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TRANSFORMATION FORMULAS FOR
THE GENERALIZED HYPERGEOMETRIC FUNCTION
WITH INTEGRAL PARAMETER DIFFERENCES

A.R. MILLER AND R.B. PARIS

ABSTRACT. Transformation formulas of Euler and Kummer-
type are derived respectively for the generalized hypergeomet-
ric functions ry2Fry1(x) and r41Fr4+1(z), where r pairs of
numeratorial and denominatorial parameters differ by posi-
tive integers. Certain quadratic transformations for the for-
mer function, as well as a summation theorem when =z = 1,
are also considered.

1. Introduction. The generalized hypergeometric function ,Fy(x)
may be defined for complex parameters and argument by the series

(1.1)  ,F, o . :i(m)k(az)k:::gap)k .

bl,bg,...,bq k=0

When ¢ > p, this series converges for |z| < oo, but when ¢ = p — 1,
convergence occurs when |z| < 1. However, when only one of the
numeratorial parameters a; is a negative integer or zero, then the series
always converges since it is simply a polynomial in z of degree —a;. In
(1.1) the Pochhammer symbol or ascending factorial (a)y is defined by
(a)o =1, and for k > 1 by (a)r =ala+1)---(a+ k —1). However, for
all integers k we simply write

I'a+k
(a)p = L@t k)
I'(a)
where I' is the gamma function. We shall adopt the convention of writ-
ing the finite sequence (except where otherwise noted) of parameters
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292 A.R. MILLER AND R.B. PARIS

(a1,... ,ap) simply by (a,) and the product of p Pochhammer symbols
by
((ap))k = (a1)k - - (ap ),

where an empty product p = 0 reduces to unity.

Let (m,) be a nonempty sequence of positive integers. In this paper
we shall derive transformation formulas for the generalized hypergeo-
metric functions ,y2F,41(z) and ;41 F,41(x) whose r numeratorial and
denominatorial parameters differ by positive integers (m,). Thus, we
shall show in Sections 3, 4 and 5, respectively, that

b, (fr + mr)
(12) r+1Fr+1 x
¢, (fr)
A, (Em+ 1)
= e”” m+1Fm+1 ‘ —X 5
Cy (&m)
where |z] < 00,
a,b, (fr + mr)
(13) r+2Fr+1 X
2 (fr)
a, A, (Emn+1)
=1 —2) " mi2Fmp 71 |
) (&m)
where |z| < 1, Rex < 1/2, and
a,b, (fr+m;)
(14) r+2Fr+1 Xz
2 (fr)
AN, (g + 1)
=(1- x)67a7bim m+2Fm41 x|,
G (1)

where |z| < 1. In these transformation formulas the quantities m, A
and X are defined by

(1.5) m=mq+ma+---+m,, A=c—b—m, N=c—a—m,
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where, when (m,.) is empty, we define m = 0. Following [8], the (&)
and (7,,) are nonvanishing zeros of certain associated parametric poly-
nomials of degree m, which we denote generically by Q. (t), provided
that certain restrictions on some of the parameters of the general-
ized hypergeometric functions on both sides of (1.2)—(1.4) are satisfied.
The polynomial @Q,,(t) for transformations (1.2) and (1.3) is given by
(2.4). The associated parametric polynomial for transformation (1.4)
is given by (5.10). Certain generalized quadratic transformations for
r+2Fr11(x) are also provided in Section 6 and a summation theorem
when x = 1 is rederived in Section 7.

When (m,) is empty, (1.2) reduces to Kummer’s transformation
formula for the confluent hypergeometric function, namely

c—b

(16) 1F1 X :e$ 1F1

where |z| < co. Similarly, (1.3) and (1.4) reduce respectively to Euler’s
classical first and second transformations for the Gauss hypergeometric
function, namely,

(1.7)
a,b a,c—>b
2F1 xr :(1—x)_a2F1 %
c c
c—a,c—b
(1.8) =(1—-2) "R x|,
c

where |z] <1, Rex < 1/2in (1.7) and |z] < 1 in (1.8).

In [8] Miller obtained the specialization my = --- = m, = 1 of trans-
formation (1.2) by employing a summation formula for a ,4oF,1(1)
hypergeometric series combined with a reduction identity for a certain
Kampé de Fériet function. In [11], an alternative, more direct deriva-
tion of this specialization was given by employing Kummer’s trans-
formation (1.6) and a generating relation for Stirling numbers of the
second kind { Z } defined implicitly by (2.2). The specialization alluded
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to in [8, 11] is given by

b, (fr+1)
(19) r+1Fr+1 x
¢, (fr)
c—b—r, (& +1)
=e” r+1Fr+1 -

G (&)
The (&) are nonvanishing zeros (provided b # f; (1 < j < r) and

(¢ —b—r). # 0) of the associated parametric polynomial Q,(t) of
degree r given by

(1L10) Q) :Zsrjz{i} Ok (e —b—r —t)_p,
=0 k=0

where the s,_; (0 < j <r) are determined by the generating relation
(1.11) (f1 +x)---(fr+x)=ZsT_jxj.
j=0

When r = 1, we have from (1.9), (1.10) and (1.11),

b, f+1 c—b—1, £+1
(112) 2F2 x =e” 2F2 —X 5
¢ f ¢ §

where the nonvanishing zero £ (provided b # f, ¢ —b—1#0) of
Q1) =0b-=fit+ fc=b—-1)
is given by

fle=b-1)
=V

The Kummer-type transformation (1.12) for o F>(xz) was obtained by
Paris [15] who employed other methods. Paris’s result generalized a

(1.13) £ =
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transformation for o F»(x) derived by Exton [4] and rederived in simpler
ways by Miller [10] for the specialization f = b/2. Other derivations
of (1.12) have been recorded in [3, 9, 19].

In [12], the Euler-type transformations (1.3) and (1.4) specialized

with m; = --- = m, = 1 were obtained. These specializations are
given by
a,b, (fr+1)
r+2Fr+1 x
) (fr)
(1.14)

= (]- - x)—a r+2Fr+1

(1.15)
c—a—-r, c—b—r, (np+1)
= (1_x)c_a_b_rr+2Fr+1

Gy (nr)

The (&) are again the nonvanishing zeros of the polynomial Q,(t) of
degree r given by (1.10), where b # f; (1 <j <r)and (c—b—r), # 0.
The (n,) are nonvanishing zeros of a different polynomial, also of
degree r, that may be obtained from Theorem 4 specialized with
my = --- =m, = 1 so that m = r. When r = 1, the transformation
(1.14) reduces to the result due to Rathie and Paris [19]

a, b, f+1
(116) 3F2 T
¢ !
a,c—b—1, &+1
=(1—-2)3F = |

2 3

where £ is given by (1.13). The transformation (1.16) was subsequently
obtained by Maier [7] who employed other methods. Maier [7] also
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obtained the specialization = 1 of (1.15), namely,

a,b, f+1
3F2 x
¢ f
c—a—1l,c—b—-1, n+1
= (1 x)ciaibilgFg x|,
c, n
where
. fle=a—=1)(c—=b-1)

ab+ flc—a—b-1)"
which was also derived in [12].
2. Preliminary results. In this section we record several prelim-

inary results that we shall utilize in the sequel. Lemmas 1 and 3 and
Theorem 1 below are proved in [8].

Lemma 1. Consider the polynomial in n of degree u > 1 given by
P,(n) = apn” + ant 4 Au—1n + ap,
where ag # 0 and a, # 0. Then we may write

((€p+1)n
P,(n) =a, —t——,
’ &
where (€,) are the nonvanishing zeros of the polynomial Q,(t) defined

by
Qut) = ao(=)" + a1 (=)' + -+ + ap_1 (=) + .

Lemma 2. Consider the generalized hypergeometric function ;41 Fs1
((cr41); (dst1) | 2) whose series representation determined by (1.1) con-
verges for z in an appropriate domain. Then [20, page 166]

(Cf’+1)
(21) r+1E9+1 z
(ds+1)

—-n, (Cr—i-l) (_Z)n

oo
- ez Z r+2E9+1 1 nl 5
n=0 (derl) .

provided the summation converges.
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The notation { Z } will be employed to denote Stirling numbers of the
second kind. These nonnegative integers represent the number of ways
to partition n objects into & nonempty sets and arise for nonnegative
integers n in the generating relation [5, page 262]

22) o= 2_:{2} R

where dg,, is the Kronecker symbol.

Lemma 3. For nonnegative integers j, define

0o -An 0o Aﬂ
szgnjm, SoET;)H’

where the infinite sequence (Ay) is such that S; converges for all j.

Then ‘
J j = An+k
s=3 (1) 5 de

k=0 n=0

We shall also utilize the following summation theorem for the gen-
eralized hypergeometric series ,2F,.11(1), whose r numeratorial and
denominatorial parameters differ by positive integers.

Theorem 1. For nonnegative integer n and positive integers (m,.),
—-n, b7 (fT =+ mT’)

) (fr)

where m = mq + -+ my, A\ =c—b—m, N # 0 and b # f;
(1 <3 <7r). The (&) are the nonvanishing zeros of the associated
parametric polynomial Q.. (t) of degree m given by

) - O ()

B (n ((Em))n

(23) r+2FT’+1

20 Qu) =Y ons X {1} Ok - 0
=0 k=0
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where the o; (0 < j <'m) are determined by the generating relation

(25) (fi+ D (fr + @) Zam

Note that, when m; = --- = m, = 1, then m = r so that by
(1.11) 05 = 55 (0 < j < r) and Qm(t) reduces to @Q,(¢), which is
the polynomial of degree r given by (1.10).

The following Theorem 2 concerns a specialization of a hypergeomet-
ric function in two variables, called the Kampé de Fériet function; for
an introduction to the latter, see [20, pages 63—64]. Since the proof
of Theorem 2 is very similar to that given in [8, Theorem 2|, we shall
omit its proof.

Theorem 2. Supposeb# f; (1<j<r)and (c—b—r). #0. Then
we have the reduction formula for the Kampé de Fériet function

(ap): b, (fr+m); -
20 RS ‘ e
b6 G -
c—b—m, (ap), (&m+1)

2 (bg);  (&m)

where m = my + --- + m, and the solid horizontal line indicates an
empty parameter sequence. The (&) are the nonvanishing zeros of the
associated parametric polynomial Q. (t) of degree m given by (2.4).

= ptm+1Fgtmy1

Finally, the following lemma expresses a ,4sF,4+1(z) hypergeometric
function, where, in the sequel, s = 1,2 and r pairs of numeratorial
and denominatorial parameters differ by positive integers, in terms of
a finite sum of ¢Fj(x) functions. This lemma will prove fundamental
to our discussion.

Lemma 4. For a nonnegative integer s, let (as) denote a parameter
sequence containing s elements, where, when s = 0, the sequence is
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empty. Let (as+k) denote the sequence when k is added to each element
of (as). Let F(x) denote the generalized hypergeometric function with
r numeratorial and denominatorial parameters differing by the positive
integers (m,.), namely,

(CLS), (fr + mr)
Cy (fr)

(2.7) F(x) = pisFrpn

where, by (1.1), convergence of the series representation for the latter
occurs in an appropriate domain depending upon the values of s and
the elements of the parameter sequence (as). Then

(as +k)

(2.8)  F(z)= Aio 3k Ay, ((a k
k=0 c—+

where m = my + - - - + m,., the coefficients Ay are defined by

Ak EZ{‘;}O’m_j,
(2.9) =k

AO = (fl)m1 e (fr)mw

Am )

and the o; (0 < j < 'm) are generated by relation (2.5).

Proof. Now

((fr +mp))n _ (f1 +1)m, o (fr +1)m,
((fT))TL (fl)ml (fr)mr ’

where the numeratorial expression on the right-hand side is a polyno-
mial in n of degree m which can be written in the form

(f1+TL) fr+n Zam jn
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by (2.5). By (1.1), upon expanding F(z) as a power series in x, we
obtain

(©)n ((fr))n n!

1 & — ((as))n 2"
=2 om ) )
Ao = — (O nl
upon interchanging the order of summation. Application of Lemma 3
to the n-summation followed by use of the identity
(2.10) (@ktn = (@)r(a+k)n = (@)n(e + n)k
then yields

]:(x) _ Z ((aS))n ((fr + mr))n x”

IR R Y FAR SN () MV
]:(x)_AOjZ:O m—JkZ_O{k}T; (C)n+k n

1 m [e'] g))n ) n
_A_OkZ:OmkAkz; a +k X
1 m

(n+k  n!

((
n=0
((as))k ~= ((as + k), 2"
(O)k T;J (c+ k), nl’

where we have interchanged the order of the j and k-summations and
introduced the coefficients Ay defined by (2.9). Identification of the
summation over n as ¢ Fi ((as+k); c+k | ) then completes the proof. O

3. The Kummer-type transformation (1.2). If, in (2.6), we set
p = ¢ = 0, we immediately obtain (1.2). Also, by setting s = r and
¢ry1 = b, (¢) = (fr + my), dry1 = ¢, (d) = (fy) in identity (2.1)
and using the summation formula (2.3) of Theorem 1, we can derive
(1.2). However, we provide below a more insightful derivation of the
Kummer-type transformation (1.2) that utilizes Kummer’s transforma-
tion (1.6) for the confluent hypergeometric function 1 F (z), together
with Lemmas 1 and 4.

For positive integers (m,), define

bv (fr + mr)
F(J)) = r+1Fr+1 x

¢, (fr)
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Then, from (2.8) with s =1 and a; = b, we have
(b) b+k

T g o
k

where |z| < co and m = my + --- + m,. Application of Kummer’s
transformation (1.6) to each of the 1 F (x) functions then yields

c+k

m

F(Z‘) = Z—OzmkAk (Ci 1F1
k=0

where an obvious adjustment of the summation index has been made.
Upon noting the identities

(a)n
(a)x’

(3.1) = i - (@ + k)i =

we have
Pl = g O L

where we have replaced the summation index in the inner sum by n = 0
since (—n)r = 0 when n < k. Noting the easily established identity

AM)nA+1)m—k

(3.2) (c=b)p—i = ) ,
where A = ¢ — b — m, we then obtain

Pla) = —< e SEUUIDY Azzin”j “n)e(A 4 1)
(3.3) ; =0

’E

Z "Z O M

where we have interchanged summations.



302 A.R. MILLER AND R.B. PARIS

With the definition

P,(n) = i Ar(D) e (=n) k(A + 1) m—r
k=0
(3.4)

=3 s S {1 Oennr+
7=0 k=0

it is shown in [8] that P, (n) is a polynomial in n of degree m having
the form

Pr(n) = (fi =0)m, - (fr =0)m,n™ + -+ Ao (M),

where the remaining intermediate coefficients of powers of n in Py, (n)
(when m > 1) are determined by the expression on the right-hand side
of (3.4). Now, assuming b # f; (1 < j < r) and (A\)m, # 0, we may
invoke Lemma 1, thus obtaining
((Em +1))n

((Em))n
where the (&,,) are the nonvanishing zeros of the associated parametric
polynomial of degree m given by (2.4).

Finally, combining (3.3), (3.4) and (3.5), we find

(3.5) P,(n) =4 (MN)m

e A ([t D) (o
D I e (70 T

which is the Kummer-type transformation (1.2). O

n=0

4. The first Euler-type transformation (1.3). In this section we
shall provide two derivations of the Euler-type transformation formula
given by (1.3). The first proof relies on the reduction formula for the
Kampé de Fériet function given in Theorem 2. The second proof utilizes
Lemma 4 and (1.7) and is similar to the derivation of the Kummer-type
transformation (1.2) given in Section 3.

Proof. 1. Let (m,) be a sequence of nonnegative integers, and consider

a,b, (fr +m;)
F(y) = (1 - y)_a r2Fr i1 % )
c, (fr)
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where b # f; (1 <j <r)and (c—b—r), #0, so that

= (a)x( ((fr +m0))k Nk _ o \—a—k
k;(ckk, (AR

Since, for |y| < 1,

oo

I-—yrF=>" (@t B

|
ot n!

upon noting the identity (2.10), we have

ZZ k+nb_ (fr +m )i (=9)* y*

— = () ((fr)k k' n!
a b (fr+my) ; -
= Foriil ‘ ~y,y
- : c, (fT) ) -

Now applying Theorem 2 with p =1, ¢ = 0 and a1 = a, we find

a,c—b—m, (&n+1)
F(y) = mi2Fmi1

Gy (&m)

so that

a,b, (fr+m;)
Y

(1 - y)iar—‘rQFr—',-l Py

) (fr)
a,c—=b—m, (&n+1)
- m+2Fm+1

&) (&m)

where m = mq + -+ -+ m,. The (§,,) are the nonvanishing zeros of the
associated parametric polynomial @,,(t) of degree m given by (2.4).
Finally, letting y = x/(z—1), we deduce (1.3). This evidently completes
the first proof. a
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Proof. 1I. Let (m,) be a sequence of nonnegative integers, and
consider

Cl,b, (fr +mr)

&) (fr)

where b # f; (1 <j<r)and (¢c—b—r), # 0. Then, from (2.8) with
s =2 and a1 = a, az = b, we have

(41) F(J)) = r+2Fr+1

a+k btk

(4.2) F(z) = 3%8 gggzrkf4k (azisﬁ)k 2 P

c+k
where |z| < 1. The coefficients A, and the integer m are defined,
respectively, by (2.9) and (1.5).

Application of Euler’s transformation (1.7) to the above o F;(x) func-
tions then yields

a+kb+k
2 x
c+k
a+k,c—>
(4.3) =(1—2)" " FyR =
c+k

_ _ akz a+knk b)nfk X ok
(c+k)p_r(n—Fk)! \z—1 ’
where an obvious adjustment of the summation index has been made.

Noting the identities (3.1) and (3.2), we may write (4.3) as

a+kb+k
(4.4) oF

c+k
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where the summation index n = k has been replaced by n = 0 since
(—n)r = 0 when n < k. Now substitution of (4.4) in (4.2) yields

_(1-0) $S (@, .
)= AW 2 O (m—l) ZA’“ R

where the order of summation has been mterchanged. Finally, recalling
(3.4) and (3.5), we see that

a,b, (fr + mr)
r+2Fr+1 T
G, (fr)
a5~ (@2 Wn (G + 1D)n ( z )
=(1—-x)"° ,
A=  Ga  (ee \a -1
which evidently completes the proof of the transformation (1.3). O

We summarize the results of Sections 3 and 4 in the following:

Theorem 3. Let (m,.) be a nonempty sequence of positive integers
and m=mq+---+my. Then, ifb# f; (1 <j <), (A)m # 0, where
A =c—b—m, we have the transformation formulas

a,b, (fr + mr)
(45) r+2Fr+1 x
¢, (fr)
a, A, (&m+1)
= (1 _x)_a mt2Fmi1 zfl s
Cy (&m)
where |x| <1, Rex < 1/2, and
(4.6)
b, (fr + mr) A, (fm + 1)
r1Fr i z | =€ mi1Fmy ‘ -,
Cy (fr) Cy (&m)

where |z| < co. The (&) are the nonvanishing zeros of the associated
parametric polynomial Q.. (t) of degree m given by

=3 s S {2 O 0,
j=0 k=0
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where the o; (0 < j < m) are determined by the generating relation
(2.5).

We remark that the Kummer-type transformation formula (4.6) may
be employed to quickly provide an upper bound for the number of zeros
of the generalized hypergeometric function considered by Ki and Kim
[6], namely,

(.fr+1 + mr+1)
w(x) = r+1Fr+1 x ’

(fr+1)

where |z| < oo and (m,41) is a sequence of positive integers such that
M =mq + -+ 4+ my41. Thus, we have the following:

Corollary 1. The entire function w(z) has at most M zeros in the
complex plane.

Proof. In (4.6) with m = mq + -+ +m,, let b = fr11 + m,41 and
¢ = fr41. Then A = —M and (—M),, # 0, so that

_Ma (gm + 1)
(4.7 w(x) =€ my1Fmi1 -z
fT’+17 (fm)
Since w(zx) is proportional to a polynomial in —x of degree at most M,
the proof of the corollary is evident. O
In fact, we can show that [13]
_Ma (gm + 1) 1 M

(48) m+1Fm+1 —X = A_ Z Akxk,

fre1, (Em) 0 %=o

where the Ay (0 < k < M) are defined in an analogous manner to that
in (2.9). Thus, the zeros of the entire function w(z) are characterized
completely by (4.7) and (4.8), whereas Ki and Kim [6] only show the
existence of at most M zeros for w(z). See also the fourth example in
Section 8, where we consider the specialization of w(z), namely, (8.2).
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5. The second Euler-type transformation (1.4). Before
establishing the second Euler-type transformation (1.4), we shall prove
a preliminary lemma. This lemma addresses the form of the associated
parametric polynomial @,,(t) for this transformation and is intended
to streamline the derivation of the main theorem.

Lemma 5. Let m be a positive integer. Consider the polynomial in
n defined by

(5.1) Pn(n) =B zp: % Ags(n),
k=0  s=0
where
(52 Aps(n) = A+ n)pe s +n)pos(—n)isa(l — c = n)s,
p=m—-—-k, AX=c—b—m, N = c—a— m and the coefficients

Br (0 < k < m) are arbitrary complex numbers. Then P, (n) is a
polynomial in n of degree m that takes the form

Pp(n) =aon™ + -+ m_1n + am,

provided that (1 +a+b— ¢)ym # 0 and ag # 0, where

_ (S, Lratb—On
(53) 20 = (0" 2 By,
and
(5.4) am = Bo(N)m (A )m-

Proof. Tt is evident that P, (n) is a polynomial in n of degree at most
2m. By employing the identities (2.10) and

(5:5) () = 75
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we may write

Pu(n) = 3 Bi(=n)i(A + n),(X +n),

k=0
- (—p)s(k—n)s(l _C_n)s
(5.6) X;(1—)\—p—n)s(1—)\’—p—n)ss!
=" Bi(=n)k(A+ n)p(X + 1)y Gyi(n),
k=0

where the s-summation has been expressed as a 3F5(1) hypergeometric
series that we define as

-p, k—n,1—c—n
(57) Gnk(n)EgFQ 1
1-A=—p—-n, 1-N—-p—n

The degree of the polynomial P, (n) can then be obtained by em-
ploying Sheppard’s transformation [2, page 141] given by

_pva'ab

-p,a, 1—o0o
l+a—d—p, 1+a—e—p

where p is a nonnegative integer and ¢ = d +e¢ —a — b + p is the
parametric excess.! Application of this transformation to G, x(n) given
by (5.7) then yields

QI-X—p—k)pQ-XN—-p—kFk),
1-A=p—n)p(l—-XN—-p—n),
-p, n+k, 1—0o
3Fy 1
Ak, N +Ek

quk'(n) =
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where now 1 — 0 = ¢ — a — b — m. Employing the identity (5.5) we
obtain from this and (5.6), the alternative representation

(5.8) Pu(n) = Be(-n)e(A +k)p(N + k),
k=0

-p, n+k, 1—0o
3lh 1
Ak, N+Ek

Since n appears only in a single numeratorial parameter of the 3F5(1)
series on the right-hand side of (5.8), we see that 3F»(1) is a polynomial
in n of degree p = m — k only if o # 1,2,...,p; that is, provided
(I+a+b—c¢)m #0. As (—n)y is a polynomial in n of degree k, it
follows that P,,(n) is a polynomial in n of degree k + p = m and hence
must have the form given in the statement of the lemma.

The coefficient ag can be determined as follows. The highest power
of n in the 3F5(1) series in (5.8) arises from the last term when it is
expressed as an s-summation, that is, when s = p

(=DP(=n+k)p(1 —0)p (1—-0)yp

S N E U B ST O U s

Thus, from (5.8) we find the coefficient of n™ in the polynomial Py, (n),

namely,
m

ag =Y (~1)*Br(l = 0)m
k=0
which yields (5.3). Finally, when n = 0, the only contribution to the
double sum in (5.1) arises from k = s = 0. Thus, since P, (0) = o,
we deduce (5.4). The proof of the lemma is evidently complete. O

As we shall see below, when
B = (-1)*Ap(a)r(0)r  (0<k <m),

where the A, (0 < k < m) are given by (2.9), the associated parametric
polynomial @, (t) for the transformation (1.4) may be obtained from
either (5.1), (5.6) or (5.8) by replacing n in the latter by —t, so that in
each case Q,(t) = P (—t).
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We now establish an extension of the second Euler transformation
(1.8) given in the following.

Theorem 4. Suppose? (1+a+b—c)m # 0 and (N)m # 0, (N )m # 0.
Then

a,b, (fr + mr)
(59) T+2FT+1 x
¢, (fr)
NN, (m+1)
=(1- m)c_a_b_mm+2Fm+1 x
c, (1m.)

valid in |z| < 1, where A\=c—b—m and N =c—a—m. The (n,,) are
the nonvanishing zeros of the associated parametric polynomial Q. (t)
of degree m = my + -+ +m,, given by

(5.10 m Z kAk b)k(t)k(/\ — t)p()\l — t)p Gpjc(_t)v
k=0

where p = m — k, the coefficients Ay, are defined by (2.9) and Gp (1)
is defined by (5.7).

Proof. Our starting point is the expansion (4.2) which expresses
the hypergeometric function F'(z) defined by (4.1) as a finite series of
oF (z) functions. To each of the latter functions we apply the second
Euler transformation (1.8) to find

a+k,b+k c—a,c—b
* o Fy z | = xk(l — x)c_a_b_ngl x
c+k c+k

= (1—az) 0"

" Z (c—a)n(c—1b), xnthts
c—|—k n!

where we have defined p = m — k and used the binomial theorem to
expand the factor (1 — z)P. If we now change the summation index
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n — n+k+ s and make use of (2.10), (3.1) and the identity (5.5), the
right-hand side of the above equation can be written as

—r c—a—b—m £ (_p)s = (C - a)n,k,S(C - b)nfkfs e
(1 ) ;) s! nz (c+E)n—k—s(1)n—k—s

=k+s

— —r c—a—b—m (_l)k(c)k
={-2) O

X Z (_j)g Z (/\)(ncg/\/)n Ag,s(n) %7
s=0 n=0

n

where we have introduced the coefficients Ay 5(n) defined by (5.2) and
have replaced the inner summation index n = k + s by n = 0 since
(—n)k+s = 0 for n < k + s. Hence, from (4.2), we obtain

1_xcfa7b7m > )\m)\/mxn
(5.11) F({L‘) = (AO()\im()\/)m nz_o( ) an) mpm(n)

upon interchanging the order of summation, where we have defined

(5.12) ) = i b)k Z
s=0

k=0

Now setting By, = (—1)*Aj(a)x(b) in Lemma 5, we see that Py, (n)
is a polynomial in n of degree m having the form

P’m(n) = aonm + - Fap_1n+ an,

where, from (5.3) and (5.4),

m

= (-1)"1+a+b—0c)m Z

k=0

1)k Ag(a)k(b)k
1+a+b—c)’

(5.13)
= Ao(N)m (X)m

Assuming that the coefficient ag # 0 and (\),,, # 0, (X),, # 0, we may
then invoke Lemma 1 to obtain

(5.14) Pon) = Ao (V) 0,
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where, from (5.6) with By, defined as above, the (7,,) are the nonvan-
ishing zeros of the associated parametric polynomial given by (5.10).

Then, provided ag # 0, a;, # 0 by Lemma 1, the zeros (7,,) of
the associated parametric polynomial Q,,(¢) are nonvanishing. This
requires that (A),, # 0 and (X),, # 0 for the coefficient a,, # 0; a
necessary condition for ag # 0is (1 4+ a + b — ¢) # 0 since, if this is
satisfied, then (1 +a+b—c); # 0 for k < m, so that the k-summation
in (5.13) exists as a finite value. A sufficient condition for ag # 0 is
that the finite sum in (5.13) does not vanish. With these restrictions,
it then follows from (5.11) and (5.14) that

ca m m+1
Pl ==t Z e

thereby establishing Theorem 4. ]

6. Quadratic transformations. In this section we derive gen-
eralizations of two well-known quadratic transformation formulas for
the Gauss hypergeometric function, which we state in the following
theorem.

Theorem 5. Let (m,) denote a sequence of positive integers such
that m = mq + --- + m,. Then we have the generalized quadratic
transformation

a’a+(1/2)’ (fr+mr)
(6.1) ,yoFria ﬁ
¢, (fr)
2a, c—m—(1/2), (&m+1)
= (1F2)*2smt2Fomi1 +2z

)

2(} — 1, (fgm)

where, provided (c — m — (1/2))m # 0, the (€21m) are the nonvanishing
zeros of the associated parametric polynomial Qo (t) of degree 2m given

by

" Ak 1
(6.2) Qam(t) Z ﬁ t)ok (C— m — 3~ t)mk.
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In addition, we have the second generalized quadratic transformation

a,a+(1/2), (fr +my)
4x
r2Fri T+a)?

(6.3)

Ca (fT)
2a, 2a—c+1, (nom +1)
= (1+2)*2m+2Fom+1

G, (772771)

where, provided (2a—c+ 1)y, # 0, the (n2m) are the nonvanishing zeros
of the associated parametric polynomial of degree 2m given by

m kAk
(64) Q2m E 2a ot 1 ( )k(2a — t)k-.
0

The coefficients Ay, are defined by (2.9) and the transformations (6.1)
and (6.3) hold in neighborhoods of x = 0.

When r = 0, then m = 0 so that (6.1) and (6.3) reduce to the well-
known quadratic transformation formulas due to Kummer given by

(6.5)
a,a+ (1/2) 2a, ¢—(1/2)
2F1 ﬁ = (1 F J))2a2F1 +2x
C 2¢c—1
and
(6.6)
a,a+ (1/2) 2a, 2a —c+1
2 I (11—2)2 = (1+2)* 8 x|,
c c

which are, respectively, slight variations of those given in [1, Section
15.3, (19) and (20)].

Proof. We shall first establish (6.1). Let us define
(6.7)
a,a+(1/2), (fr +m;)

¢, (fr)

X X

F(J)) = r+2Fr+1 y m
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Then use of the expansion (2.8) with s =2 and a1 = a, ag = a+ (1/2)
yields
(6.8)
m +k, a+k+(1/2)
L (@)2k_ 1 e
Flz)=—)» A X" oFy X1,
Ao 2 P o

where we have employed the duplication formula
(6.9) (@)2r = 22" (@)k (o + (1/2))-

Application of the quadratic transformation (6.5) to each of the o F7 (X)
functions then yields

F(JZ) — (1 :Fx)Qa in:Ak (Cl)gk ka’

AQ =0 22’“(c)k
2a+ 2k, c+k—(1/2)
x of7 +2z
2¢+ 2k —1
_ (LFa)? & (a)2k
- A Z Ay 29K (0)1
k=0
o (20 + 2k)pn—an(c+ k — (1/2)) ok (F22)"
x> ,
2k (2C + 2k — 1)n—2k’ (l)n—Qk

where an obvious adjustment of the summation index has been made.

We now make use of (3.1) with k replaced by 2k and (6.9) together
with the identity

( —=m)p (¢ —m+n)mt ,
(¢ =m)m (¢ )k ’

Thus, we obtain, after some reduction,

Fla) = ~UFD™ 22 24,

(C/ + k)n—Qk =

Aol —m)m,
> 2a c -m +2x)™
X Z n ( n') (—n)ak (' —m +n)m—k
n=2k ’

B Aol —m)m o (2¢)n n!
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where we have interchanged the order of summation, replaced the
summation index n = 2k by n = 0 since (—n)or = 0 for n < 2k,
and defined

Since, by (2.9), A, =1, it is clear that Py, (n) is a polynomial in n
of degree 2m and has the form
Pop(n) = 272%™ 4. 4 Ag(d) — m)pm.
We can then invoke Lemma 1 to obtain
((f2m +1))n
((&2m)n

where, provided (¢' —m),, # 0, the (2,) are the nonvanishing zeros
of the associated parametric polynomial given by (6.2). It then follows
that

Pyp(n) = Ao(d —m)m

oo 20)n(c=m = (1/2))n ((Gom + D)n (£22)"
F(z) = (1¥2) ; T, ()T

thereby establishing the first part of Theorem 6.

The second quadratic transformation formula (6.3) can be established
in a similar manner. We again let F'(x) be given by (6.7), where X is
now defined by X = 4x/(1 + x)2. Then, from (6.8) and the quadratic
transformation (6.6), we find mutatis mutandis that

F(z) = %
) iAk(?Z))% . 2a+2k, 2a —c+k+1 )
k=0 k c+k
1+2)2 I, (2
S o
y Ti (2a + %)”(ifak)_nf: E41)n g (1:;:_k
_ (1 _;:)za i (2a)n(2ELC)—nc+ D L:L_T'L P (),
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where now

—~  (=D)kA;

(6.10) Pan) = 3 o= e 1

(—n)k(2a + n)g.
=0

The polynomial Ps,,(n) is clearly of degree 2m and possesses the form

an

Pgm(n):m+"'+Ao.

Provided (2a — ¢+ 1),,, # 0, we may invoke Lemma 1, thus giving

_ . 2m + ))n
FPam(m) = 4o 0

where the (12,,) are the nonvanishing zeros of the associated parametric
polynomial Qa,,(t) given by (6.4). It then follows that

20 o (20)0(2a — ¢+ 1) (120 + 1) 2"
F(z) = (1+) E:jo o, ?mgm))n —.

which establishes (6.3) and so completes the proof of Theorem 6. O

In the case r = 1, m; = 1, we see with f; = f that the associated
parametric polynomials Q2(t) given by (6.2) and (6.4) are, respectively,

1t%r(i_f)“rf(C—;) and D20t fRazctl)

4 2a —c+1

The zeros of these polynomials are, respectively,

2 1/2
wamar e or-3) -ofe-3)

and

Mo =a%+[a® - f(2a—c+1)]Y2
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Thus, from (6.1) and (6.3), we obtain the quadratic transformations

a, a+(1/2), f+1

3F2 (Dz:c)z
(6.11) “ /
2a, c—(3/2), & +1, &L+1
= (1:‘:"]})2& 4F3 :|:2$
2c—1, &1, &2
provided ¢ # 3/2, and
a, a+(1/2), f+1
3k (1%)2
C’
(6.12) !
2a, 2a—c+1, m+1, n+1
= (1 + x)2“ 4 F3 x|,
&) m, 12

provided ¢ # 2a+ 1. The transformations (6.11) and (6.12) were found
in an equivalent form by Rakha et al. in [17, 18].

We note that when ¢ = 2a + 1 in (6.11) and ¢ = 2a in (6.12) the
4 F5 functions reduce to lower order 3F5 functions. Furthermore, when
¢c=2a+p+1in (6.12) with p a positive integer, we obtain

a, a+(1/2), f+1

3B T2

2a +p+1, f

—D, 20,, n1+17 772+1
= (1 +$)2a 4F3

2a+p+1, m, M2

where 719 = a & (a + pf)/?, and the right-hand side of this trans-
formation is a polynomial in x of degree p. We compare this with
Whipple’s quadratic transformation [2, p. 130] expressed in the form

a, a+(1/2), f+b

3F2 oy

2a +b+1, f

—b, 2a, 2a— f+1
=(1+2)*3F,

2a+b4+1, f
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where b # —1 — 2a is otherwise arbitrary. In the particular cases
b=1and p = 1, it is easily seen that the right-hand sides of both
transformations reduce to

(1+x)% (1 + %x) .

It is worth mentioning that, in general, when the result of a trans-
formation is proportional to a polynomial S,(x) of degree p, then it
not essential to determine the zeros of the associated parametric poly-
nomial @Q,(t) of degree p for the transformation in order to compute
the coefficients of powers of = in Sp(x), since these coefficients may
be obtained directly by use of P,(n) = Qu(—n) itself. Thus, in the
specialization ¢ = 2a 4+ p + 1 discussed above, P, (n) given by (6.10)
may be used with the result for F'(x) directly preceding it in order to
compute the coefficients of 2 (0 < n < p) in the expression for F'(x).

Finally, we make an observation concerning the derivation of the
generalized quadratic transformations (6.1) and (6.3). A quadratic
transformation for oFj(c, 85y | z) exists if and only if any of the
quantities

+1-7v), *la-p), *la+ps-7)

are such that either one of them equals 1/2 or two of them are equal [1,
page 560]. It has been possible to obtain the transformations (6.1) and
(6.3) since the corresponding Gauss functions that appear in expansion
(6.8) satisfy a condition of the type a« — f = —1/2 for 0 < k < m.
An example where it is does not seem possible to apply a quadratic
transformation to each of the Gauss functions in (6.8) is given by

a, b, (fr +my)
(6.13) y10F i1 X |, X=4z1-0).
a+b+(1/2), (fr)

In this case, the third condition above for the functions 2Fj(a +
k,b+kia+b+ k4 (1/2) | X), with 0 < k < m, has the form
a+ B —v =k—(1/2); that is, a quadratic transformation only exists
when k = 0 and k£ = 1. Consequently, we are compelled to take r =1,
m = 11in (6.13). Thus, omitting details for brevity, we find by a similar
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analysis described in [13]

a, b, f+1

3lh X

a+b+(1/2),

f
2 —1,20—1, & +1, &+1
=(1-2z)"

a+b+(1/2), &, &2
where X is defined in (6.13),

1\? 1/2 (2a — 1)(2b — 1)
Ga=drge|(avg) 2] A=

and it is supposed that a,b # 1/2, f Za+b— (1/2).
7. Summation theorems. In this section we shall show that

Lemma 4 may be employed to quickly and efficiently obtain the follow-
ing summation theorem.

Theorem 6. Suppose (m,) is a sequence of positive integers such
that m = mq + --- + m,. Then, provided that Re (¢ — a —b) > m, we
have

a,b, (fr+my)
(7.1) ioFiy 1
G, (fr)
_T(e)l(c—a— (a)k (D)
- T(c—a)l Z 1—|—a—|—b—c)

where the A, (0 < k < m) are defined by (2.9). Moreover when
¢ = b+1, then (7.1) reduces to the Karlsson-Minton summation formula
given by

Cl,b, (fr +mr)

(72) r+2Fr+1 1
b+1,  (fr)
_TA+0rA—a) (fi = b)m, -+ (fr = b)m,
I1+b—a) (fOma = (fr)m, ’

where Re (—a) >mq + -+ m, — 1.
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Proof. In (2.8),let x = 1, s = 2, a1 = a, as = b where for convergence
of F(1) we must have Re (¢ —a — b) > m. Thus, we obtain

a,b, (fr+m;)

(7.3) vioFris 1
C, (fT)
1 m (Cl)k(b)k a + k, b+ k
:A—ZAk ( ) QF]_ ].
0 k=0 )k c+k

Note that each oF;(1) converges since Re(c —a —b) > m > k > 0.
Thus, employing the Gauss summation theorem given by

a,b T(e)T(c — a—b)
1 ~ Te—ale—b)’ Re(c—a—-0)>0

c
and the identity (5.5), we find for nonnegative integers k that

atk btk PEl(c—a=b)  (=1*ch

2F Tle—a)l(c—b) I+atb—0op

1 =

c+k

Combining this with (7.3), we then obtain (7.1).
Now set ¢ =b+ 1 in (7.1), thus giving

a,b, (fr + mr)
(74) r+2Fr+1
b+1,  (fr)
I1+b0(1—a) 1

T T(l+b-a) ZEZ;FﬂﬁAAMm

where the A (0 < k < m) are given by

(7.5) Ay = Z { ‘]1} Om—j, Ao=(f1)mi - (fr)m,

J=k
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and the o; (0 < j < m) are defined by (2.5). However,

DEVEHCTES 95 BEFH RIEEON
k=0 k=0 j—=k
=S oy S { 1 f v,
7=0 k=0

where, by (2.2),
~ [ k j
> (=1)"(b)r = (=b)’.

Thus, using (2.5), we have

m

> (=1)F A (b) Zamj b)Y = (fi = B)my - (fr — D)om,

k=0

which, when combined with (7.4) and (7.5), yields (7.2). This evidently
completes the proof of Theorem 6. a

We remark that the summation formula (7.1) has previously been
deduced in [14], where a slightly more complex result is recorded. For
previous work pertaining to the Karlsson-Minton summation formula
(7.2), see the references cited in [14].

8. Examples and concluding remarks. We now present some
examples of the theorems developed in this paper; the cases r = 1 and
m = 1 have already been mentioned. Consider first the case r = 2 with
mi = mo = 1, so that the associated parametric polynomial for the
transformations (1.2) and (1.3) is given by [8]

(8.1) Q2(t) = at® = ((a+ B)A+ B)t + frfoA(A + 1),
where A =c—b—2 and

a=(f1=0)(f2—0), B = fifa —b(b+1).
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If we choose b =1, ¢c=1/3, fi =2/3 and f = 1/2, then

Qa(t) = é(tQ — 14t + %),

so that the zeros are & = 2/3 and & = 40/3. We then have the first
Euler and Kummer-type transformation formulas

8 5 43
a, 1, %v % a4 -3 3 3
4F3 xr :(1—5E) a4F3 ﬁ

1 2 1 1 2 40

30 3 32 3 3) 3
1. & 3 _8 5 43
’ 37 2 - 37 3 3

3F3 x | =e'3F;3 z |,

12 1 1 2 40
37 37 2 37 3’ 3

where a is a free parameter.

Our second example has r = 1 where we consider in turn the cases
with m; = 2 and m; = 3. When my; = 2, then A\ = ¢ — b — 2,
and the associated parametric polynomial Q2 (t) for the first Euler and
Kummer-type transformations takes the form

Q2(t) = At*> + Bt + C,

where
A= (f - b)?v
B = (b)a + 2bA(f 4+ 1) — (2A + 1)(f)2,
C = (f)2(N)a2.

We remark that the latter Q2(t) is easily seen to reduce to (8.1) in
which f; = f and fo = f + 1. In the particular case b = 5/3, ¢ = 4/3
and f =1/3, we find
L 2
Qa(t) = g7 (361> — 3481 + 112),

so that & = 1/3 and & = 28/3. When m; = 3, the cubic polynomial
Qs3(t) withb=1,¢=7/4 and f = 2 reduces to

1
Qs(t) = —§(48t3 + 19212 + 234t 4 135),
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so that & = —5/2 and &3 = —3/4 £ 3/4i. Hence, with m; = 2
and my = 3, respectively, we obtain from (1.3) the first Euler-type
transformation formulas

5 _r 31
a, 3, a, 30 3
—a X
3 | =0-2)"F -1 |-
4 1 1 28
33 303
a, 1, 5
3F2 X :(1—5E) @
7
1 2
9 _3 14 3, 1_3
a -3 o~y oztah 1T qt .
X 5Fy 1
7 5 3, 3; 3_3
Ty Titin T
and from (1.2) the Kummer-type transformation formulas
5 7 _r 3
303 N 3 3
oy x| =€k —z |,
41 128
303 30 3
9 3 1 3; 1_3
L5 i - —% 1tih 1l
QFQ T =€ 4F4 —T
7 7 _5 3.3, _3_3;
2 e 3 —atibh —i—qt

We remark that, in the case m; = 2, a contraction of the order of
hypergeometric functions on the right-hand side has been possible since

As a third example, we consider the second Euler-type transformation
(1.4) with r = 2 and m; = my = 1. With the parameters a = 1/3,
b=1/2,c=1and f; =1/4, fo =2, so that A = —=3/2 and X = —4/3,
we find from (5.10) the associated parametric polynomial given by

115,
Qg(t)—n(zt +23t+12>,

which has the zeros m; = —2/3, 7o = —12/5. This yields the second
Euler-type transformation formula

11 5 3 23 _4 1 _
37 27 40 27 37 37
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Finally, we give a fourth example by setting in (1.2) m; =1, f; = ¢
(1<j<r)andb=c+1. Thus, m=r, A= —r — 1, and we have

c+1, ---, c+1
(82) 7«+1Fr+1 X
c, DR y C
—r—1, (& +1)
=e” r+1Fr+1 - |,
c, (57’)

where the (&) are the nonvanishing zeros of the transformation’s
respective associated parametric polynomial of degree r. However, we
shall show that the polynomial of degree r + 1 on the right-hand side
of (8.2) may be written explicitly. For, since

(52 (3 - )

for positive integer p, we have

c+1, -+, c+1
pEp

P 00
z | = c_pz <Z> cp_ank Z
k=0 n=0

where we have interchanged the order of summation. Now, employing
Lemma 3, we see that

s {ns sl

C, cee, C

n=0 7=0 n=0 7=0
so that
c+1, -+, c+1
(8.3) »Fp z | =cPe” Ry(c; ),
C’ DY s c

where we have defined the polynomial of degree p

wien=£ (1) ()

k=0



TRANSFORMATION FORMULAS 325

Interchanging the order of summation in the latter, we may write
PP i ‘

8.4 (¢x) = c? c e,

6 2 ()0

Although (8.3) is indicated in [16, Section 7.12.4, page 593], Prud-
nikov et al. do not provide the explicit formula (8.4) for R,(c;z) but
only give a recurrence relation by which these polynomials may be
computed. Thus, from (8.2) and (8.3), we have

—r—1, (& +1)
r1Fr 1 —T | = C_T_er+1(C§ 33);

G, (&)

where the (&) are the nonvanishing zeros of the associated parametric
polynomial alluded to above.

We remark that when ¢ = 1, since [5, (6.15), page 265],
20
prd k J j+1

n=> {7t

Jj=0

we find

so that, from (8.3),

p
(8.5) JF, 2| = Z{g+1} ;

Jj=0

1,...,1

Equation (8.5) is recorded in [16] in an equivalent form along with the
particular cases 1 < p < 7.

The analogous special case when m; =1, f; = ¢ (1 < j <r) and
a = b = ¢ in the transformations (1.3) and (1.4), so that A = —
in both cases, is discussed in [12], where it is shown that explicit
representations for the polynomials of degree r on the right-hand sides
of these transformations can be derived.
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In this investigation we have developed an essentially elementary al-
gebraic method for obtaining transformation and summation formulas,
respectively, for generalized hypergeometric functions and series of unit
arguments with integral parameter differences. The salient feature em-
ployed herein is Lemma 4, whereby, under mild restrictions, such hy-
pergeometric functions and series can be written in a useful way as a
finite sum of Gauss or confluent functions. We have provided several
examples to indicate the efficiency and power of this method.

ENDNOTES

1. We must assume o # 1 for otherwise this transformation degener-
ates to a summation formula.

2. The following are necessary conditions for the nonvanishing of the
(nm); sufficient conditions are given below.
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