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SOME CRITERIA FOR Cp(X) TO BE AN
LΣ(≤ ω)-SPACE

V.V. TKACHUK

ABSTRACT. Given a cardinal κ say that X is an LΣ(< κ)-
space (LΣ(≤ κ)-space) if X has a countable network F with
respect to a cover C of X by compact subspaces of weight
strictly less than κ (less than or equal to κ, respectively),
i.e., given any C ∈ C, we have w(C) < κ (w(C) ≤ κ) and,
for any U ∈ τ(X) with C ⊂ U , there exists F ∈ F such
that C ⊂ F ⊂ U . These concepts were introduced and
studied by Kubís, Okunev and Szeptycki. We show that if
Cp(X) is a Lindelöf Σ-space and |X| ≤ c, then Cp(X) is
an LΣ(≤ ω)-space. This answers two questions of Kubís,
Okunev and Szeptycki. We also prove that if X is a space
and Cp(X) has the LΣ(< ω)-property, then X is cosmic, i.e.,
nw(X) ≤ ω. This answers (in a stronger form) a question of
Okunev published in Open Problems in Topology II.

0. Introduction. Lindelöf Σ-spaces constitute the smallest class
which contains all compact spaces, all second countable spaces and is
invariant under continuous images, closed subspaces and finite prod-
ucts. This explains why the Lindelöf Σ-property is so important in
topology, functional analysis and descriptive set theory. One of a dozen
equivalent definitions says that X is a Lindelöf Σ-space if and only if
there exists a second countable space M and an upper semicontinuous
compact-valued onto map ϕ : M → X .

Given a class K of compact spaces, Kubís, Okunev and Szeptycki
introduced and studied in [5] the class LΣ(K) of spaces X for which
there exists a second countable space M and an upper semicontinuous
onto map ϕ : M → X such that ϕ(x) belongs to the class K for any
x ∈ M . Let κ be a (not necessarily infinite) cardinal. If K consists of
compact spaces of weight at most κ (or strictly less than κ, respectively)
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then the class LΣ(K) is denoted in [5] by LΣ(≤ κ) (or by LΣ(< κ),
respectively).

Compact spaces from the class LΣ(≤ ω) were studied (under a
different name) by Tkachuk in [11] and Tkachenko in [10]; the paper
[5] presents answers to some questions formulated in [10, 11]. Kubís,
Okunev and Szeptycki proved, in particular, that not every Corson
compact space of weight ω1 belongs to the class LΣ(≤ ω) and that all
elements of an important subclass of the class of compact LΣ(≤ ω)-
spaces have a dense metrizable subspace.

In the paper [9] published in Open problems in topology II, Okunev
outlined the current progress and some lines of research in the study of
LΣ(≤ κ)-spaces and LΣ(< κ)-spaces. It is one of the open questions
of the paper [9] whether a space X must be cosmic if Cp(X) belongs
to the class LΣ(≤ n) for some n ∈ ω. We prove that, if Cp(X) is an
LΣ(< ω)-space, then X is cosmic giving thus a positive answer (in a
stronger form) to Problem 5 from [9].

Therefore, the next natural step is to study for which X the space
Cp(X) has the LΣ(≤ ω)-property. Molina Lara and Okunev proved
in [6] that every Gul’ko compact space of cardinality at most c is an
LΣ(≤ ω)-space and established that, for any Eberlein compact space
X such that |X | ≤ c, the space Cp(X) has the LΣ(≤ ω)-property. We
prove that, ifX is a Lindelöf Σ-space with the unique non-isolated point
and |X | ≤ c, then Cp(X) is a Lindelöf Σ-space. This gives a positive
answer to Problem 3.5 of [6]. We also show that, for any space X for
which Cp(X) has the Lindelöf Σ-property, Cp(X) is a LΣ(≤ ω)-space
if and only if |X | ≤ c. This result and its consequences give a positive
answer to Problems 4.5 and 4.6 from [6].

1. Notation and terminology. All spaces in this paper are
assumed to be Tychonoff. Given a space X , the family τ(X) is its
topology and τ(x,X) = {U ∈ τ(X) : x ∈ U} for any x ∈ X ; if A ⊂ X ,
then τ(A,X) = {U ∈ τ(X) : A ⊂ U}. The unexplained notions can be
found in [1, 3]; the definitions of cardinal invariants can be consulted
in the survey of Hodel [4].

All ordinals are identified with the set of their predecessors and are
assumed to carry the interval topology. As usual, R is the set of
reals, I = [0, 1] ⊂ R and D is the doubleton {0, 1} with the discrete
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topology. For any infinite cardinal κ the space A(κ) is the one-point
compactification of the discrete space of cardinality κ. We use the
symbol c to denote the cardinality of the continuum, i.e., c = 2ω. The
expression X � Y says that the spaces X and Y are homeomorphic;
we denote by υX the Hewitt realcompactification of the space X .

For any spaces X and Y the set C(X,Y ) consists of continuous
functions from X to Y ; if it has the topology induced from Y X then
the respective space is denoted by Cp(X,Y ). We write C(X) instead
of C(X,R) and Cp(X) instead of Cp(X,R). Given a space X , let
Cp,0(X) = X and Cp,n+1(X) = Cp(Cp,n(X)) for all n ∈ ω, i.e., Cp,n(X)
is the nth iterated function space of X .

If A is a family of sets of a space X , then ∧A is the family of all
finite intersections of the elements of A and A | Y = {A ∩ Y : A ∈ A}
for any Y ⊂ X . Any map ϕ from a space X to the family exp(Y )
of subsets of Y is called multivalued; we follow the usual practice
writing ϕ : X → Y instead of ϕ : X → exp(Y ). A multi-valued
map ϕ : X → Y is called compact-valued (finite-valued) if the set ϕ(x)
is compact (finite) for any x ∈ X . If ϕ : X → Y is a multi-valued
map, then ϕ(A) = ∪{ϕ(x) : x ∈ A} for any A ⊂ X ; we say that the
map ϕ is onto if ϕ(X) = Y . A multi-valued map ϕ : X → Y is called
upper semi-continuous if ϕ−1(U) = {x ∈ X : ϕ(x) ⊂ U} is open in X
for any U ∈ τ(Y ). We will often use the following characterization of
Lindelöf Σ-spaces: a space X is Lindelöf Σ if and only if there exists a
countable family F of subsets of X and a cover C of the space X such
that every C ∈ C is compact and for any U ∈ τ(C,X) we can find a
set F ∈ F with C ⊂ F ⊂ U . The family F is usually called a network
with respect to the compact cover C. If, in the characterization above,
we require that all elements of the cover C belong to a given class K,
then we obtain an equivalent definition for the class LΣ(K).

If X is a space then the expression dimX = 0 says that every finite
open cover of X has a disjoint open refinement. The spaces X with
dimX = 0 are also called strongly zero-dimensional. If X has a clopen
base then it is called zero-dimensional; this is also denoted as indX = 0.
A space X is called simple if it has at most one non-isolated point. A
map f : X → Y is called a condensation if it is a continuous bijection;
in this case we say that X condenses onto Y . If X condenses onto a
subspace of Y , we say that X condenses into Y . If A and B are families
of subsets of X , then A is a network with respect to B if, for any B ∈ B
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and U ∈ τ(B,X), there exists an A ∈ A such that B ⊂ A ⊂ U . A
family N is a network of X if every U ∈ τ(X) is the union of some
subfamily ofN . The spaces with a countable network are called cosmic.

2. LΣ(K)-properties in function spaces. We will study the
spaces X for which Cp(X) has the LΣ(≤ ω)-property; they are not
necessarily cosmic. However, we will prove that, for any X , if Cp(X)
is an LΣ(< ω)-space then X is cosmic.

2.1. Proposition. Given a space X and a class K of compact spaces,
Cp(X) belongs to LΣ(K) if and only if Cp(υX) belongs to LΣ(K).

Proof. Let π : Cp(υX) → Cp(X) be the restriction map. The class
LΣ(K) is preserved by condensations; since π condenses Cp(υX) onto
Cp(X), if Cp(υX) is an LΣ(K)-space then so is Cp(X).

Now assume that Cp(X) is an LΣ(K)-space and fix a cover C ⊂ K of
the space Cp(X) together with a countable network N with respect to
the family C; we can consider thatN is closed under finite intersections.
The space υX being Lindelöf Σ by [8, Theorem 3.5], we can apply [14,
Theorem 2.6] to convince ourselves that π−1(K) is compact for any
K ∈ C so π|π−1(K) : π−1(K) → K is a homeomorphism and hence
C′ = {π−1(K) : K ∈ C} is a compact cover of Cp(υX) with C′ ⊂ K.

Let N ′ = {π−1(N) : N ∈ N}; it suffices to show that N ′ is a network
with respect to C′. Suppose not; then we can find a set K ∈ C and
U ∈ τ(π−1(K), Cp(υX)) such that N ′\U 
= ε for any N ′ ∈ N ′ with
K ′ = π−1(K) ⊂ N ′. Consider the family F = {N ∈ N : K ⊂ N}
and choose an enumeration {Fn : n ∈ ω} of F . By our choice of
K there exists a point zn ∈ π−1(Fn)\U for every n ∈ ω. Therefore
yn = π(zn) ∈ Fn for each n ∈ ω; the family F being an outer network
for K, for the set Q = {yn : n ∈ ω} we can find a point a ∈ Q ∩K;
let b = π−1(a). If P = {zn : n ∈ ω}, then P ⊂ Cp(υX)\U and
hence P ∩ K ′ = ∅ and, in particular, b /∈ P . However, the map
π | (P ∪ {b}) : P ∪ {b} → Q∪ {a} is a homeomorphism by [7, Theorem
1] so we obtained a contradiction which shows that N ′ is a countable
network with respect to the cover C′ ⊂ K.

The following theorem gives a positive answer to Problem 5 from [9].
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2.2. Theorem. If Cp(X) is an LΣ(< ω)-space then X is cosmic.

Proof. Say that a space X is dubious if it is not cosmic and Cp(X) has
the LΣ(< ω)-property; striving for a contradiction, assume that there
exists a dubious space X . Then Cp(υX) is also an LΣ(< ω)-space by
Proposition 2.1 so it follows from the inequalities nw(υX) ≥ nw(X) >
ω that the space υX is also dubious. Therefore, we can assume, without
loss of generality, that X = υX and hence X is a Lindelöf Σ-space.

Lindelöf Σ-property of Cp(X) and s(X) ≤ ω imply that the space X
is cosmic (see [13, Theorem 3.6]) so we can find a discrete subspace
D ⊂ X with |D| = ω1. If Y = D, then normality of X implies that
Cp(Y ) is a continuous image of Cp(X), and hence Cp(Y ) is also an
LΣ(< ω)-space, i.e., Y is also dubious. Let Z be the space obtained
from Y by collapsing the set Y \D of non-isolated points of Y to a
point. If q : Y → Z is the respective quotient map, then the dual
map q∗ : Cp(Z) → Cp(Y ) is an embedding of Cp(Z) onto a closed
subspace of Cp(X) (recall that q∗(f) = f ◦ q for any f ∈ Cp(Z)). As a
consequence, Cp(Z) must also be an LΣ(< ω)-space which shows that
Z is a dubious space as well.

Let a be the unique non-isolated point of Z. Consider the topology ν
on the set Z such that Z ′ = (Z, ν) is the one-point compactification of
the discrete space D and a is the unique non-isolated point of the space
Z ′. It is clear that the identity map j : Z → Z ′ is continuous and hence
Cp(Z

′) embeds in Cp(Z). Observe that Cp(Z
′) is homeomorphic to the

space Σ∗(ω1) = {x ∈ Rω1 : for any ε > 0 the set {α < ω1 : |x(α)| > ε}
is finite} which is universal for all Eberlein compact spaces of weight
≤ ω1.

In particular, A(ω1)
ω embeds in Cp(Z

′) and hence in Cp(Z); thus,
A(ω1)

ω must be an LΣ(< ω)-space. However, Theorem 4.11 of [5] says
that, if E is a space and Eω has the LΣ(< ω)-property , then Xω is
hereditarily separable. Since A(ω1)

ω is not even separable, we obtained
a contradiction.

2.3. Theorem. Suppose that X is a space with |X | ≤ c and a ∈ X
is the unique non-isolated point of X. Then the following conditions
are equivalent:

(i) X is a Lindelöf Σ-space;

(ii) X is an LΣ(≤ 2)-space;
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(iii) there exists a separable metric topology μ on the set D = X\{a}
such that U ∩D ∈ μ for any U ∈ τ(a,X).

Proof. Assume that X is a Lindelöf Σ-space, and fix a compact cover
C of the space X for which there exists a closed countable network N
with respect to C; let M = {N ∩ D : N ∈ N}. Take a base B for
a separable metric topology on D and consider the topology μ on the
set D for which the family ∧(M∪B) is a clopen base. It is clear that
μ is second countable; take any set U ∈ τ(a,X). If x ∈ U ∩ D, then
there exists a set C ∈ C with x ∈ C. The set H = C\U is finite being
compact and discrete. Observe that U ∪ H is an open neighborhood
of C, and hence we can find a set N ∈ N such that C ⊂ N ⊂ U ∪H .
The set N ∩ D is open in (D,μ), and hence so is the set M = N\H .
Since x ∈ M ⊂ U ∩ D, we proved that every point x ∈ U ∩ D has
a μ-neighbourhood contained in U ∩ D. Thus, U ∩ D ∈ μ for any
U ∈ τ(a,X) and hence we proved that (i) ⇒ (iii).

The implication (ii) ⇒ (i) being evident, assume that (iii) holds and
take a separable metric topology μ on D as in (iii). Denote by Z the
space (D,μ) and let ϕ(z) = {z, a} for any z ∈ Z. Then ϕ : Z → X is a
two-valued onto map. Suppose that z ∈ Z and we are given U ∈ τ(X)
with ϕ(z) ⊂ U . Then V = U ∩ D ∈ τ(Z) and z ∈ V . We have
ϕ(V ) = V ∪{a} ⊂ U , and hence ϕ is upper semi-continuous so X is an
LΣ(≤ 2)-space.

2.4. Remark. The statement (i) ⇒ (ii) was proved (by a different
method) in a paper of Molina Lara and Okunev (see [6, Corollary
2.4]).

2.5. Proposition. If X is a space with a unique non-isolated point
and Cp(X) is a Lindelöf Σ-space, then X is also a Lindelöf Σ-space.

Proof. The space X being normal, we have ext (X) ≤ ω; since X
embeds in Cp(Cp(X)), Baturov’s theorem [2] is applicable so the space
X is Lindelöf and hence realcompact. Now, apply [8, Theorem 3.5] to
see that X = υX a Lindelöf Σ-space.

The following result on a universal covering of I is well known for
compact spaces (see, e.g., [1, Lemma IV.3.7]); however, it turns out
that compactness can be omitted if we assume that X is strongly zero-
dimensional.
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2.6. Theorem. If X is a space such that dimX = 0, then Cp(X, I)
is a continuous image of the space Cp(X,Dω).

Proof. It follows from dimX = 0 that βX is a zero-dimensional
compact space so we can apply [1, Lemma IV.3.6] to find a continuous
map r : Dω → I such that, for any g ∈ C(βX, I) there exists a
continuous function ug : βX → Dω for which we have g = r ◦ ug.

For any function h ∈ Cp(X,Dω), let ϕ(h) = r ◦ h; it is standard
to prove that the map ϕ : Cp(X,Dω) → Cp(X, I) is continuous so it
suffices to show that we have the equality ϕ(Cp(X,Dω)) = Cp(X, I).
Take any f ∈ Cp(X, I); there exists g ∈ Cp(βX, I) with g|X = f .
Then h = ug|X ∈ Cp(X,Dω); given any point x ∈ X , we have
f(x) = g(x) = r(ug(x)) = r(h(x)) which shows that f = r ◦ h, i.e.,
f = ϕ(h) so the map ϕ is surjective.

The following theorem answers positively Problem 3.5 from the paper
[6]. The equivalence of (i) and (ii) is established in [6, Corollary 3.4]
by a different method.

2.7. Theorem. Let X be a space with a unique non-isolated point
such that |X | ≤ c. Then the following conditions are equivalent:

(i) Cp(X) is a LΣ(≤ ω)-space;

(ii) Cp(X) is a Lindelöf Σ-space;

(iii) X is a Lindelöf Σ-space.

Proof. The implication (i) ⇒ (ii) is trivial and (ii) ⇒ (iii) is a
consequence of Proposition 2.5 so assume that X is a Lindelöf Σ-space
and denote by a the unique non-isolated point of X . Our first step
is to establish that the space Cp(X,D) has the LΣ(≤ ω)-property.
To that end, consider the sets Q = {f ∈ Cp(X,D) : f(a) = 0} and
D = X\{a}; the space E = {f ∈ DX : f(a) = 0} is easily seen to be a
compactification of Q.

By Theorem 2.3, there exists a separable metrizable topology μ on
the set D such that U∩D ∈ μ for any U ∈ τ(a,X); fix a base B = {Bn :
n ∈ ω} of the space (D,μ). The set Kn = {f ∈ DX : f(Bn) ⊂ {0}} is
compact being homeomorphic to DX\Bn for any n ∈ ω.
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Take any functions f ∈ Q and g ∈ E\Q; since g is discontinuous at a,
there exists a point x ∈ D∩ f−1(0)∩ g−1(1). The set D∩ f−1(0) being
open in (D,μ), we can find n ∈ ω such that x ∈ Bn ⊂ D ∩ f−1(0).
It is immediate that f ∈ Kn and g /∈ Kn and hence the family
K = {Kn : n ∈ ω} separates the points of Q from the points of E\Q.

Given an arbitrary function f ∈ Q the setKf = ∩{Kn : f ∈ Kn} ⊂ Q
is compact. If g ∈ Kf and Bn ⊂ U = f−1(0) then g(Bn) ⊂ {0}.
The family B being a base of (D,μ), it follows from U ∈ μ that
U = ∪{Bn : Bn ⊂ U}; as an immediate consequence, we have
g(U) ⊂ {0}. This shows that we have the inclusions Kf ⊂ {g ∈
Q : g(U) ⊂ {0}} ⊂ {h} × DX\U where h ∈ DU is the function
which is identically zero on U . Since X\U is countable, the set
{h} × DX\U � DX\U is second countable and hence so is Kf . It
is standard that the family ∧K is a network with respect to Kf for any
f ∈ Q. Therefore the countable family N = (∧K) | Q is a network
with respect to the compact cover {Kf : f ∈ Q} of the space Q. We
already saw that every Kf is second countable; this proves that Q is
an LΣ(≤ ω)-space.

Since Cp(X,D) is a union of two subspaces homeomorphic to Q, the
space Cp(X,D) also has the LΣ(≤ ω)-property. Recall that the space
X is Lindelöf Σ; being zero-dimensional, it embeds in Cp(Cp(X,D))
which, together with Okunev’s theorem [8, Corollary 2.11] implies that
Cp(X) is a Lindelöf Σ-space.

It is noted in [6] (and is easy to prove) that LΣ(≤ ω)-property is
preserved by countable products so Cp(X,D)ω � Cp(X,Dω) is an
LΣ(≤ ω)-space. Any space with a unique non-isolated point is strongly
zero-dimensional and hence dimX = 0. Applying Theorem 2.6, we
conclude that Cp(X, I) is a continuous image of Cp(X,Dω) so Cp(X, I)
is an LΣ(≤ ω)-space. Finally, observe that Cp(X) embeds in Cp(X, I)
so we can apply a result of Molina Lara and Okunev (see [6, Lemma
2.3]) to see that Cp(X) is an LΣ(≤ ω)-space.

2.8. Proposition. If X is a space such that |X | ≤ c and Cp(X) is
a Lindelöf Σ-space, then |Cp(X)| ≤ c, |Cp(υX)| ≤ c and |υX | ≤ c.

Proof. Let π : Cp(υX) → Cp(X) be the restriction map; observe
that both υX and Cp(υX) are Lindelöf Σ-spaces by [8, Theorem 3.5]
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and [12, Theorem 2.3]. For any compact set K ⊂ Cp(X), we have
w(K) ≤ w(Cp(X)) ≤ c; since K is Gul’ko compact and hence Fréchet-
Urysohn, we obtain the inequality |K| ≤ c. Therefore, every compact
subset of the space Cp(X) has cardinality not exceeding c. Now if
K ′ ⊂ Cp(υX) is compact then K = π(K ′) is a compact subset of
Cp(X) so |K ′| = |K| ≤ c; this shows that all compact subsets of
Cp(υX) also have cardinalities not exceeding c. Every Lindelöf Σ-space
is the union of at most c-many compact subspaces so |Cp(υX)| ≤ c
and |Cp(X)| ≤ c. Finally, if K is a compact subset of υX , then
nw(K) ≤ nw(υX) = nw(Cp(υX)) ≤ c. The space K is Fréchet-
Urysohn being Gul’ko compact so |K| ≤ c. Thus, all compact subspaces
of υX have cardinality at most c so |υX | ≤ c because υX is a Lindelöf
Σ-space.

2.9. Proposition. Suppose that Y is a Lindelöf Σ-space and
|Y | ≤ c. If Cp(Y ) is a Lindelöf Σ-space, then Y can be condensed
into Cp(T ) for some simple Lindelöf Σ-space T with |T | ≤ c.

Proof. Tkachuk proved in [15, Theorem 4.11] that there exists a
closed simple subspace T ⊂ Cp(Y ) which separates the points of
Y . Since T is closed in Cp(Y ), it has the Lindelöf Σ-property. Let
ϕ(x)(f) = f(x) for any x ∈ Y and f ∈ T . Then ϕ(x) is a continuous
function on T and ϕ : Y → Cp(T ) is a condensation. Finally observe
that |T | ≤ |Cp(Y )| ≤ c by Proposition 2.8.

The following result gives a positive answer (in a stronger form) to
Problem 4.5 from [6].

2.10. Theorem. Suppose that X is an arbitrary space and Cp(X)
has the Lindelöf Σ-property. Then Cp(X) is an LΣ(≤ ω)-space if and
only if |X | ≤ c.

Proof. If Cp(X) is an LΣ(≤ω)-space, then it is easy to see that
|Cp(X)| ≤ c. The restriction map condenses the space Cp(υX)
onto Cp(X) so |Cp(υX)| ≤ c, and hence nw(υX) = nw(Cp(υX)) ≤
|Cp(υX)| ≤ c. Given a compact subspaceK ⊂ υX we have nw(K) ≤ c;
since K is a Gul’ko compact and hence Fréchet-Urysohn, we conclude
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that |K| ≤ c. Every Lindelöf Σ-space is the union of at most c-many
compact subspaces so |υX | ≤ c · c = c. Consequently, |X | ≤ |υX | ≤ c,
so we proved necessity.

Now assume that |X | ≤ c and Cp(X) is a Lindelöf Σ-space; we will
need the restriction map π : Cp(υX) → Cp(X). Since LΣ(≤ ω)-
property is preserved by continuous maps, it suffices to show that
Cp(υX) is an LΣ(≤ ω)-space. Observe first that both υX and Cp(υX)
are Lindelöf Σ-spaces (see [8, Theorem 3.5] and [2, Theorem 2.3]).

It follows from Proposition 2.8 that |υX | ≤ c and |Cp(υX)| ≤ c. Ap-
ply Okunev’s result [8, Corollary 2.11] to see that Cp(Cp(υX)) is a Lin-
delöf Σ-space. It follows from Proposition 2.9 (applied for Y = Cp(υX))
that there exists a simple Lindelöf Σ-space Z and a condensation of
Cp(υX) into Cp(Z). If Z is countable, then nw(Cp(υX)) ≤ ω, and
hence Cp(υX) is an LΣ(≤ ω)-space being a continuous image of a
second countable space. If Z is uncountable then it follows from the
Lindelöf property of Z that it must have a non-isolated point so The-
orem 2.7 is applicable to see that Cp(Z) is an LΣ(≤ ω)-space; now a
result of Molina Lara and Okunev (see [6, Lemma 2.3]) implies that
Cp(υX) is an LΣ(≤ ω)-space.

2.11. Corollary. If |X | ≤ c and Cp(X) is a Lindelöf Σ-space, then:

(i) |Cp,n(X)| ≤ c and |Cp,n(υX)| ≤ c for every n ∈ ω;

(ii) Cp,n(υX) is an LΣ(≤ ω)-space for each n ∈ ω;

(iii) Cp,2n+1(X) is an LΣ(≤ ω)-space for each n ∈ ω.

Proof. Apply Proposition 2.8 to see that |Cp(υX)| ≤ c and |υX | ≤ c.
A theorem of Okunev [8, Theorem 2.12] guarantees that Cp,n(υX)
is a Lindelöf Σ-space for any n ∈ ω so we can apply inductively
Proposition 2.8 to convince ourselves that |Cp,n(υX)| ≤ c for any
n ∈ ω; Theorem 2.10 implies that Cp,n(υX) is an LΣ(≤ ω)-space for
any n ∈ ω. It was proved in Tkachuk [12, Theorem 2.5] that the space
Cp,2n+1(X) is a continuous image of Cp,2n+1(υX) so Cp,2n+1(X) is an
LΣ(≤ ω)-space, and hence |Cp,2n+1(X)| ≤ c for each n ∈ ω. Finally
apply [12, Corollary 2.2] to see that Cp,2n+2(υX) is homeomorphic
to υ(Cp,2n+2(X)), and therefore |Cp,2n+2(X)| ≤ |υ(Cp,2n+2(X))| =
|Cp,2n+2(υX)| ≤ c for every n ∈ ω.
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2.12. Corollary. Suppose that |X | ≤ c and Cp(Cp(X)) is a Lindelöf
Σ-space. Then:

(i) |Cp,n(X)| ≤ c and |Cp,n(υX)| ≤ c for every n ∈ ω;

(ii) Cp,n(υX) is an LΣ(≤ ω)-space for each n ∈ ω;

(iii) Cp,2n(X) is an LΣ(≤ ω)-space for each n ∈ ω.

Proof. Since X is homeomorphic to a closed subset of Cp(Cp(X)),
the space X has to be Lindelöf Σ. It follows from [8, Theorem
3.5] that υ(Cp(X)) is a Lindelöf Σ-space. Applying Corollary to
Theorem 2 of [7], we can find a space Z which condenses onto X
and Cp(Z) � υ(Cp(X)). Therefore, |Z| ≤ c and Cp(Z) is a Lindelöf
Σ-space which shows that Proposition 2.8 is applicable to see that
|Cp(Z)| = |υ(Cp(X))| ≤ c. As a consequence, |Cp(X)| ≤ |υ(Cp(X))| ≤
c so we can apply Corollary 2.11 for the spaces Y = Cp(X) and
Cp(Y ) = Cp(Cp(X)).

The following corollary provides a positive answer to Problem 4.6
from [6].

2.13. Corollary. If X and Cp(X) are Lindelöf Σ-spaces and,
additionally, |X | ≤ c, then |Cp,n(X)| ≤ c and Cp,n(X) is an LΣ(≤ ω)-
space for any n ∈ ω.

Proof. Observe that Cp(Cp(X)) is a Lindelöf Σ-space by [8, Theorem
2.12]; Corollary 2.11 and Corollary 2.12 do the rest.

Let us conclude this paper with some open questions.

2.14. Question. Suppose that X is a Lindelöf Σ-space with a
unique non-isolated point. Must Cp(X) be a Lindelöf Σ-space?

Observe that it follows from Theorem 2.7 that the answer is positive
if |X | ≤ c.

2.15. Question. Is it true that Cp(X, I) is a continuous image of
Cp(X,Dω) for any space X such that indX = 0?
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This question might be of interest because the answer is “yes” if
dimX = 0 (see Theorem 2.6).
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