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PECULIARITIES IN POWER TYPE COMPARISON
RESULTS FOR HALF-LINEAR DYNAMIC EQUATIONS

PAVEL ŘEHÁK

ABSTRACT. We look for conditions guaranteeing that
oscillatory properties of the half-linear dynamic equation(

r(t)|yΔ|p−1sgn yΔ
)

Δ + c(t)|yσ |p−1sgn yσ = 0, p > 1,

are preserved when the power p is changed. In particular, we
discuss discrepancies (which indeed occur) between the results
on different time scales. We provide an example showing an
optimality of one of the assumptions. We also present one
generalization of a standard Sturm-Picone type comparison
theorem and give an important note on the condition 1/r ∈
Crd which concerns general theory of second order dynamic
equations. Many of our observations are new also in the
differential and difference equations cases.

1. Introduction. Classical types of comparison results in the theory
of half-linear dynamic equations, like the Sturm-Picone one or the Hille-
Wintner one, deal with two equations of the form

(1)
(
r(t)Φp(y

Δ)
)
Δ + c(t)Φp(y

σ) = 0,

which have different coefficients, see e.g., [1, 3, 9, 10]. In this paper,
we present results of a different kind: Two equations of form (1)
are compared, where their coefficients are the same, but the powers
in nonlinearities differ. Among others, we may compare a nonlinear
equation with a linear one. The nonlinearity is defined as Φλ(u) =
|u|λ−1sgnu, and in (1) we assume p > 1. A time scale T (i.e., a
closed subset of R) is unbounded from above. The half-linear dynamic
equation (1) is assumed to have the coefficients r(t) > 0 and c(t)
defined on a time scale interval [a,∞), a ∈ T, with 1/r and c being
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rd-continuous on [a,∞). In the next section, we give an important note
on the assumption ‘1/r is rd-continuous’. Equation (1) covers a large
variety of equations, in particular, a half-linear differential equation
(provided T = R in (1)), a half-linear difference equation (provided
T = Z in (1)), a linear dynamic equation (provided p = 2 in (1)), and
a half-linear q-difference equation (provided T = {qk : k ∈ N0} with
q > 1 in (1)). Basic results on the existence and oscillation theory of
(1) can be found in [1, 9].

The principal aim of this paper is to establish conditions guaran-
teeing that oscillatory properties of (1) are preserved when the power
in the nonlinearity is changed. Moreover, we show the discrepancies
between the results on different time scales: The statements with a
“small” graininess require certain additional conditions on the coeffi-
cient r, which is not needed when the graininess is “sufficiently large.”
An example will be given demonstrating this fact for the differential
equations case, including not just the essentiality but also an optimal-
ity of that condition. We will also show that, under the assumption
μ(t) ≥ 1, the statement can be proved in a very general setting, where
the coefficients can be nearly arbitrary.

Related comparison results may be found in [6, 12, 14] for the
differential equations case and in [10, 11] for the dynamic equations
case. We stress that many subsequent results are new in the standard
discrete case (T = Z) and some of them are new even in the continuous
case (T = R). For another type of nonlinear comparison in the theory
of half-linear differential equations, see [4, 14].

The paper is organized as follows. In the next section we mention
and recall some important facts and state preliminaries that are key
to prove the main results. Comparison theorems, for both cases∫∞

r1/(1−p)(s)Δs = ∞ and
∫∞

r1/(1−p)(s)Δs < ∞, are established
in Sections 3 and 4, respectively. Section 5 presents improvements
in special cases and discusses peculiarities and discrepancies which
occur when we compar the results on different time scales. The paper
concludes with an integral comparison theorem which generalizes the
Sturm-Picone type result.

2. Preliminaries. We assume that the reader is familiar with
the notion of time scales. Thus, note that just T, σ, fσ, μ, fΔ,
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∫ b

a f(s)Δs and Crd stand for time scale, forward jump operator, f ◦ σ,
graininess, delta derivative of f , delta integral of f from a to b, and the
class of rd-continuous functions, respectively. Recall that, for instance,
fΔ(t) = f ′(t) when T = R, fΔ(t) = Δf(t) when T = Z, and
fΔ(t) = Dqf(t) when T = {qk : k ∈ N0} with q > 1, where Dq denotes
the Jackson derivative. See [7], which is the initiating paper of the time
scale theory written by Hilger, and the monograph [5] by Bohner and
Peterson containing a lot of information on time scale calculus. Time
scale intervals will be denoted as usual real intervals, and from the
context it will always be clear whether the interval under consideration
is real or of time scale type.

We will proceed with some essentials of oscillation theory of (1).
First note that we are interested only in nontrivial solutions of (1).
We say that a solution y of (1) has a generalized zero at t in case
y(t) = 0. If μ(t) > 0, then we say that y has a generalized zero in
(t, σ(t)) in case y(t)yσ(t) < 0. A solution y of (1) is called oscillatory
if it has infinitely many generalized zeros; note that the uniqueness of
IVP excludes the existence of a cluster point which is less than ∞.
Otherwise a solution is said to be nonoscillatory. In view of the fact
that the Sturm type separation theorem extends to (1) (see e.g., [9]),
we have the following equivalence: One solution of (1) is oscillatory
if and only if every solution of (1) is oscillatory. Hence we may speak
about oscillation or nonoscillation of equation (1). Fundamental results
about qualitative theory of (1) can be found in [1, 9].

One may wonder why we assume 1/r ∈ Crd and not r ∈ Crd as is
usual. There are at least two reasons. First, since we want to assume
conditions in terms of

∫
r1/(1−p)(s)Δs, we need integrability of r1/(1−p)

to be guaranteed. Note that r ∈ Crd does not imply 1/r ∈ Crd in
contrast to the usual continuity. Indeed, for r ∈ Crd, at a left-dense
t0 ∈ T, it may happen that limt→t0− r(t) = 0 and r(t0) > 0 (the author
thanks R. Šimon Hilscher for drawing his attention to such possible
behavior). The second reason is again related to the above described
behavior, but seems to be more serious. It goes back even to the basic
theory of linear formally self-adjoint dynamic equations of the form
(r(t)yΔ)Δ+c(t)yσ = 0, see e.g., [5], which are usually considered under
the assumptions r, c ∈ Crd with r �= 0 or r > 0. To show the solvability
of such an equation, we rewrite it as a first order system, and then we
use the existence theory for systems which utilizes, in particular, an rd-
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continuity of the right hand side. But, in our concrete case, one of the
system coefficients has the form 1/r, which may not be rd-continuous.
Thus, not r ∈ Crd, but 1/r ∈ Crd is needed. A reader may see a parallel
with the usual differential equations case, where the assumptions of the
continuity of r and c is relaxed to the local Lebesgue integrability of
1/r and c. A similar observation holds also for half-linear and some
other similar second order dynamic equations. In fact, this reasoning
shows that the assumption r ∈ Crd should be corrected to 1/r ∈ Crd in
dozens of existing works (including the author’s ones) which deal with
such types of second order dynamic equations. See also [8], where the
condition inft∈[a,b] |r(t)| > 0 for all b ∈ [a,∞) was introduced, when
deriving existence results for the equation (r(t)yΔ)Δ + f(t, xσ) = 0.
This condition, under the assumption r ∈ Crd, is strictly related to
1/r ∈ Crd. Finally, note that by a solution of (1), we mean a function
y such that y and rΦp(y

Δ) are rd-continuously delta differentiable, and
y satisfies (1).

A very important role in the oscillation theory of (1) is played by the
so-called Riccati technique, described in the next lemma. Lemmata 2
and 3 are certain refinements of this method. First we introduce the
function S, which occurs in the Riccati type equation, by

S(x, y, z) = lim
λ→μ

x

λ

(
1− y

Φz(Φ−1
z(y) + λΦ−1

z(x))

)
,

where Φ−1
z stands for the inverse of Φz. The conjugate number to p is

denoted as q, i.e., 1/p+ 1/q = 1. Note that Φ−1
p = Φq. Observe that

S(x, y, z)(t)

=

⎧⎪⎨
⎪⎩

{
z−1

Φ−1
z(y)

|x|z/(z−1)
}
(t) at right dense t,{

x
μ

(
1− y

Φz(Φ−1
z(y)+μΦ−1

z(x))

)}
(t) at right-scattered t.

Lemma 1 [1, 9]. The following statements are equivalent:

(i) Equation (1) is nonoscillatory.

(ii) There is a function w satisfying

(2) wΔ(t) + c(t) + S(w, r, p)(t) = 0
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and

(3) {Φ−1
p(r) + μΦ−1

p(w)}(t) > 0

for large t.

(iii) There is a function w satisfying wΔ(t) + c(t) + S(w, r, p)(t) ≤ 0
and (3) for large t.

Under somewhat stronger assumptions, a solution of (2) satisfies
an integral inequality (equation) and, moreover, can be effectively
estimated.

Lemma 2. Let
∫∞

r1−q(s)Δs = ∞,
∫∞

c(s)Δs converge, and∫∞
t

c(s)Δs ≥ 0 (�≡ 0) for large t. Then (1) is nonoscillatory if and
only if there is a (positive) function w satisfying

(4) w(t) =

∫ ∞

t

c(s)Δs+

∫ ∞

t

S(w, r, p)(s)Δs

for large t. In the if part, the equation can be replaced by the inequality
w(t) ≥

∫∞
t c(s)Δs+

∫∞
t S(w, r, p)(s)Δs. If, in addition, c(t) ≥ 0, then

w(t) ≤ R1−p
D (t, t0) for large t, say t > t0, where

(5) RD(t, t0) =

∫ t

t0

r1−q(s)Δs.

Proof. The proof can be found in [1, 11]. Here we just note that
the ‘only if’ part was proved there only in the case of inequality
in (4). The proof of necessity with the equality required c(t) ≥ 0
there. However, the necessity holds also under the more general sign
condition

∫∞
t

c(s)Δs ≥ 0. Indeed, nonoscillation of (1) implies the

existence of u with u(t) ≥
∫∞
t c(s)Δs +

∫∞
t S(u, r, p)(s)Δs =: u∗(t).

Now we can introduce the set Ω = {v ∈ Crd
B[a,∞) : 0 ≤ v(t) ≤

u∗(t)} and the operator T : Ω → Crd
B[a,∞) defined by T (v)(t) =∫∞

t c(s)Δs +
∫∞
t S(v, r, p)(s)Δs, where Crd

B is the space of all rd-
continuous functions f : [a,∞) → R such that supt∈[a,∞) |f(t)| < ∞.
The norm is defined as ‖f‖ = supt∈[a,∞) |f(t)|. Applying the Schauder
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fixed point theorem, it follows that there is a w ∈ Ω such that T (w) =
w. Note that, in showing the assumptions of the Schauder theorem
are satisfied, we use the monotone nature of S with respect to the first
variable, the Ascoli-Arzela type result (see [10]) and the Lebesgue type
dominated convergence theorem (see [2]). Alternatively, we can apply
the function sequence technique from [11]: Define the sequence {ϕk(t)}
by ϕ0(t) =

∫∞
t c(s)Δs, ϕk(t) = ϕ0(t) +

∫∞
t S(ϕk−1, r, p)(s)Δs, k =

1, 2, . . . . Nonoscillation of (1) implies that limk→∞ ϕk(t) = ϕ(t) < ∞,
t ≥ a. Thanks to the Lebesgue type monotone convergence theorem,
we then get ϕ(t) = ϕ0(t) +

∫∞
t S(ϕ, r, p)(s)Δs.

Remark 1. (i) In the continuous case, i.e., T = R, the proof of the
equivalence between nonoscillation of (1) and a solvability of the Riccati
type integral equation w(t) =

∫∞
t c(s) ds+(p− 1)

∫∞
t r1−q(s)|w(s)|q ds

does not require any sign condition on c, see e.g., [6].

(ii) We present two methods of proof since both of them may play
an important role in proving comparison results, see Remark 4 (iv).

The next lemma gives an effective estimation of a solution of (2) in the
complementary case to the previous one, i.e., when

∫∞
r1−q(s)Δs <

∞. Note that, also in this case, nonoscillation of (1) can be charac-
terized in terms of certain Riccati type integral equations (inequality)
with weights, but here we do not need such a result and we just de-
scribe asymptotic behavior of a solution to the Riccati type dynamic
equation.

Lemma 3. Let
∫∞

r1−q(s)Δs < ∞ and c(t) ≥ 0 for large t.
Assume that (1) is nonoscillatory and y is a nontrivial solution. Set
w = rΦp(y

Δ/y). Then y and Rp−1
C w are bounded, where

(6) RC(t) =

∫ ∞

t

r1−q(s)Δs.

Moreover, w(t) ≥ −R1−p
C (t) for large t and

(7) lim sup
t→∞

Rp−1
C (t)w(t) ≤ 0.
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Proof. Without loss of generality, we can assume y(t) > 0 for
t ∈ [a,∞). From (1), the function rΦp(y

Δ) is nonincreasing. Hence,
yΔ is eventually of constant sign, i.e., either yΔ(t) > 0 for t ≥ a
or there is a t0 ≥ a such that yΔ(t) < 0 for t ≥ t0. Further,
rq−1(s)yΔ(s) ≤ rq−1(t)yΔ(t), s ≥ t. Dividing this inequality by rq−1(s)
and integrating it over [t, τ ], we obtain

(8) y(τ) ≤ y(t) + rq−1(t)yΔ(t)

∫ τ

t

r1−q(s)Δs.

If yΔ(t) > 0 for t ≥ a, then from (8), y(τ) ≤ y(t) + rq−1(t)yΔ(t)RC(t),
and so y is bounded on [a,∞). If yΔ(t) < 0 for t ≥ t0, then y is
clearly bounded, and letting τ → ∞ in (8), we obtain 0 ≤ y(t) +
rq−1(t)yΔ(t)RC(t). In either case, we have RC(t)r

q−1(t)yΔ(t)/y(t) ≥
−1, i.e., Rp−1

C (t)w(t) ≥ −1. Inequality (7) trivially holds if yΔ(t) < 0,
since w(t) < 0. If yΔ(t) > 0, then M > 0 and N > 0 exist such
that y(t) ≥ M and r(t)Φp(y

Δ(t)) ≤ N for t ≥ a. This implies that
w(t) ≤ NM1−p, t ≥ a. Since RC(t) → 0 as t → ∞, we conclude that
limt→∞ Rp−1

C (t)w(t) = 0.

In the following lemma, we describe monotone properties of the
function S, appearing in Riccati type equations, with respect to the
third variable.

Lemma 4. The function F (x) = S(w, r, x), x > 1, is nondecreasing
provided:

(i) w > 0, r > 0 and

fμ(z) := lim
λ→μ

(1 + λz) ln(1 + λz)− λz ln z

λ
≥ 0,

or

(ii) w < 0, r > 0, Φ−1
x(r) + μΦ−1

x(w) > 0 and

f̃μ(z) := lim
λ→μ

(λz − 1) ln(1− λz)− λz ln z

λ
≥ 0,

where z := (|w|/r)1/(x−1).
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Proof. With w ≷ 0, the function S can be written as

S(w, r, x) = lim
λ→μ

w

λ

[
1−

(
1± λ(|w|/r)1/(x−1)

)1−x
]
.

Differentiating with respect to x we obtain, for w ≷ 0,

(9) F ′(x) = lim
λ→μ

|w|
λ

· (λz ± 1) ln(1± λz)− λz ln z

(1± λz)x
,

from which the statement follows.

Remark 2. (i) Note that, if μ = 0, then using L’Hospital’s rule, (9)
yields F ′(x) = |w|(z− ln z), which can also be obtained by differentiat-

ing the expression (x− 1)|w|(|w|/r)1/(x−1). Moreover, f0(z) = f̃0(z) =
z − ln z.

(ii) Recall that we define fμ on R+. A closer examination of the
function fμ with μ ≡ h fixed shows that it is concave, and fh(z) > 0
for all z > 0 provided h ≥ 1. If h ∈ [0, 1), then fh has exactly one
positive zero z0 ∈ [e,∞), f(z) > 0 for z ∈ (0, z0), and its maximum
is at z = 1/(1 − h), e being the basis of natural logarithm. Hence,
z0 > 1/(1 − h). If h = 0, then z0 = e. Moreover, z0 increases as h
increases. Hence, fμ(z) ≥ 0 for z ∈ (0, e], whatever μ is.

(iii) Recall that we define f̃μ on R+. A closer examination of the

function f̃μ with μ ≡ h fixed shows that it is concave, and f̃h(z) > 0
for all (admissible) z > 0 provided h ≥ 1. If h ∈ [0, 1), then fh has the
only positive zero z̃0 ∈ (1, e], f(z) > 0 for z ∈ (0, z̃0). If h = 0, then
z̃0 = e. Moreover, z̃0 increases as h decreases. Hence, z̃μ(z) ≥ 0 for
(admissible) z ∈ (0, 1], whatever (admissible) μ is.

We conclude this section with a description of the so-called reciprocity
principle.

Lemma 5. Assume that μ(t) ≡ h ≥ 0 and c(t) > 0 for large t. Then
(1) is oscillatory if and only if its reciprocal equation

(10)
(
c1−q(t)Φq(u

Δ)
)
Δ + (rσ(t))1−qΦq(u

σ) = 0

is oscillatory.
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Proof. The statement follows from the fact that (1) and (10) are
related by the substitution u = rΦp(y

Δ); if y solves (1), then u solves
(10). Note that here we need the commutativity of the delta derivative
and the forward jump operator, which is guaranteed by μ(t) ≡ h.

Remark 3. Note that, with μ(t) ≡ h ≥ 0, clearly we have r ∈ Crd if
and only if 1/r ∈ Crd and c ∈ Crd if and only if 1/c ∈ Crd.

3. The case
∫∞

r1−q(s)Δs = ∞. Along with (1), consider the
equation

(11)
(
r(t)Φα(x

Δ)
)
Δ + c(t)Φα(x

σ) = 0,

where α > 1. The conjugate number to α will be denoted as β. In
the main theorems, equations (1) and (11) are compared, and con-
ditions are established guaranteeing preservation of nonoscillation. A
result of this kind has already been established in [10, 11] for the case∫∞

r1−q(s)Δs = ∞ under the additional condition (12). We recall
it here, including a (new) simplified proof, see also Remark 4 (iv) for
a comment on the original proofs. The second part of the following
theorem with additional condition (13) is new. That additional con-
dition, which may depend upon μ, is the result of different behavior
of the function S on various time scales, and will play an important
role in showing discrepancies between the statements on different time
scales. The results in the complementary case

∫∞
r1−q(s)Δs < ∞ are

completely new, and are presented in the next section.

Theorem 1. Let
∫∞

r1−q(s)Δs = ∞ and
∫∞

c(s)Δs converge with∫∞
t

c(s)Δs ≥ 0 (�≡ 0) for large t. Assume that

(12) lim inf
t→∞ r(t) > 0.

Condition (12) may be dropped provided μ(t) ≥ 1 eventually. If α ≤ p
and (1) is nonoscillatory, then (11) is nonoscillatory.

If c(t) ≥ 0, then (12) may be replaced by the weaker condition

(13) lim sup
t→∞

r1−q(t)

RD(t, a)
< z

(α−1)(q−1)
0 ,
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where RD is defined by (5) and z0 is the positive root of fh(z) = 0, fh
being defined in Lemma 4; here we assume that the condition μ(t) ≥ 1
is not satisfied and h ∈ [0, 1) is such that h ≤ μ(t) for large t. See also
subsequent Remark 4 (i) (iii) for important comments on additional
conditions (12) and (13).

Proof. First assume that
∫∞
t c(s)Δs ≥ 0 and (12). If (1) is

nonoscillatory, then there is a w satisfying (2) with (3) for large t,
by Lemma 1. Moreover, by Lemma 2, this w satisfies (4), it is positive,
and w(t) → 0 as t → ∞. Now taking into account that (12) holds,
we have w(t)/r(t) ≤ 1 for large t. From Lemma 4 (i) we now have
that S(w, r, α)(t) ≤ S(w, r, p)(t) for large t, since fμ(z) ≥ 0. The
conclusion of the theorem now follows from Lemma 1 since w satisfies
w(t)+c(t)+S(w, r, α)(t) ≤ 0 and is positive for large t. The note about
the omission of (12) when μ(t) ≥ 1 follows from Remark 2 (ii).

Now assume c(t) ≥ 0 and (13). In addition to the properties of w
described in the previous part, this w also satisfies w(t) ≤ R1−p

D (t, t0)
for t > t0, where t0 is sufficiently large, see Lemma 2. We have

r1−q(t)

RD(t, t0)
=

r1−q(t)

RD(t, a)−RD(t0, a)
=

r1−q(t)/RD(t, a)

1−RD(t0, a)/RD(t, a)
.

Hence, r1−q(t)/RD(t, t0) ≤ z
(α−1)(q−1)
0 for large t, in view of

∫∞
r1−q(s)

Δs = ∞ and (13). Thus, we get w(t)/r(t) ≤ (r1−q(t)/RD(t, t0))
p−1 ≤

z
(α−1)(q−1)(p−1)
0 = zα−1

0 ≤ zx−1
0 for large t and x ≥ α; see also Re-

mark 2 (ii). Consequently, fμ(z) ≥ 0, and S(w, r, p)(t) ≥ S(w, r, α)(t)
by Lemma 4. The (positive) function w now satisfies wΔ(t) + c(t) +
S(w, r, α)(t) ≤ 0, and so (11) is nonoscillatory by Lemma 1.

Remark 4. (i) Observe that, for T = Z (and also when μ(t) ≥ 1
eventually), the function F from Lemma 4 always has the desired
monotone properties, and hence (12) and (13) can be omitted.

(ii) If T = R, then condition (13) reads as lim supt→∞ r1−q(t)/∫ t

a r
1−q(s) ds < e(α−1)(q−1).

(iii) In Section 5 we give an example showing that the constant z0 in
(13) is somehow optimal.

(iv) In [10, 11] we gave two different proofs of the first part of The-
orem 1 (where condition (12) is assumed), based upon the monotone
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properties of S and the ideas which were also used in the proof of
Lemma 2, namely, the Riccati technique combined with the Schauder
fixed point theorem and the function sequence technique, respectively.

4. The case
∫∞

r1−q(s)Δs < ∞. Next we deal with the
complementary case to the previous one: We assume the condition∫∞

r1−q(s) ds < ∞.

Note that, due to the lack of a transformation similar to that in the
linear case, we have to distinguish the cases

∫∞
r1−q(s)Δs = ∞ and∫∞

r1−q(s)Δs < ∞, and each of them have to be handled separately,
using different approaches.

Theorem 2. Let
∫∞

r1−q(s)Δs < ∞ and c(t) ≥ 0 for large t.
Assume that

(14)
r1−q(t)

RC(t)
≤ 1 for large t,

where RC is defined by (6). Condition (14) may be dropped, provided
μ(t) ≥ 1 eventually. If α ≤ p and (1) is nonoscillatory, then (11) is
nonoscillatory.

Assume that μ(t) ≤ h < 1. Then (14) may be replaced by the weaker
condition

(15)
r1−q(t)

RC(t)
≤ z̃

(α−1)(q−1)
0 for large t,

where z̃0 is the positive root of f̃h(z) = 0, f̃h being defined in Lemma 4.
In addition, we have to assume that hz̃0 < 1. See also subsequent
Remark 5 for important comments on additional conditions (14) and
(15).

Proof. Let y be a positive solution of (1). As in the proof of Lemma 3,
we get that y is eventually monotone.

First assume that yΔ(t) < 0 for t ≥ t0. Then w = rΦp(y
Δ/y)

is negative and satisfies the Riccati type equation (2) with (3) for
t ≥ t0, by Lemma 1. From Lemma 3, |w(t)| ≤ R1−p

C (t), and so
|w(t)|/r(t) ≤ (r1−q(t)/RC(t))

p−1 ≤ 1 for large t assuming (14). Hence,
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f̃μ(z) ≥ 0, and S(w, r, α)(t) ≤ S(w, r, p)(t) for large t by Lemma 4.
Consequently, w satisfies the inequality wΔ(t)+c(t)+S(w, r, α)(t) ≤ 0.
Moreover, 1 − μ(t)(|w(t)|/r(t))1/(α−1) ≥ 1 − μ(t)(|w(t)|/r(t))1/(p−1) ;
thus, Φ−1

α(r(t))+μ(t)Φ−1
α(w(t)) > 0. Equation (11) is nonoscillatory

by Lemma 1. If (14) is relaxed to (15), then the statement follows from
the previous arguments, taking into account Remark 2, the estimates
|w(t)|/r(t) ≤ R1−p

C (t)/r(t) ≤ z̃α−1
0 ≤ z̃x−1

0 , x ≥ α, and the fact
that the inequality Φ−1

α(r(t)) + μ(t)Φ−1
α(w(t)) > 0 is implied by

μ(t)(|w(t)|/r(t))1/(α−1) ≤ μ(t)z̃0 ≤ hz̃0 < 1.

Now we assume that yΔ(t) > 0 for t ≥ a. Then w = rΦp(y
Δ/y)

is positive, and hence limt→∞ Rp−1
C (t)w(t) = 0 by (7). Consequently,

in view of (14), w(r)/r(t) = w(t)Rp−1
C (t)(r1−q(t)/RC(t))

p−1 → 0 as
t → ∞. Hence, S(w, r, α)(t) ≤ S(w, r, p)(t) for large t, and the rest of
the proof is the similar to that in the previous part.

Remark 5. (i) Observe that, for T = Z (and also when μ(t) ≥ 1
eventually), function F from Lemma 4 always has the desired monotone
properties, and hence (14) can be omitted.

(ii) IfT = R, then (15) reads as r1−q(t)/
∫∞
t r1−q(s) ds ≤ e(α−1)(q−1)

for large t.

(iii) In Section 5 we give an example showing that the constant z0 in
(13) is somehow optimal.

(iv) A closer examination of the second part of the proof shows that
if (1) has an eventually positive increasing solution, then (14) can be
relaxed to the condition r1−q(t)/RC(t) is bounded.

Next we present a different approach to the case
∫∞

r1−q(s)Δs < ∞,
based on the reciprocity principle. The Riccati type transformation is
used as well. Notice that the “key” condition α ≥ p is the opposite in
comparison with that in Theorem 2. However, the resulting equation
is different from (11).

Theorem 3. Let μ(t) ≡ h ≥ 0 and c(t) > 0 for large t. Assume
that

∫∞
r1−q(s)Δs < ∞ and

∫∞
c(s)Δs = ∞. If α ≥ p and (1) is

nonoscillatory, then the equation

(16)
(
(rσ(t))(1−q)(1−α)Φα(x

Δ)
)

Δ + cσ(t)Φα(x
σ) = 0

is nonoscillatory.
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Proof. If (1) is nonoscillatory, then (10) is nonoscillatory as well
by Lemma 5 since μ(t) ≡ h. Moreover,

∫∞
(c1−q(s))1−pΔs =∫∞

c(s)Δs = ∞, and
∫∞

r1−q(s)Δs < ∞ implies
∫∞

(rσ(s))1−qΔs <
∞ thanks to μ(t) ≡ h. Hence, by Lemma 2, there is a positive function
v, which satisfies the generalized Riccati type equation

(17) v(t) =

∫ ∞

t

(rσ(s))1−qΔs+

∫ ∞

t

S(v, c1−q, q)(s)Δs

for large t. In fact, v is given by v = c1−qΦq(u
Δ/u), where u is a

positive increasing solution of (10), which indeed exists. It is easy to
see that S(v, c1−q , q) = limλ→μ v[1− (1+λcv1/(q−1))1−q]/λ. Note that,
if μ = 0, then L’Hospital’s rule yields S(v, c1−q, q) = (q − 1)cvp. Since
limt→∞ v(t) = 0 and α ≥ p (i.e., β ≤ q), we get

(18) S(v, c1−q , q)(t) ≥ S(v, c1−β , β)(t).

Hence, v satisfies v(t) ≥
∫∞
t

(rσ(s))1−qΔs +
∫∞
t

S(w, c1−β , β)(s)Δs

for large t. Moreover,
∫∞

(c1−β(s))1−αΔs =
∫∞

c(s)Δs = ∞ and∫∞
(rσ(s))1−qΔs < ∞. Consequently, (c1−β(t)Φβ(z

Δ))Δ + (rσ(t))1−q

Φβ(z
σ) = 0 is nonoscillatory by Lemma 2. The statement now follows

by using the reciprocity principle, Lemma 5.

Remark 6. (i) Observe that, in contrast to Theorem 2, in order to
show monotonicity in the sense of (18), we do not need any condition of
type (14) or (15), no matter how small the graininess, since c becomes
“independent” of the power of nonlinearity.

(ii) Similarly, as in the standard cases T = R and T = Z, where
using, e.g., the Schauder fixed point theorem, it can be shown that
conditions

∫∞
r1−q(s)Δs < ∞, c(t) > 0 and

∫∞
c(s)Δs < ∞ imply

the existence of a nonoscillatory solution of (1). Observe that, for
equation (16),

∫∞
((rσ(s))(1−q)(1−α))1−βΔs =

∫∞
(rσ(s))1−qΔs. If,

as in Theorem 3,
∫∞

r1−q(s)Δs < ∞, then
∫∞

(rσ(s))1−qΔs < ∞
(assuming μ(t) ≡ h). Moreover, if the condition

∫∞
c(s)Δs = ∞ fails

to hold, then, necessarily,
∫∞

c(s)Δs < ∞. Hence,
∫∞

cσ(s)Δs < ∞.
These observations show that the assumption

∫∞
c(s)Δs = ∞ in

Theorem 3 is quite natural and means no restriction.

5. Special cases: Improvements, comparisons, peculiarities.
In this section we discuss, in particular, how, in some special cases, the
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above results can be refined and also how the character of the parallel
results can be changed when considering them on different time scales.
We stress that the observations are new even in the well studied T = R
and T = Z cases.

We start by showing that, in the continuous case, a sign condition on
coefficient c in Theorem 1 can be dropped.

Theorem 4. Let T = R. Assume that
∫∞

r1−q(s) ds = ∞,
lim inft→∞ r(t) > 0, and

∫∞
c(s) ds converges. If α ≤ p and (1) is

nonoscillatory, then (11) is nonoscillatory.

Proof. The proof is similar to that of Theorem 1, now using Remarks
1 (i) and 2 (i).

We have already seen that, e.g., for the case T = R, in contrast, e.g.,
to the case T = Z, an additional condition is needed (see (12), (13),
(14) or (15)). One can easily observe that, roughly speaking, a “bigger”
graininess is “more favorable” for our needs. A natural question arises,
whether such a condition (in particular, (13) and (15)) can be omitted
or somehow relaxed. As the following theorem for case T = R shows,
this condition not only cannot be omitted, but even the constants z0
and z̃0 in (13) and (15), respectively, are optimal (cannot be increased).

Theorem 5. Let T = R. Suppose either:

(i)
∫∞

r1−q(s) ds = ∞, c(t) ≥ 0,
∫∞

c(s) ds < ∞, and

(19) lim sup
t→∞

r1−q(t)

RD(t, a)
< e(α−1)(q−1),

or

(ii)
∫∞

r1−q(s) ds < ∞, c(t) ≥ 0, and

(20)
r1−q(t)

RC(t)
≤ e(α−1)(q−1) for large t.

If α ≤ p and (1) is nonoscillatory, then (11) is nonoscillatory.
Moreover, the Euler number e in (19) and (20) is the best possible.
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Proof. We just prove the part concerning the best possible constant.
Other parts are special cases of Theorems 1 and 2. Consider the
equation

(21)
(
ebtΦp(y

′)
)′
+

(
−b

p

)p

ebtΦp(y) = 0,

where b < 0 and p > 1. Clearly, c(t) > 0,
∫∞

c(s) ds < ∞ and∫∞
r1−q(s) ds = ∞ We claim that (21) is nonoscillatory. Indeed, we

have

(∫ t

a

r1−q(s) ds

)p−1 ∫ ∞

t

c(s) ds ≤ (−b)petb(1−q)(p−1)

pp(−b)p−1
· e

bt

−b

=
1

p

(
p− 1

p

)p−1

.

Hence, (21) is nonoscillatory by the Hille-Nehari type criterion, [6,
Theorem 5.5.8]. Further, we have

lim
t→∞

r1−q(t)∫ t

a
r1−q(s) ds

= b(1− q) =: M.

Assume that M = (e + ε)(α−1)(q−1), where ε > 0. Now consider the
equation

(22)
(
ebtΦα(y

′)
)′
+

(
−b

p

)p

ebtΦα(y) = 0,

where α > 1; the values of α and p will be specified later. Since
b = M(1− p) = (e+ ε)(α−1)(q−1)(1− p), for equation (22) we have

lim
t→∞

(∫ t

a

r1−β(s) ds

)α−1 ∫ ∞

t

c(s) ds

=
(−b)p−α

pp(β − 1)α−1

=
(e+ ε)(α−1)(q−1)(p−α)(p− 1)p−α(α− 1)α−1

pp
.
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Denote the expression on the right-hand side by ω. We want to show
that p, α exist with p > α such that ω > (α − 1)α−1/αα, which then
guarantees oscillation of (22) by [6, Theorem 3.1.1]. Set p = γ + α,
where γ > 0. Then α < p and

ωαα

(α− 1)α−1
= (e+ ε)(α−1)(q−1)(p−α)

(
p− 1

p

)p(
α

p− 1

)α

= (e+ ε)(α−1)γ/(α+γ−1)

(
α+ γ − 1

α+ γ

)α+γ

−→ (e + ε)γe−1e1−γ (as α → ∞)

=

(
e+ ε

e

)γ

> 1.

Hence, for any ε > 0, we can find α and p with α < p and such that
ωαα/(α− 1)α−1 > 1. This implies oscillation of (22) in spite of (21) is
nonoscillatory. Note that condition (19) fails to hold.

To show that the constant e is the best possible also in (20), we use
arguments similar to those of the previous part. We again consider
equation (21) where we take b > 0. To detect (non)oscillation of such
an equation, we can use the criteria from [6, Theorem 3.1.6].

Remark 7. (i) We conjecture that a similar optimality result can be
shown, e.g., also on T = hZ with h ∈ (0, 1) where recently derived
Hille-Nehari type criteria (see [13]) could find an application.

(ii) This remark concerns the case T = R. If
∫∞

r1−q(s) ds = ∞,
then differential equation (1) can be transformed by means of the
transformation of the independent variable into the equation of the
same form, but with the coefficient in the differential term being
identically equal to 1. Hence, additional conditions, like (12) or (13)
(i.e., (19)) are trivially fulfilled. But then we have to get over the
following undesired property: the coefficient in the second term of the
resulting equation becomes dependent on p. Nevertheless, also in such
a case, we cannot exclude the possibility that a statement equivalent
to our one might be obtained, by using a different method.

In the above results we can see that if the graininess is sufficiently
large, then additional conditions on r can be omitted. In the next
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statement we show that, in such a case, all other conditions on the
coefficients do not need to be assumed. In particular, there is no sign
or integral condition on c(t).

Theorem 6. Let μ(t) ≥ 1 for large t. If α ≤ p and (1) is
nonoscillatory, then (11) is nonoscillatory.

Proof. If (1) is nonoscillatory, then there is a w satisfying the
Riccati type equation (2) with (3) for large t. We have no information
on whether w is small or positive or negative, but in fact it is not
necessary. In accordance with the notation of Lemma 4, we have
z = (|w|/r)1/(x−1), where x ≥ 1. If w > 0, then the numerator of
fμ(z) takes the form

(μz + 1) ln(1 + μz)− μz ln z = ln(1 + μz) + μz ln
1 + μz

z
.

Since μ ≥ 1, we have 1 + μz ≥ z, and hence this numerator is
nonnegative for all z > 0. Consequently, x �→ S(w, r, x) is increasing
for x > 1. For the case w < 0, first note that the condition
Φ−1

p(r) + μΦ−1
p(w) > 0 is equivalent to 1 − μ(|w|/r)1/(p−1) > 0.

Hence, (|w|/r)1/(p−1) < 1/μ ≤ 1, or |w|/r < 1. This implies

(23) z =

(
|w|
r

)1/(x−1)

≤
(
|w|
r

)1/(p−1)

<
1

μ
≤ 1

for 1 < x ≤ p. Now it is easy to see that, with such z’s for the numerator
of f̃μ, we have (μz − 1) ln(1 − μz) − μz ln z ≥ 0. Hence, S(w, r, p) ≥
S(w, r, α) also when w < 0. Moreover, in this case, (|w|/r)1/(α−1) <
1/μ, or Φ−1

α(r) + μ(t)Φ−1
α(w) > 0. Altogether, no matter if w is

positive or negative, we obtain wΔ(t) + c(t) + S(w, r, α)(t) ≤ wΔ(t) +
c(t) + S(w, r, p)(t) = 0 and Φ−1

α(r(t)) + μ(t)Φ−1
α(w(t)) > 0 for large

t, which implies nonoscillation of (11) by Lemma 1.

Remark 8. In particular, the above theorem says that any nonoscilla-
tory half-linear difference equation Δ(r(t)Φp(Δy(t))) + c(t)Φp(y(t +
1)) = 0 with r(t) > 0 or any nonoscillatory q-difference equation
Dq(r(t)Φp(Dqy(t)))+c(t)Φp(y(qt)) = 0 with r(t) > 0 and q > 1 remains
nonoscillatory provided p is decreased, no matter what the behavior of
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the coefficients is. Note that the number q in Dq has nothing to do
with the conjugate number to p, which was also denoted by q in the
above text. We just want to keep the usual notation of q-calculus.

6. One extension of the Sturm-Picone comparison theorem.
Using an idea similar to that from the proof of Theorem 3, we may
derive the following integral comparison theorem, which generalizes
the Sturm-Picone type comparison theorem (see, e.g., [9]), in a certain
sense. This time we do not compare nonlinearities, but the coefficients
in the differential term. Along with (1), we consider the equation

(24)
(
r̃σ(t)Φp(x

Δ)
)
Δ + cσ(t)Φp(x

σ) = 0,

where 1/r̃(t) > 0 is an rd-continuous function on [a,∞). A similar
observation as the one from Remark 6 (ii), concerning the condition∫∞

c(s)Δs = ∞, applies as well for the next statement.

Theorem 7. Let μ(t) ≡ h ≥ 0 and c(t) > 0 for large t. Assume that∫∞
c(s)Δs = ∞ and

(25)

∫ ∞

t

r̃1−q(s)Δs ≤
∫ ∞

t

r1−q(s)Δs < ∞.

If (1) is nonoscillatory, then (24) is nonoscillatory.

Proof. As in the previous proof, there is a v > 0 satisfying (17)
for large t. Since μ(t) ≡ h, condition (25) implies

∫∞
t (r̃σ(s))1−qΔs ≤∫∞

t
(rσ(s))1−qΔs < ∞. Hence, v satisfies v(t) ≥

∫∞
t

(r̃σ(s))1−qΔs +∫∞
t

S(v, c1−q, q)(s)Δs for large t. Consequently, (c1−q(t)Φq(z
Δ))Δ +

(r̃σ(t))1−qΦq(z
σ) = 0 is nonoscillatory by Lemma 2. Thus, by the

reciprocity principle, (24) is nonoscillatory.
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