f = r \circ h$, i.e., $f = \varphi(h)$ so the map φ is surjective. \Box

The following theorem answers positively Problem 3.5 from the paper [6]. The equivalence of (i) and (ii) is established in [6, Corollary 3.4] by a different method.

2.7. Theorem. Let X be a space with a unique non-isolated point such that $|X| \leq c$. Then the following conditions are equivalent:

- (i) $C_p(X)$ is a $L\Sigma(\leq \omega)$ -space;
- (ii) $C_p(X)$ is a Lindelöf Σ -space;
- (iii) X is a Lindelöf Σ -space.

Proof. The implication (i) \Rightarrow (ii) is trivial and (ii) \Rightarrow (iii) is a consequence of Proposition 2.5 so assume that X is a Lindelöf Σ -space and denote by a the unique non-isolated point of X. Our first step is to establish that the space $C_p(X, \mathbf{D})$ has the $L\Sigma(\leq \omega)$ -property. To that end, consider the sets $Q = \{f \in C_p(X, \mathbf{D}) : f(a) = 0\}$ and $D = X \setminus \{a\}$; the space $E = \{f \in \mathbf{D}^X : f(a) = 0\}$ is easily seen to be a compactification of Q.

By Theorem 2.3, there exists a separable metrizable topology μ on the set D such that $U \cap D \in \mu$ for any $U \in \tau(a, X)$; fix a base $\mathcal{B} = \{B_n : n \in \omega\}$ of the space (D, μ) . The set $K_n = \{f \in \mathbf{D}^X : f(B_n) \subset \{0\}\}$ is compact being homeomorphic to $\mathbf{D}^{X \setminus B_n}$ for any $n \in \omega$. Take any functions $f \in Q$ and $g \in E \setminus Q$; since g is discontinuous at a, there exists a point $x \in D \cap f^{-1}(0) \cap g^{-1}(1)$. The set $D \cap f^{-1}(0)$ being open in (D, μ) , we can find $n \in \omega$ such that $x \in B_n \subset D \cap f^{-1}(0)$. It is immediate that $f \in K_n$ and $g \notin K_n$ and hence the family $\mathcal{K} = \{K_n : n \in \omega\}$ separates the points of Q from the points of $E \setminus Q$.

Given an arbitrary function $f \in Q$ the set $K_f = \cap \{K_n : f \in K_n\} \subset Q$ is compact. If $g \in K_f$ and $B_n \subset U = f^{-1}(0)$ then $g(B_n) \subset \{0\}$. The family \mathcal{B} being a base of (D, μ) , it follows from $U \in \mu$ that $U = \cup \{B_n : B_n \subset U\}$; as an immediate consequence, we have $g(U) \subset \{0\}$. This shows that we have the inclusions $K_f \subset \{g \in Q : g(U) \subset \{0\}\} \subset \{h\} \times \mathbf{D}^{X \setminus U}$ where $h \in \mathbf{D}^U$ is the function which is identically zero on U. Since $X \setminus U$ is countable, the set $\{h\} \times \mathbf{D}^{X \setminus U} \simeq \mathbf{D}^{X \setminus U}$ is second countable and hence so is K_f . It is standard that the family $\wedge \mathcal{K}$ is a network with respect to K_f for any $f \in Q$. Therefore the countable family $\mathcal{N} = (\wedge \mathcal{K}) \mid Q$ is a network with respect to the compact cover $\{K_f : f \in Q\}$ of the space Q. We already saw that every K_f is second countable; this proves that Q is an $L\Sigma(\leq \omega)$ -space.

Since $C_p(X, \mathbf{D})$ is a union of two subspaces homeomorphic to Q, the space $C_p(X, \mathbf{D})$ also has the $L\Sigma(\leq \omega)$ -property. Recall that the space X is Lindelöf Σ ; being zero-dimensional, it embeds in $C_p(C_p(X, \mathbf{D}))$ which, together with Okunev's theorem [8, Corollary 2.11] implies that $C_p(X)$ is a Lindelöf Σ -space.

It is noted in [6] (and is easy to prove) that $L\Sigma(\leq \omega)$ -property is preserved by countable products so $C_p(X, \mathbf{D})^{\omega} \simeq C_p(X, \mathbf{D}^{\omega})$ is an $L\Sigma(\leq \omega)$ -space. Any space with a unique non-isolated point is strongly zero-dimensional and hence dim X = 0. Applying Theorem 2.6, we conclude that $C_p(X, \mathbf{I})$ is a continuous image of $C_p(X, \mathbf{D}^{\omega})$ so $C_p(X, \mathbf{I})$ is an $L\Sigma(\leq \omega)$ -space. Finally, observe that $C_p(X)$ embeds in $C_p(X, \mathbf{I})$ so we can apply a result of Molina Lara and Okunev (see [6, Lemma 2.3]) to see that $C_p(X)$ is an $L\Sigma(\leq \omega)$ -space. \Box

2.8. Proposition. If X is a space such that $|X| \leq \mathfrak{c}$ and $C_p(X)$ is a Lindelöf Σ -space, then $|C_p(X)| \leq \mathfrak{c}$, $|C_p(\upsilon X)| \leq \mathfrak{c}$ and $|\upsilon X| \leq \mathfrak{c}$.

Proof. Let $\pi : C_p(vX) \to C_p(X)$ be the restriction map; observe that both vX and $C_p(vX)$ are Lindelöf Σ -spaces by [8, Theorem 3.5]

and [12, Theorem 2.3]. For any compact set $K \subset C_p(X)$, we have $w(K) \leq w(C_p(X)) \leq \mathfrak{c}$; since K is Gul'ko compact and hence Fréchet-Urysohn, we obtain the inequality $|K| \leq \mathfrak{c}$. Therefore, every compact subset of the space $C_p(X)$ has cardinality not exceeding \mathfrak{c} . Now if $K' \subset C_p(vX)$ is compact then $K = \pi(K')$ is a compact subset of $C_p(X)$ so $|K'| = |K| \leq \mathfrak{c}$; this shows that all compact subsets of $C_p(vX)$ also have cardinalities not exceeding \mathfrak{c} . Every Lindelöf Σ -space is the union of at most \mathfrak{c} -many compact subspaces so $|C_p(vX)| \leq \mathfrak{c}$ and $|C_p(X)| \leq \mathfrak{c}$. Finally, if K is a compact subset of vX, then $nw(K) \leq nw(vX) = nw(C_p(vX)) \leq \mathfrak{c}$. The space K is Fréchet-Urysohn being Gul'ko compact so $|K| \leq \mathfrak{c}$. Thus, all compact subspaces of vX have cardinality at most \mathfrak{c} so $|vX| \leq \mathfrak{c}$ because vX is a Lindelöf Σ -space. \square

2.9. Proposition. Suppose that Y is a Lindelöf Σ -space and $|Y| \leq \mathfrak{c}$. If $C_p(Y)$ is a Lindelöf Σ -space, then Y can be condensed into $C_p(T)$ for some simple Lindelöf Σ -space T with $|T| \leq \mathfrak{c}$.

Proof. Tkachuk proved in [15, Theorem 4.11] that there exists a closed simple subspace $T \subset C_p(Y)$ which separates the points of Y. Since T is closed in $C_p(Y)$, it has the Lindelöf Σ -property. Let $\varphi(x)(f) = f(x)$ for any $x \in Y$ and $f \in T$. Then $\varphi(x)$ is a continuous function on T and $\varphi: Y \to C_p(T)$ is a condensation. Finally observe that $|T| \leq |C_p(Y)| \leq \mathfrak{c}$ by Proposition 2.8. \square

The following result gives a positive answer (in a stronger form) to Problem 4.5 from [6].

2.10. Theorem. Suppose that X is an arbitrary space and $C_p(X)$ has the Lindelöf Σ -property. Then $C_p(X)$ is an $L\Sigma(\leq \omega)$ -space if and only if $|X| \leq \mathfrak{c}$.

Proof. If $C_p(X)$ is an $L\Sigma(\leq \omega)$ -space, then it is easy to see that $|C_p(X)| \leq \mathfrak{c}$. The restriction map condenses the space $C_p(vX)$ onto $C_p(X)$ so $|C_p(vX)| \leq \mathfrak{c}$, and hence $nw(vX) = nw(C_p(vX)) \leq |C_p(vX)| \leq \mathfrak{c}$. Given a compact subspace $K \subset vX$ we have $nw(K) \leq \mathfrak{c}$; since K is a Gul'ko compact and hence Fréchet-Urysohn, we conclude

that $|K| \leq \mathfrak{c}$. Every Lindelöf Σ -space is the union of at most \mathfrak{c} -many compact subspaces so $|vX| \leq \mathfrak{c} \cdot \mathfrak{c} = \mathfrak{c}$. Consequently, $|X| \leq |vX| \leq \mathfrak{c}$, so we proved necessity.

Now assume that $|X| \leq \mathfrak{c}$ and $C_p(X)$ is a Lindelöf Σ -space; we will need the restriction map $\pi : C_p(vX) \to C_p(X)$. Since $L\Sigma(\leq \omega)$ property is preserved by continuous maps, it suffices to show that $C_p(vX)$ is an $L\Sigma(\leq \omega)$ -space. Observe first that both vX and $C_p(vX)$ are Lindelöf Σ -spaces (see [8, Theorem 3.5] and [2, Theorem 2.3]).

It follows from Proposition 2.8 that $|vX| \leq \mathfrak{c}$ and $|C_p(vX)| \leq \mathfrak{c}$. Apply Okunev's result [8, Corollary 2.11] to see that $C_p(C_p(vX))$ is a Lindelöf Σ -space. It follows from Proposition 2.9 (applied for $Y = C_p(vX)$) that there exists a simple Lindelöf Σ -space Z and a condensation of $C_p(vX)$ into $C_p(Z)$. If Z is countable, then $nw(C_p(vX)) \leq \omega$, and hence $C_p(vX)$ is an $L\Sigma(\leq \omega)$ -space being a continuous image of a second countable space. If Z is uncountable then it follows from the Lindelöf property of Z that it must have a non-isolated point so Theorem 2.7 is applicable to see that $C_p(Z)$ is an $L\Sigma(\leq \omega)$ -space; now a result of Molina Lara and Okunev (see [6, Lemma 2.3]) implies that $C_p(vX)$ is an $L\Sigma(\leq \omega)$ -space.

2.11. Corollary. If $|X| \leq \mathfrak{c}$ and $C_p(X)$ is a Lindelöf Σ -space, then:

- (i) $|C_{p,n}(X)| \leq \mathfrak{c}$ and $|C_{p,n}(\upsilon X)| \leq \mathfrak{c}$ for every $n \in \omega$;
- (ii) $C_{p,n}(vX)$ is an $L\Sigma(\leq \omega)$ -space for each $n \in \omega$;
- (iii) $C_{p,2n+1}(X)$ is an $L\Sigma(\leq \omega)$ -space for each $n \in \omega$.

Proof. Apply Proposition 2.8 to see that $|C_p(vX)| \leq \mathfrak{c}$ and $|vX| \leq \mathfrak{c}$. A theorem of Okunev [8, Theorem 2.12] guarantees that $C_{p,n}(vX)$ is a Lindelöf Σ -space for any $n \in \omega$ so we can apply inductively Proposition 2.8 to convince ourselves that $|C_{p,n}(vX)| \leq \mathfrak{c}$ for any $n \in \omega$; Theorem 2.10 implies that $C_{p,n}(vX)$ is an $L\Sigma(\leq \omega)$ -space for any $n \in \omega$. It was proved in Tkachuk [12, Theorem 2.5] that the space $C_{p,2n+1}(X)$ is a continuous image of $C_{p,2n+1}(vX)$ so $C_{p,2n+1}(X)$ is an $L\Sigma(\leq \omega)$ -space, and hence $|C_{p,2n+1}(X)| \leq \mathfrak{c}$ for each $n \in \omega$. Finally apply [12, Corollary 2.2] to see that $C_{p,2n+2}(vX)$ is homeomorphic to $v(C_{p,2n+2}(X))$, and therefore $|C_{p,2n+2}(X)| \leq |v(C_{p,2n+2}(X))| = |C_{p,2n+2}(vX)| \leq \mathfrak{c}$ for every $n \in \omega$. **2.12.** Corollary. Suppose that $|X| \leq \mathfrak{c}$ and $C_p(C_p(X))$ is a Lindelöf Σ -space. Then:

- (i) $|C_{p,n}(X)| \leq \mathfrak{c}$ and $|C_{p,n}(vX)| \leq \mathfrak{c}$ for every $n \in \omega$;
- (ii) $C_{p,n}(vX)$ is an $L\Sigma(\leq \omega)$ -space for each $n \in \omega$;
- (iii) $C_{p,2n}(X)$ is an $L\Sigma(\leq \omega)$ -space for each $n \in \omega$.

Proof. Since X is homeomorphic to a closed subset of $C_p(C_p(X))$, the space X has to be Lindelöf Σ . It follows from [8, Theorem 3.5] that $v(C_p(X))$ is a Lindelöf Σ -space. Applying Corollary to Theorem 2 of [7], we can find a space Z which condenses onto X and $C_p(Z) \simeq v(C_p(X))$. Therefore, $|Z| \leq \mathfrak{c}$ and $C_p(Z)$ is a Lindelöf Σ -space which shows that Proposition 2.8 is applicable to see that $|C_p(Z)| = |v(C_p(X))| \leq \mathfrak{c}$. As a consequence, $|C_p(X)| \leq |v(C_p(X))| \leq \mathfrak{c}$ so we can apply Corollary 2.11 for the spaces $Y = C_p(X)$ and $C_p(Y) = C_p(C_p(X))$.

The following corollary provides a positive answer to Problem 4.6 from [6].

2.13. Corollary. If X and $C_p(X)$ are Lindelöf Σ -spaces and, additionally, $|X| \leq \mathfrak{c}$, then $|C_{p,n}(X)| \leq \mathfrak{c}$ and $C_{p,n}(X)$ is an $L\Sigma(\leq \omega)$ -space for any $n \in \omega$.

Proof. Observe that $C_p(C_p(X))$ is a Lindelöf Σ -space by [8, Theorem 2.12]; Corollary 2.11 and Corollary 2.12 do the rest.

Let us conclude this paper with some open questions.

2.14. Question. Suppose that X is a Lindelöf Σ -space with a unique non-isolated point. Must $C_p(X)$ be a Lindelöf Σ -space?

Observe that it follows from Theorem 2.7 that the answer is positive if $|X| \leq \mathfrak{c}$.

2.15. Question. Is it true that $C_p(X, \mathbf{I})$ is a continuous image of $C_p(X, \mathbf{D}^{\omega})$ for any space X such that ind X = 0?

This question might be of interest because the answer is "yes" if $\dim X = 0$ (see Theorem 2.6).

REFERENCES

1. A.V. Arhangel'skii, *Topological function spaces*, Kluwer Academic Publishers, Dordrecht, 1992.

2. D.P. Baturov, On subspaces of function spaces, Vestnik MGU, Matematika, Mech. 42 (1987), 66–69 (in Russian).

3. R. Engelking, General topology, PWN, Warszawa, 1977.

4. R.E. Hodel, *Cardinal functions* I, in *Handbook of set-theoretic topology*, K. Kunen and J.E. Vaughan, eds., North Holland, Amsterdam, 1984.

5. W. Kubiś, O. Okunev and P.J. Szeptycki, On some classes of Lindelöf Σ -spaces, Topol. Appl. 153 (2006), 2574–2590.

6. I. Molina Lara and O. Okunev, $L\Sigma(\leq \omega)$ -spaces and spaces of continuous functions, Central European J. Math., to appear.

7. O.G. Okunev, Spaces of functions in the topology of pointwise convergence: Hewitt extension and τ -continuous functions, Vestnik Mosk. Univ. Matem. **40** (1985), 84–87.

8. _____, On Lindelöf Σ -spaces of continuous functions in the pointwise topology, Topol. Appl. 49 (1993), 149–166.

9. _____, $L\Sigma(\kappa)$ -spaces, in Open problems in topology, II, E. Pearl, ed., Elsevier, Amsterdam, 2007.

 M.G. Tkačenko, *P*-approximable compact spaces, Comment. Math. Univ. Carol. 32 (1991), 583–595.

11. V.V. Tkachuk, A glance at compact spaces which map "nicely" onto the metrizable ones, Topol. Proc. 19 (1994), 321–334.

12. _____, Behaviour of the Lindelöf Σ -property in iterated function spaces, Topol. Appl. **107** (2000), 297–305.

13. _____, Lindelöf Σ -property of $C_p(X)$ together with countable spread of X implies X is cosmic, New Zealand J. Math. **30** (2001), 93–101.

14. — , A space $C_p(X)$ is dominated by irrationals if and only if it is K-analytic, Acta Math. Hungar. **107** (2005), 261–273.

15. _____, Condensing function spaces into Σ -products of real lines, Houston J. Math. **33** (2007), 209–228.

Departamento de Matematicas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco, 186, Iztapalapa, A.P. 55-532, C.P. 09340, Mexico D.F., México

Email address: vova@xanum.uam.mx