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GAUSSIAN MAPS FOR
DOUBLE COVERS OF TORIC SURFACES

JEANNE DUFLOT AND PAMELA L. PETERS

1. Introduction. In this paper, we apply the work of Duflot [3]
on the Gaussian map for double covers of smooth projective varieties
to make a cohomological study of Gaussian maps for certain divisors
on double covers of smooth toric surfaces, and devote more particular
attention to the special case of double covers of Hirzebruch surfaces.
These analyses require earlier work on Gaussian maps on smooth
toric surfaces and Hirzebruch surfaces done in [4, 14]. We focus on
cohomological analyses for divisors on such double covers and do not
address geometric consequences of the analyses. Such geometric aspects
of the Gaussian map are discussed, for example, in [2, 18 20]. We plan
to return to more geometric considerations in later work.

An outline of the paper is as follows. We give a brief exposition of
the subject of smooth toric surfaces, in order to set the notation we
use, and also discuss the special case of Hirzebruch surfaces.

We’ll next do the following, in successive sections of the paper:

• review the cohomology computations of [4, 14] for Hirzebruch
surfaces in particular and smooth toric surfaces more generally;

• move on to study multiplication maps for the cohomology of line
bundles and 1-forms on toric surfaces;

• recall basic definitions concerning Gaussian maps from Wahl [18,
19] and establish surjectivity results for Gaussian maps on Hirzebruch
surfaces, and more generally, smooth toric surfaces;

• review the theory of double covers and Gaussian maps for double
covers;

• pause to show how to use these computations to study the Gaussian
map for the canonical divisor for a double cover of a smooth toric
surface; and finally,
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• discuss various Gaussian maps on double covers of smooth toric
surfaces, focusing on double covers of Hirzebruch surfaces in particular.

2. Toric surfaces. Here, we set the notation we use for smooth
toric surfaces. General references include Fulton [6] and Oda [15].

We consider a fan Δ in Z2 formed from n + 2 vectors with initial
side the vector (a0, b0) = (0, 1), terminal side (an+1, bn+1) = (1, 0), and
intermediate vectors arrayed counterclockwise between these two, la-
beling the vectors consecutively {(ai, bi)}n+1

i=0 . For any two consecutive
vectors, we require that the determinant of their 2×2 matrix be 1. We
will call such a fan a nonsingular fan.

From a nonsingular fan, Δ, we can construct a complex manifold
S = S(Δ) as a quotient space of n + 2 disjoint copies of C2, S =
C2

∐
C2

∐
· · ·

∐
C2/ ∼. The equivalence relation, ∼, is defined as the

equivalence relation generated by:

(x0, y0) ∼ (xi, yi) ←→ (xi, yi) = (xp
0 yq0 , x

r
0 ys0)

and x0, y0 are such that xp
0 yq0 and xr

0 y
s
0 make sense; p, q, r, s are defined

by [
p q
r s

]
=

[
ai−1 ai
bi−1 bi

]−1
.
= A−1

i , 0 ≤ i ≤ n+ 1.

In the above equations,(xi, yi) is a point in the ith C2 of the disjoint
union, called C2

i , for 0 ≤ i ≤ n + 1. Additionally, the equivalence
relation for comparing elements of C2

i to C2
j is

(xi, yi) ∼ (xj , yj) ←→ (xj , yj) = (xα
i yβi , x

γ
i yδi )

where 0 ≤ i, j ≤ n+ 1 and[
α β
γ δ

]
= A−1

j Ai.

Let q : C2
0

∐
C2

1

∐
· · ·

∐
C2

n+1 → S be the quotient map and U ⊂ S
with U = {a ∈ S | q−1({a}) has exactly n+ 2 elements}. Also, let

Ci
.
= {q(xi, 0) | (xi, 0) ∈ C2

i } ∪ {q(0, yi+1) | (0, yi+1) ∈ C2
i+1}.
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Note that S − U = C0 ∪C1 ∪ · · · ∪ Cn where:

a. Ci ∩ Cj

=

⎧⎪⎪⎨
⎪⎪⎩

q((0, 0)i+1) if the vectors (ai, bi) and (aj , bj) are adjacent,

j = i+ 1;

∅ if the vectors (ai, bi) and (aj , bj) are not adjacent

and

b. each Ci is isomorphic to P1.

In the above, (0, 0)i+1 is the origin in Ci+1.

Thus, S − U is equal to the union of n + 2 P1s arranged in a cycle
where C1

i ∩ C1
j is a single point if and only if i and j are consecutive.

If Ui
.
= q(C2

i ), we may define charts on S by noting that

a) Ui is open in S; and

b) if ϕi : C
2 → Ui is the map defined by ϕi(a, b) = q(a, b) ∈ Ui, then

the map ϕ−1
j ϕi,

ϕ−1
i (Ui ∩ Uj)

ϕ−1
j ϕi

−→ ϕ−1
j (Ui ∩ Uj),

where ϕ−1
i (Ui ∩ Uj) ⊆ C2 and ϕ−1

j (Ui ∩ Uj) ⊆ C2, is bi-holomorphic.

In the chart (C2, ϕi), Ci is defined by yi = 0. In the chart (C2, ϕi+1),
Ci is defined by xi+1 = 0. Also, we have:

Ci ∩ Uj =

⎧⎨
⎩

{q(xi, 0) | xi ∈ C} j = i

{q(0, yi+1) | yi+1 ∈ C} j = i+ 1

∅ j �= i, i+ 1.

We’ll later use the coordinates established above on S to present
cohomology computations.

Definition 2.1. The Hirzebruch surface, Fk, is the smooth toric sur-
face defined by the four vector nonsingular fans, (0, 1), (−1, 0), (k,−1)
and (1, 0) where k > 0.

2.1. Divisors on smooth toric surfaces. We summarize divisor
computations and facts about divisors on smooth toric surfaces that
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we will need here. References include Fulton [6], Oda [15] and Murray
[14]. However, we use the notation conventions of the previous section.

Lemma 2.2. Let S = S(Δ) be a smooth toric surface defined by the
nonsingular fan

Δ = {(ai, bi) | 0 ≤ i ≤ n+ 1}.

• Any divisor on S is linearly equivalent to a unique integer linear
combination of curves C1, . . . , Cn (i.e., Pic (S) is the free abelian group
on the set {C1, . . . , Cn}).
• Cn+1 is linearly equivalent to −

∑n
i=1 aiCi, and C0 is linearly

equivalent to −
∑n

i=1 biCi.

For Fk, this yields C0 ∼ C2 and C3 ∼ C1 − kC2.

Through an abuse of notation, we often write the relation of linear
equivalence between divisors on toric surfaces as an equality, rather
than using the symbol “∼.”

In addition, in the rest of this paper, given a smooth toric surface
S defined by the nonsingular fan Δ = {(ai, bi) | 0 ≤ i ≤ n + 1}, the
curves Ci are exactly those defined in this section, using the coordinates
established here.

The canonical divisor of a smooth toric surface S defined by the
nonsingular fan, Δ, may be computed as (see, e.g., [14])

KS = −C0 − C1 − · · · − Cn+1 =

n∑
i=1

(ai + bi − 1)Ci;

this specializes to the surface Fk as

KFk
= −C0 − C1 − C2 − C3 = −2C1 + (k − 2)C2.

The intersection numbers for the cycle of curves Ci on the smooth toric
surface defined by the nonsingular fan, Δ, are:

(2.3) Ci · Cj =

⎧⎨
⎩

Ci · Ci = −(ai−1bi+1 − ai+1bi−1) if j = i

1 if j = i± 1

0 otherwise,
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for Fk, C1 ·C1 = k, C1 ·C2 = 1, C0 ·C0 = 0, C3 ·C3 = −k and C2 ·C2 = 0.
If we regard Fk as the rational normal scroll Sk (using the notation of
[7]), rather than a toric surface, we know that it possesses a defining
bundle map Sk → P1. From this point of view, C1 corresponds to a zero
section of this bundle map, C2 corresponds to a fiber of the bundle map
and C3 corresponds to the unique irreducible curve on Sk of negative
self-intersection. From this picture (see, e.g., [7, page 518 ff.]) one may
deduce that, if C is an irreducible curve on Fk = Sk, C �= C3, then,
when we write C ∼ m1C1 +m2C2, we must have m1 ≥ 0, m2 ≥ 0.

2.2. Polygons and divisors: Results from Oda. In this section,
we summarize the results of Demazure and Oda, as presented in Oda
[15], for the case of the nonsingular fan

Δ = {(ai, bi) | 0 ≤ i ≤ n+ 1}.

Let S be the smooth toric surface defined by Δ. We define

ui = (ai, bi), 0 ≤ i ≤ n+ 1,

for convenience. We use orthogonality properties in R2 to simplify
notation, and the inner product 〈∗, ∗〉 is the usual inner product on
R2.

Definition 2.4. The polygon associated to a divisor. Suppose that
S is a smooth toric surface, defined by a nonsingular fan

Δ = {(ai, bi) | 0 ≤ i ≤ n+ 1}.

Given a divisorE =
∑n+1

i=0 eiCi on S (here, “=” means “equals” and not
“linearly equivalent to”), define a closed, convex subset PE (possibly
an empty set) of R2 as follows:

PE
.
= {(x, y) ∈ R2 | 〈(x, y), ui〉 ≥ −ei for all i}.

Now, we have been careful, in the above definition, to distinguish
between equality and linear equivalence of divisors. However, we shall
often, but not always, blur this distinction as follows. Suppose that
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E =
∑n+1

i=0 eiCi is a divisor on S, as in the above definition. We know
that C0 ∼ −

∑n
i=1 biCi and Cn+1 ∼ −

∑n
i=1 aiCi. Thus, E is linearly

equivalent to the divisor

Ẽ =

n∑
i=1

(ei − e0bi − en+1ai)Ci;

noting that the coefficients of C0 and Cn+1 in the divisor Ẽ are zero,
we see that the polygons PE and PẼ are translates of each other (since
the fan is nonsingular):

PẼ = PE − (en+1, e0).

When we make an assumption that a divisor “equals” a linear combi-
nation of the Cis, where the coefficients of C0 and Cn+1 are zero, we
are replacing the divisor with a linearly equivalent divisor, tacitly, in
the above way, and we are leaving to the reader the verification that
this does not affect the proofs where this is done.

If E is a divisor, E =
∑n+1

i=0 eiCi, the nonsingularity of the fan Δ
means that unique li(E) ∈ Z2 exist for 0 ≤ i ≤ n+ 1 such that

〈li(E), ui〉 = −ei,

〈li(E), ui−1〉 = −ei−1

for each i. In fact, we see that

li(E) =

[
bi −bi−1

−ai ai−1

] [
−ei−1

−ei

]
∈ Z2,

for each i.

Note that, if we apply the conditions e0 = en+1 = 0, since u0 = (0, 1),
un+1 = (1, 0), then l0(E) = (0, 0), l1(E) = (e1, 0), ln+1(E) = (0, en)
and PE is contained in the first quadrant.

Definition 2.5. Edges, bounding lines, vertices and geometric
vertices. For each i, 0 ≤ i ≤ n+ 1, if E =

∑n+1
i=0 eiCi,

• σi(E)
.
= {tli+1(E) + (1− t)li(E)) | t ∈ [0, 1]} is the ith edge of PE .
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• li(E) is henceforth called the ith vertex of PE .

• Li(E)
.
= {(x, y) ∈ R2 | 〈(x, y), ui〉 = −ei} is the ith bounding line

of PE .

• A geometric vertex of PE is a point v on the topological boundary
of PE such that no line segment in R2 containing v in its interior
(computed with respect to the subspace topology on the line segment)
is entirely contained in PE . (Note that a line segment is not a point.)

The terminology above does not necessarily mean that σi(E) is really
one-dimensional, or that it is a subset of PE , for example; or that li(E)
is an element of PE .

Definition 2.6. Interior edge points and interior points. If
E =

∑n+1
i=0 eiCi is a divisor on the smooth toric surface S defined

by the nonsingular fan Δ = {ui = (ai, bi) | 0 ≤ i ≤ n + 1}, then for a
point (x, y) ∈ PE :

• if a unique i exists such that ei + 〈(x, y), ui〉 = 0 and ej +
〈(x, y), uj〉 > 0, for every j �= i, then we say that (x, y) is an interior
edge point of σi(E).

• if, for every j, ej + 〈(x, y), uj〉 > 0, we say that (x, y) is an interior
point of the polygon PE .

We see immediately that, for each i,

• li(E) is the unique intersection point of Li(E) and Li−1(E),

• ±(bi,−ai) are vectors parallel to Li(E), and

• σi(E) ⊆ Li(E).

By direct calculation, using the explicit formula for li(E) above, non-
singularity of the fan and the formulas for Ci ·Cj given in the previous
section, we see that, if

(2.7) αi(E)
.
= ei+1 + ei−1 + ei(Ci · Ci) = E · Ci,

then, for every i such that 0 ≤ i ≤ n+ 1,

(2.8) li+1(E)− li(E) = αi(E)(bi,−ai).
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Note also that, if D =
∑n+1

i=0 diCi and E =
∑n+1

i=0 eiCi are two divisors
on S, then

li(D + E) = li(D) + li(E),

αi(D + E) = αi(D) + αi(E),

for 0 ≤ i ≤ n+1. In addition, if the two divisors are linearly equivalent,
say E1 ∼ E2, then E1 · Ci = E2 · Ci for every i; in other words,
αi(E1) = αi(E2), for every i.

Theorem 2.11 (Demazure’s theorem [15, Corollary 2.15, subsection
2.3, page 83]). Let S be a smooth toric surface defined by the nonsin-

gular fan Δ = {ui = (ai, bi) | 0 ≤ i ≤ n + 1}. Let E =
∑n+1

i=0 eiCi

be a divisor on S. Let hE : R2 → R be the unique function such that
hE(ui) = −ei and hE(t1ui+ t2ui+1) = −(t1ei+ t2ei+1), for every i and
every t1, t2 ≥ 0 in R. The following are equivalent:

a. E is ample.

b. E is very ample.

c. For every (x, y) ∈ R2, 〈li(E), (x, y)〉 ≥ hE(x, y), for every i;
furthermore, 〈li(E), (x, y)〉 = hE(x, y) if and only if (x, y) is in the
positive cone spanned by ui and ui+1.

d. PE is a two-dimensional compact convex set, {li(E) | 0 ≤ i ≤
n+1} is the complete set of geometric vertices of PE , and li(E) �= lj(E)
if i �= j. Furthermore, PE is the convex hull of the set of n+2 vertices
l0(E), l1(E), . . . , ln+1(E).

Oda has shown that the Nakai criterion for ample divisors gives rise to
the “toric Nakai criterion”; in the notation of this paper this becomes:

Theorem 2.12 (the toric Nakai criterion [15]). Let S be a smooth
toric surface defined by the nonsingular fan Δ = {ui = (ai, bi) | 0 ≤
i ≤ n+1}, and suppose that E =

∑n+1
i=0 eiCi is a divisor on S (and the

Cis are defined using the coordinates of this section). Then E is ample
if and only if αi(E) = ei+1 + ei−1 + ei(Ci · Ci) > 0, for 0 ≤ i ≤ n+ 1.

For the Hirzebruch surfaces, this criteria resolves into the well-known:
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Corollary 2.13. Suppose Fk is the Hirzebruch surface defined using
the coordinates of this section, with corresponding bases C1, C2 of the
Picard group. Then, a divisor linearly equivalent to d1C1+d2C2 on Fk

is ample if and only if it is very ample if and only if d1 > 0 and d2 > 0.

We remark that, if D,E are two ample divisors on S, then mD+nE
is ample, for every m ≥ 0, n ≥ 0, (m,n) �= (0, 0).

Demazure’s theorem and the toric Nakai criterion have some conse-
quences, proofs omitted, for the geometry of the polygon PE for an
ample divisor E =

∑n+1
i=0 eiCi on the smooth toric surface defined by

the nonsingular fan Δ = {ui = (ai, bi) | 0 ≤ i ≤ n+ 1}:
• the nonzero vector vi(E)

.
= li+1(E) − li(E) is a vector parallel to

the line Li(E) and the line segment σi(E),

• vi(E) is a positive scalar multiple αi(E) of (bi,−ai),

• the vector ui = (ai, bi) is orthogonal to both the line Li(E) and the
line segment σi(E), and the orientation of the ordered pair vi(E), ui

is positive, i.e., the third coordinate of vi(E) × ui is positive: since
vi(E) = αi(E)(bi,−ai) and αi(E) > 0 (by the toric Nakai criterion),
the third coordinate of vi × ui is equal to αi(E)(a2i + b2i ) > 0.

• the vector ui is an “inward” pointing normal vector with respect to
the polygon PE and the edge σi(E),

• If e0 = en+1 = 0 and θi is equal to the angle that the vector li(E)
makes with the x-axis, then 0 = θ0 < θ1 < · · · < θn < θn+1 = π/2,
so that the points li(E) are arranged in “counterclockwise” order after
l0(E) = (0, 0).

Additional consequences are the following geometric facts, which we
do prove here in a simple way:

Lemma 2.14. Let D =
∑n+1

i=0 diCi and E =
∑n+1

i=0 eiCi be ample
divisors on the smooth toric surface S defined by the nonsingular fan
Δ = {ui = (ai, bi) | 0 ≤ i ≤ n+ 1}.

a) For each i such that 0 ≤ i ≤ n+ 1, σi(D) = Li(D) ∩ PD.

b) For each i such that 0 ≤ i ≤ n+ 1, σi(D + E) = σi(D) + σi(E).

c) PD+E = PD + PE . (This is true if D and E satisfy the weaker
condition of being basepoint free divisors, see [6].)
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Proof. For a), Demazure’s theorem tells us that li+1(D) and li(D)
are in PD, for each i, so that the line segment containing these two
points, σi(D), is entirely contained in PD. On the other hand, if
ξ ∈ Li(D) ∩ PD, then since vi(D)

.
= li+1(D) − li(D) is a vector

parallel to Li(D), and li(D) is clearly a point on Li(D), we must have
ξ = li(D) + tvi(D), for some t ∈ R. Then,

(1 − t)〈li(D), ui+1〉 − tdi+1 = 〈ξ, ui+1〉 ≥ −di+1,

so that

(t− 1)di+1 ≤ (1− t)〈li(D), ui+1〉.

If t = 1, then ξ = li+1(D) ∈ PD; if t = 0, ξ = li(D) ∈ PD. If t− 1 > 0,
then −di+1 ≥ 〈li(D), ui+1〉; since li(D) ∈ PD, 〈li(D), ui+1〉 ≥ −di+1.
Thus, li(D) ∈ Li(D) ∩ Li+1(D) = {li+1(D)}, a contradiction. If
t < 0, a similar argument shows that 〈li+1(D), ui−1〉 = −di−1, so
that li+1(D) ∈ Li(D) ∩ Li−1(D) = {li(D)}, again a contradiction.
Therefore, t ∈ [0, 1], and we are done.

For b), it is clear that σi(D+E) ⊆ σi(D)+σi(E). To see the opposite
inclusion, first recall that αi(D) and αi(E) are positive integers. Then,
note that the line segment σi(D) is parallel to the line segment σi(E);
in fact, since vi(D)

.
= li+1(D)− li(D), vi(E)

.
= li+1(E)− li(E) for every

i,

vi(D) = αi(D)(bi,−ai)

and

vi(E) = αi(E)(bi,−ai),

vi(D) =
αi(D)

αi(E)
vi(E).

Let αi = [αi(D)/αi(E)] for each i; this is a positive rational number.

Thus, if u ∈ σi(D) and ũ ∈ σi(E), s, t ∈ [0, 1] exist such that
u = sli+1(D) + (1− s)li(D), ũ = tli+1(E) + (1− t)li(E). Let

t1 =
s

αi + 1
+

αit

αi + 1
.
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Then, t1 ∈ [0, 1], and

t1li+1(D + E) + (1− t1)li(D + E) = u+ ũ.

For c), note that PD + PE ⊆ PD+E , for any divisors D and E (no
ampleness required). If D and E are ample, then so is D + E, and
clearly, for each i, li(D+E) = li(D) + li(E). Since PD +PE is convex,
contains li(D+E) for every i and PD+E is the convex hull of the n+2
points l0(D +E), . . . , ln+1(D+E), we have the other containment.

Note that, as a consequence of the above geometry: If E =
∑n+1

i=0 eiCi

is an ample divisor on the smooth toric surface S defined by the
nonsingular fan Δ = {ui = (ai, bi) | 0 ≤ i ≤ n + 1}, then for every
point (x, y) ∈ PE , one and only one of the following three options hold:

• A unique i exists such that (x, y) = li(E). In this case, as defined
previously, (x, y) is a vertex (and a geometric vertex) of PE .

• A unique i exists such that ei+〈(x, y), ui〉 = 0 and ej+〈(x, y), uj〉 >
0, for every j �= i. In other words, (x, y) ∈ σi(E) and (x, y) is an interior
edge point of σi(E).

• For every j, ej+〈(x, y), uj〉 > 0. In other words, (x, y) is an interior
point of the polygon PE .

2.3. Lattice points in polygons PE. Given the divisor E =∑n+1
i=0 eiCi on the smooth toric surface S defined by nonsingular fan

Δ = {ui = (ai, bi) | 0 ≤ i ≤ n+ 1},

we may form the polygon PE , and its integer lattice points PE ∩ Z2.

We will need the following theorems about these lattice points later.
The first theorem originates with Fakhruddin ([5]); later proofs of this
theorem are given in [8, 11, 16].

Theorem 2.15 (Fakhruddin’s theorem [5, 8, 11, 16]). If D and
E are divisors on the smooth toric surface S, with D ample and E
generated by sections, then PD+E ∩ Z2 = (PD ∩ Z2) + (PE ∩ Z2).

Note that it is always true that PD+E ∩Z2 ⊇ (PD ∩Z2) + (PE ∩Z2),
by definition of the polygons.
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A very simple proof of this theorem in the case of the Hirzebruch
surface Fk, a bit more general, is given below. Recall that Fk is defined
by the fan Δk = {(0, 1), (−1, 0), (k,−1), (0, 1)}. We may write divisors
D and E on Fk in the form

D = d1C1 + d2C2, E = e1C1 + e2C2.

Here we agree that d0 = d3 = e0 = e3 = 0, so that the polygons PD, PE

and PD+E are contained in the first quadrant; PD consists of the points
(x, y) ∈ R2 such that

• 0 ≤ x and x ≤ d1,

• 0 ≤ y and y ≤ d2 + kx.

Note that, if d1 < 0, or if d2 + d1k < 0, then PD is empty. Also, for
this case of the Hirzebruch surface, using Corollary 2.13, the divisor D
is ample if and only if d1 > 0, d2 > 0.

Similarly, if e1 ≥ 0 and e2 + e2k ≥ 0, PE consists of the points
(x, y) ∈ R2 such that

• 0 ≤ x ≤ e1,

• 0 ≤ y ≤ e2 + kx

and is empty otherwise.

Lemma 2.16. Given the divisors D = d1C1+d2C2, E = e1C1+e2C2,
on the Hirzebruch surface Fk, such that d1 ≥ 0, d2 ≥ 0, e1 ≥ 0, e2 ≥ 0,
we have

PD+E ∩ Z2 = (PD ∩ Z2) + (PE ∩ Z2).

Proof. Given the hypotheses, d1 + e1 ≥ 0, d2 + e2 ≥ 0, consider
(M,N) ∈ PD+E ∩ Z2, so that we must have

0 ≤ M ≤ d1 + e1,

0 ≤ N ≤ d2 + e2 + kM.

Since d1, e1 ≥ 0, integers c, ĉ exist such that 0 ≤ c ≤ d1 and 0 ≤ ĉ ≤ e1
with c+ ĉ = M . Then

0 ≤ N ≤ (d2 + kc) + (e2 + kĉ).
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Now since d2 ≥ 0, e2 ≥ 0, k ≥ 0, and c, ĉ ≥ 0, both d2 + kc ≥ 0 and
e2 + kĉ ≥ 0. Then integers d, d̂ exist such that

0 ≤ d ≤ d2 + kc,

0 ≤ d̂ ≤ e2 + kĉ,

and

0 ≤ d+ d̂ ≤ (d2 + kc) + (e2 + kĉ)

with d+ d̂ = N . Thus, (c, d)+(ĉ, d̂) = (M,N); (c, d) ∈ PD∩Z2, (ĉ, d̂) ∈
PE ∩ Z2.

We will later make use of the following lemma, which may be deduced
directly from Fakhruddin’s theorem, but we offer here an independent
proof.

Lemma 2.17. Let D =
∑n+1

i=0 diCi and E =
∑n+1

i=0 eiCi be ample
divisors on the smooth toric surface S defined by the nonsingular
fan Δ = {ui = (ai, bi) | 0 ≤ i ≤ n + 1}. Then, for every i,
σi(D + E) ∩ Z2 = (σi(D) ∩ Z2) + (σi(E) ∩ Z2).

Proof. This proof is elementary except for the fact that it uses the
toric Nakai criterion. Note that D + E is ample. The line segment
σi(D + E) has two distinct end points, li(D + E) = li(D) + li(E),
and li+1(D + E) = li+1(D) + li+1(E) by definition. So we need only
consider interior edge points p in σi(D+E)∩Z2. Then there is a unique
t ∈ (0, 1) such that

p = li(D + E) + t(li+1(D + E)− li(D + E))

= li(D) + li(E) + tαi(D + E)(bi,−ai).

(Recall αi(E) = E · Ci > 0 for every i.)

Using subscripts to denote first and second coordinates of points, we
see that

p1 − li(D + E)1 = t(−bi)αi(D + E),

p2 − li(D + E)2 = taiαi(D + E).
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Thus, if ai, bi �= 0,

p1 − li(D + E)1
−bi

=
p2 − li(D + E)2

ai
,

and in any case,

ai(p1 − li(D + E)1) = −bi(p2 − li(D + E)2).

Case 1. ai, bi �= 0. In this case, ai and bi are relatively prime, due to
the nonsingularity of the fan. Therefore, we have the following divisor
relations among integers:

ai | (p2 − li(D + E)2),

bi | (p1 − li(D + E)2).

Thus,

Xi
.
=

p1 − li(D + E)1
−bi

=
p2 − li(D + E)2

ai
∈ Z,

and

t =
Xi

αi(D + E)
=

Xi

αi(D) + αi(E)
.

Now, let

r =
αi(D)

αi(D) + αi(E)
,

so that

1− r =
αi(E)

αi(D) + αi(E)

and
Xir +Xi(1 − r) = Xi ∈ Z.

Let T1 = [Xir], T2 = [Xi(1 − r)], so that T1 ≤ Xir < T1 + 1,
T2 ≤ Xi(1 − r) < T2 + 1, and T1 + T2 ≤ Xi < T1 + T2 + 1. Since
Xi ∈ Z, we must have
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a. T1 + T2 = Xi or

b. T1 + T2 + 1 = Xi.

Note that 0 ≤ T1 ≤ Xi[αi(D)/αi(D) + αi(E)], so that 0 ≤ (T1/αi(D)) ≤
t < 1; similarly, 0 ≤ (T2/αi(E)) < 1.

Case 1a. Let

pD = li(D) +
T1

αi(D)
(li+1(D)− li(D))

= li(D) +
T1

αi(D)
(αi(D)(−bi, ai))

= li(D) + T1(−bi, ai) ∈ σi(D) ∩ Z2

and

pE = li(E) +
T2

αi(E)
(li+1(E)− li(E))

= li(E) +
T2

αi(E)
(αi(E)(−bi, ai))

= li(E) + T2(−bi, ai) ∈ σi(E) ∩ Z2;

then

pD+pE = li(D+E)+(T1+T2)(−bi, ai) = li(D+E)+Xi(−bi, ai) = p.

Case 1b. T1 + T2 + 1 = Xi. Now,

T1 + 1

αi(D)
≤ 1,

or

T2 + 1

αi(E)
≤ 1.

This is true because if [T1 + 1/αi(D)] > 1 and [T2 + 1/αi(E)] > 1,
then T1 + T2 + 1 > αi(D) + αi(E), so that Xi = t(αi(D) + αi(E)) >
αi(D) + αi(E), implying t > 1, a contradiction. We suppose that
[T1 + 1/αi(D)] ≤ 1, the other case being handled in a symmetric
fashion.
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Let

pD = li(D) +
T1 + 1

αi(D)
(li+1(D)− li(D))

= li(D) + (T1 + 1)(−bi, ai) ∈ σi(D) ∩ Z2

and

pE = li(E) +
T2

αi(E)
(li+1(E)− li(E))

= li(E) + T2(−bi, ai) ∈ σi(E) ∩ Z2;

then, as before,
pD + pE = p.

If ai = 0, then bi �= 0, and p2 = li(D+E)2; if bi = 0, then ai �= 0 and
p1 = li(D+E)1. Since the two possibilities are symmetric, we consider
only the first. If ai = 0, then since ai−1bi − aibi−1 = 1 and ai = 0, we
see that bi = ±1. Thus,

Xi
.
=

p1 − li(D + E)1
−bi

∈ Z,

and we may proceed exactly as in Case 1 to arrive at points pD ∈ σi(D),
pE ∈ σi(E) such that pD + pE = p.

3. Cohomology computations: Smooth toric surfaces. We
collect here needed cohomology computations. We separate out the
more general discussions for smooth toric surfaces from the special cases
for Hirzebruch surfaces mostly for the reader’s convenience. However,
computations for the Hirzebruch surfaces are often slightly improved
versions of those for general toric surfaces. These “improvements”
become useful in later computations.

3.1. Computations of Hi: O(D),Ω1(D). We use the notation
established in Section 2; coordinates are as in that section as well.

Thus, let S be a smooth toric surface defined by the nonsingular fan
Δ = {(ai, bi)}n+1

i=0 as in Section 2. Recall that, when we write a divisor

D as
∑n+1

i=0 diCi, we sometimes assume that d0 = dn+1 = 0. As we have
seen, this condition forces the polygon PD to be a subset of the first
quadrant in R2. Note that we have already seen how any divisor D̃,
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written as linear combinations of C0, . . . , Cn+1, is linearly equivalent
to a divisor D in the above form; and the polygons for the two divisors
are isometric affine (integer) translates.

For any divisorD the well-known correspondence betweenH0(S,OS(D))
and PD is given by:

Lemma 3.1 (see, e.g., [6, 14, 15]). Let S be a smooth toric
surface given by a nonsingular fan Δ = {(ai, bi)}n+1

i=0 . Suppose that

D =
∑n+1

i=0 diCi is a divisor on S. Then

dimH0(S,O(D)) = #(PD ∩ Z2).

More precisely, using the coordinates established in Section 2, a basis
for the vector space H0(S,O(D)) is

{xc
0y

d
0 | (c, d) ∈ PD ∩ Z2}.

Moving on to consider H0(S,Ω1(D)), we will use the following theo-
rem from Murray, [14]. This theorem is stated in terms of the coordi-
nates on S set up in Section 2.

Theorem 3.2 ([14, Theorem 1, page 196]). Let S be a smooth toric
surface given by the nonsingular fan Δ = {(ai, bi) | 0 ≤ i ≤ n + 1}.

Suppose that D =
∑n+1

i=0 diCi is a divisor on S determining the polygon
PD. We may then decompose

H0(S,Ω1(D)) =
⊕

(c,d)∈PD∩Z2

H0(Ω1(D))(c,d)

and

• If (c, d) is an interior point of PD ∩ Z2, then H0(Ω1(D))(c,d) has
dimension two, with basis{

xc
0y

d
0

dx0

x0
, xc

0y
d
0

dy0
y0

}
.
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• If (c, d) is an interior edge point of PD ∩ Z2, say (c, d) ∈ σi(D),
then H0(Ω1(D))(c,d) has dimension one, with basis

{
xc
0y

d
0

(
bi
dx0

x0
− ai

dy0
y0

)}
.

• For all other points (c, d) ∈ PD ∩ Z2, H0(Ω1(D))(c,d) = 0.

Thus, if there are no interior points or interior edge points in PD,
H0(S,Ω1(D)) = 0. Additionally, we have the following [6, 14, 15]:

Theorem 3.3. Suppose that S is a smooth toric surface, defined by
a nonsingular fan Δ of n+2 vectors. Let D be an ample divisor on S.
Then,

a. h1(S,O(D)) = h2(S,O(D)) = 0.

b. h1(S,Ω1(D)) = h2(S,Ω1(D)) = 0.

c. h0(S,O(D)) = (1/2)D · (D −KS) + 1 = χ(O(D)).

d. h0(S,Ω1(D)) = D2 − n = χ(Ω1(D)).

One uses the Riemann-Roch theorem to obtain c and d in the theorem
above.

3.2. Hi : O(D),Ω1(D)-Hirzebruch surfaces. Theorem 3.3
from the previous section may be slightly “improved” for Hirzebruch
surfaces.

We use the notation established in Section 2; coordinates are as in
that section as well.

We have the following theorem from [4], giving more detailed versions
of Lemma 3.1 and Theorem 3.2:

Lemma 3.4. Consider the Hirzebruch surface Fk, defined by the
nonsingular fan

Δk = {(0, 1), (−1, 0), (k,−1), (1, 0)}.
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Let D = d1C1 + d2C2 be a divisor on Fk (d0 = d3 = 0).

1. H0(Fk,O(D)) is zero if either d1 or d2 + d1k is negative.

2. If d1 and d2 + d1k are nonnegative, then H0(Fk,O(D)) has basis
{xc

0y
d
0 |0 ≤ c ≤ d1, 0 ≤ d ≤ d2 + ck}.

3. H0(Fk,Ω
1(D)) is zero if either d1 or d2 + d1k is negative.

4. If d1 ≥ 0 and d2 + d1k ≥ 0, then H0(Fk,Ω
1(d1C1 + d2C2)) =

X ⊕ Y ⊕M, where

X .
= 〈{xi

0y
j
0dx0 | 0 ≤ i ≤ d1 − 2, 0 ≤ j ≤ d2 + ik + k − 1}〉

Y .
= 〈{xα

0 y
β
0 dy0 | 0 ≤ α ≤ d1, 0 ≤ β ≤ d2 + kα− 2}〉

and

M .
= 〈{xi

0y
d2+ki+k−1
0 (y0dx0 + kx0dy0) |

0 ≤ i ≤ d1 − 2, d2 + ki+ k − 1 ≥ 0}〉.

Note that sometimes one of more of the sets X ,Y or M will be empty.
For example, M is zero if d1 < 2.

Corollary 3.5. With the same hypotheses as the above theorem, in
addition assuming that d1 ≥ 0 and d2 ≥ 0, then

a. dimH0(Fk,O(D)) = (d1 + 1)((k/2)d1 + d2 + 1) = χ(O(D)).

b. If d1 ≥ 2 and d2 + k − 1 ≥ 0, then

dimX = d2(d1 − 1) +
d1(d1 − 1)

2
k.

c. If d1 ≥ 0 and d2 ≥ 2, then

dimY = (d2 − 1)(d1 + 1) + k
d1(d1 + 1)

2
.

d. If d1 ≥ 2 and d2 + k − 1 ≥ 0, then

dimM = d1 − 1.
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e. If d1 ≥ 1 and d2 ≥ 1, then

dimH0(Ω1(D)) = 2d1d2 + kd21 − 2.

Given the computations for H0(Fk,O(D)) and H0(Fk,Ω
1(D)), and

using the Kodaira-Serre duality, we can now compute H2. Using
the usual four vector fan Δk, and recalling the canonical divisor
KFk

= −2C1 + (k − 2)C2, we get

h2(Fk,O(D)) = h0(Fk,O(KFk
−D))

= h0(Fk,O(−(d1 + 2)C1 + (k − d2 − 2)C2)).

From Lemma 3.4 and Corollary 3.5, we have the following corollaries:

Lemma 3.6. Consider the Hirzebruch surface Fk, defined by the
nonsingular fan

Δk = {(0, 1), (−1, 0), (k,−1), (1, 0)}.

Let D = d1C1 + d2C2 be a divisor on Fk (d0 = d3 = 0).

a. If d1 ≥ −1 or d2 + kd1 ≥ −k − 1,

H2(Fk,O(D)) = 0.

b. If d1 ≥ 1 or d2 + kd1 ≥ 1, then

H2(Fk,Ω
1(D)) = 0.

c. If d1 ≥ 0 and d2 ≥ 0, then H1(Fk,O(D)) = 0.
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4. Multiplication maps.

4.1. General definition.

Definition 4.1. In general, given a smooth projective variety X , a
coherent sheaf F and a line bundle F̂ on X , the multiplication map

μ : H0(X,F)⊗H0(X, F̂) −→ H0(X,F ⊗ F̂)

is defined by
μ(s⊗ t) = st

where s and t are sections of F and F̂ , respectively.

4.2. Multiplication maps, O,Ω1. Let S be a smooth toric surface
given by the nonsingular fan Δ = {(ai, bi)}n+1

i=0 with D =
∑n+1

i=0 diCi,

E =
∑n+1

i=0 eiCi divisors on S. We do not necessarily always assume
that d0 = e0 = dn+1 = en+1 = 0.

The multiplication map

μ : H0(S,O(D)) ⊗H0(S,O(E)) −→ H0(S,O(D + E))

is given by

(xc
0y

d
0)⊗ (xĉ

0y
d̂
0) �−→ xc+ĉ

0 yd+d̂
0 .

Using the correspondence between divisors and polygons described in
Section 2, Fakhruddin’s theorem 2.15 immediately gives

Theorem 4.2 (Fakhruddin [5]). Let S be a smooth toric surface,

given by the nonsingular fan Δ = {(ai, bi)}n+1
i=0 with D =

∑n+1
i=0 diCi an

ample divisor and E =
∑n+1

i=0 eiCi generated by global sections. Then
the multiplication map

μ : H0(S,O(D)) ⊗H0(S,O(E)) −→ H0(S,O(D + E))

given by

(xc
0y

d
0)⊗ (xĉ

0y
d̂
0) �−→ xc+ĉ

0 yd+d̂
0

is surjective.
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Now we consider multiplication maps

μ̂ : H0(S,Ω1(D)) ⊗H0(S,O(E)) −→ H0(S,Ω1(D + E)).

As a consequence of Murray’s calculation of H0(Ω1(D)) (see Theo-
rem 3.2 of this paper) and Fakhruddin’s theorem, we prove:

Theorem 4.3. Let S be a smooth toric surface given by the non-
singular fan Δ = {(ai, bi)}n+1

i=0 . Suppose that D and E are ample di-
visors on S such that D +KS and D +KS + Cj are ample, for every
j, 0 ≤ j ≤ n+ 1. Then, the multiplication map

μ̂ : H0(S,Ω1(D))⊗H0(S,O(E)) −→ H0(S,Ω1(D + E))

is surjective.

Proof. We use coordinates as established in Section 2. We may
assume D =

∑n
i=1 diCi, E =

∑n
i=1 eiCi. with d0 = e0 = dn+1 =

en+1 = 0.

Consider the description of H0(S,Ω1(D + E)) given by Murray’s
theorem 3.2:

H0(S,Ω1(D + E)) = ⊕(c,d)∈PD+E∩Z2H0(Ω1(D + E))(c,d).

For a given (c, d) ∈ PD+E ∩ Z2, Murray’s theorem 3.2 gives us two
alternatives that we need to consider here: (c, d) is an interior point of
PD+E , or (c, d) is an interior edge point of PD+E .

Assuming that (c, d) is an interior point of PD+E , we have two
basis vectors xc

0y
d
0(dx0/x0) and xc

0y
d
0(dy0/y0) contained in H0(Ω1(D+

E))(c,d). By definition of an interior point, we must have

• c > 0, d > 0 and

• dj + ej + ajc+ bjd > 0, 1 ≤ j ≤ n.

However, this means that

• −1 + c ≥ 0,−1 + d ≥ 0 and

• (dj − 1) + ej + ajc+ bjd ≥ 0, 1 ≤ j ≤ n.

In other words, using the definition of PD+KS+E ∩Z2 and the fact that

KS = −(
∑n+1

i=0 Ci),

(c, d) ∈ PD+KS+E ∩ Z2.
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Using our ampleness assumption and Fakhruddin’s theorem 2.15,
(f1, g1) ∈ PD+KS ∩ Z2 and (f2, g2) ∈ PE ∩ Z2 exist such that
(f1, g1) + (f2, g2) = (c, d). But, using the description of PD+KS , we
have

• −1 + f1 ≥ 0,−1 + g1 ≥ 0 and

• (dj − 1) + ajf1 + bjg1 ≥ 0, 1 ≤ j ≤ n.

In other words,

• f1 > 0, g1 > 0 and

• dj + ajf1 + bjg1 > 0, 1 ≤ j ≤ n

and (f1, g1) is an interior point of PD. Thus, xf1
0 yg10 (dx0/x0) ∈

H0(S,Ω1(D)), xf2
0 yg20 ∈ H0(S,O(E)) and μ̂(xf1

0 yg10 (dx0/x0)⊗xf2
0 yg20 ) =

xc
0y

d
0(dx0/x0).

Also, μ̂(xf1
0 yg10 (dy0/y0)⊗ xf2

0 yg20 ) = xc
0y

d
0(dy0/y0).

Now, assume that (c, d) is an interior edge point of PD+E . Since
D + E is ample, there is exactly one edge σi(D + E) such that (c, d)
is interior to σi(D + E) and (c, d) corresponds to the basis element
xc
0y

d
0(bi(dx0/x0)−ai(dy0/y0)) of H

0(Ω1(D+E))(c,d). This means that

• di + ei + aic+ bid = 0 and

• for every j �= i, 0 ≤ j ≤ n+ 1, dj + ej + ajc+ bjd > 0.

Therefore,

• di + ei + aic+ bid = 0 and

• for all j �= i, 0 ≤ j ≤ n+ 1, (dj − 1) + ej + ajc+ bjd ≥ 0,

so that (c, d) is an edge point corresponding to the edge σi(D+KS+Ci)
of the polygon PD+KS+Ci . Since D + KS + Ci and E are ample,
Lemma 2.17 tells us that

(σi(D +KS + Ci) ∩ Z2) + (σi(E) ∩ Z2) = σi(D +KS + Ci + E) ∩ Z2.

So, (f1, g1) ∈ σi(D+KS +Ci)∩Z2 and (f2, g2) ∈ σi(E)∩Z2 exist such
that (f1, g1) + (f2, g2) = (c, d). In other words,

• dj − 1 + ajf1 + bjg1 ≥ 0, j �= i and

• di + aif1 + big1 = 0.

Therefore, (f1, g1) is an interior edge point in PD corresponding to the
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edge σi(D), and

xf1
0 yg10

(
bi
dx0

x0
− ai

dy0
y0

)
∈ H0(Ω1(D))(f1,g1).

Also, xf2
0 yg20 ∈ H0(S,O(E)), and

xf2
0 yg20

(
xf1
0 yg10

(
bi
dx0

x0
− ai

dy0
y0

))
= xc

0y
d
0

(
bi
dx0

x0
− ai

dy0
y0

)
.

4.3. Multiplication maps and Hirzebruch surfaces. Consider
the Hirzebruch surface Fk, defined by the nonsingular fan

Δi = {(0, 1), (−1, 0), (k,−1), (1, 0)}.

Let D = d1C1 + d2C2 and E = e1C1 + e2C2 be divisors on Fk (and,
e0 = e3 = d0 = d3 = 0).

As we have seen,
H0(Fk,O(D))

has basis
{xc

0y
d
0 | 0 ≤ c ≤ d1, 0 ≤ d ≤ d2 + ck}

if d1 ≥ 0 and d2 + d1k ≥ 0, and is zero otherwise.

The multiplication map, in the above coordinates, is

μ : H0(Fk,O(D)) ⊗H0(Fk,O(E)) −→ H0(Fi,O(D + E))

(xc
0y

d
0)⊗ (xĉ

0y
d̂
0) �−→ xc+ĉ

0 yd+d̂
0

where d1, e1 ≥ 0, d2 + d1k ≥ 0, e2 + e1k ≥ 0.

Note. If d1 < 0 or e1 < 0 or d2 + d1k < 0 or e2 + e1k < 0, then the
domain of the multiplication map is zero.

Using the correspondence between divisors and polygons described
in Section 2, the slightly improved version of Fakhruddin’s theorem for
Hirzebruch surfaces (Lemma 2.16) yields:
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Lemma 4.4. Given the divisors D = d1C1+d2C2, E = e1C1+e2C2,
on the Hirzebruch surface Fk, such that d1 ≥ 0, d2 ≥ 0, e1 ≥ 0, e2 ≥ 0,
the multiplication map

μ : H0(Fk,O(D)) ⊗H0(Fk,O(E)) −→ H0(Fi,O(D + E))

is surjective.

Next consider the multiplication maps

μ̂ : H0(Fk,Ω
1(D))⊗H0(Fk,O(E)) −→ H0(Fk,Ω

1(D + E)).

We have the following “improvement” of Theorem 4.3; the proof given
here is a direct one and does not rely on Fakhruddin’s theorem.

Theorem 4.5. Given the divisors D = d1C1 + d2C2, E = e1C1 +
e2C2, on the Hirzebruch surface Fk, such that d1 ≥ 2, d2 ≥ 2, e1 ≥ 0
and e2 ≥ 0, the multiplication map

μ̂ : H0(Fk,Ω
1(D))⊗H0(Fk,O(E)) −→ H0(Fk,Ω

1(D + E)).

is surjective.

Proof. Note that, in any case, D + E is ample.

Case 1. Consider an interior point (M,N) ∈ PD+E∩Z2, giving rise to
the basis element xM

0 yN0 (dw/w) ∈ H0(Ω1(D+E))(M,N), where w may
be either x0 or y0. Then, 0 < M < d1 + e1, 0 < N < d2 + e2 + kM .
Since d1 ≥ 2 and e1 ≥ 0, integers a, b exist such that 0 < a < d1,
0 ≤ b ≤ e1 and a + b = M . Since 0 < N < (d2 + ka) + (e2 + kb) and
d2 + ka ≥ 2, e2 + kb ≥ 0, integers c, d exist such that 0 < c < d2 + ka,
0 ≤ d ≤ e2 + kb and c+ d = N .

Therefore, (a, c) is an interior point in PD ∩ Z2, giving rise to the
basis element xa

0y
c
0(dw/w) ∈ H0(Ω1(D))(a,c). Also, (b, d) is a point in

PE ∩ Z2, giving rise to the basis element xb
0y

d
0 of H0(Fk,O(E)), and

xa
0y

c
0

dw

w
· xb

0y
d
0 = xM

0 yN0
dw

w
.
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Case 2. Consider an interior edge point in σ3(D + E) ∩ Z2, which
must be of the form (0, N), with 0 < N < d2 + e2. This gives rise
to the basis element yN0 (dy0/y0) of H

0(Ω1(D + E))(0,N). Integers a, b
exist with 0 < a < d2,0 ≤ b ≤ e2 with a + b = N . Thus, since (0, a)
is an interior point of the edge σ3(D), ya0 (dy0/y0) is a basis element of
H0(Ω1(D))(0,a). Also, y

b
0 ∈ H0(Fk,O(E)), and

ya0
dy0
y0

· yb0 = yN0
dy0
y0

.

Case 3. Consider an interior edge point in σ0(D + E) ∩ Z2, which
must be of the form (M, 0), with 0 < M < d1 + e1. This gives rise
to the basis element xM

0 (dx0/x0) of H
0(Ω1(D+E))(M,0). Integers a, b

exist with 0 < a < d1, 0 ≤ b ≤ e1 with a + b = M . Thus, since (a, 0)
is an interior point of the edge σ0(D), xa

0(dx0/x0) is a basis element of
H0(Ω1(D))(a,0). Also, x

b
0 ∈ H0(Fk,O(E)), and

xa
0

dx0

x0
· xb

0 = xM
0

dx0

x0
.

Case 4. Consider an interior edge point in σ1(D+E)∩Z2, which must
be of the form (d1+e1, N), with 0 < N < d2+e2+k(d1+e1). This gives
rise to the basis element xd1+e1

0 yN0 (dy0/y0) of H
0(Ω1(D+E))(d1+e1,N).

Integers a, b exist with 0 < a < d2+kd1, 0 ≤ b ≤ e2+ke1 with a+b = N .
Thus, since (d1, a) is an interior point of the edge σ1(D), xd1

0 ya0 (dy0/y0)
is a basis element of H0(Ω1(D))(d1+e1,N). Also, x

e1
0 yb0 ∈ H0(Fk,O(E)),

and

xd1
0 ya0

dy0
y0

· xe1
0 yb0 = xd1+e1

0 yN0
dy0
y0

.

Case 5. Consider an interior edge point in σ2(D + E) ∩ Z2, which
must be of the form (M,N), with 0 < M < d1 + e1 and N = d2 + e2 +
kM . This gives rise to the basis element xM

0 yd2+e+2+kM
0 (−(dx0/x0)−

k(dy0/y0)) of H0(Ω1(D + E))(M,d2+e2+kM). Integers a, b exist with
0 < a < d1, 0 ≤ b ≤ e1 with a+ b = M . Thus, since (a, d2 + ka) is an
interior point of the edge σ2(D), xa

0y
d2+ka
0 (−(dx0/x0)−k(dy0/y0)) is a

basis element of H0(Ω1(D))(a,d2+ka). Also, x
b
0y

e2+kb
0 ∈ H0(Fk,O(E)),

and

xa
0y

d2+ka
0

(
− dx0

x0
−k

dy0
y0

)
·xb

0y
e2+kb
0 = xM

0 yd2+e2+kM
0

(
− dx0

x0
−k

dy0
y0

)
.
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Surjectivity results for multiplication maps on toric varieties are also
more generally considered in [10, 12], in the context of Castelnuovo-
Mumford regularity.

5. The Gaussian map. We collect here definitions, basic facts and
notation, following Wahl [18 20] closely.

Consider a multiplication map μ, where X is a smooth projective
variety and F and G are line bundles on X :

μ : H0(X,F)⊗H0(X,G) −→ H0(X,F ⊗ G).

Definition 5.1. Given the multiplication map μ, kerμ
.
= R(F ,G)

[18].

Given an open set U ⊂ X , over which F|U is trivial, let T be a
generator of F|U . Let α =

∑
σi⊗τi ∈ R(F ,G). We can write σi = fiT

locally for some fi ∈ O(U). Given a generator S of G|U , we can write
τi = giS locally for some gi ∈ (U). (Note that

∑
figi = 0.) Then we

can define the Gaussian map

ΦX,F ,G(α)
.
=

∑
(fidgi − gidfi)⊗ T ⊗ S ∈ H0(Ω1

X ⊗F ⊗ G).

This is well defined, proof in Wahl [20, page 123].

If F = G, then Λ2H0(F) ⊂ R(F ,F) by identifying σ ∧ τ with
1/2(σ⊗ τ − τ ⊗ σ). We restrict the domain of ΦX,F ,F to Λ2H0(X,F),
writing ΦX,F ,F |Λ2H0(X,F)

.
= ΦX,F for simplicity of notation. Then, if

σ = fT and τ = gT locally, the Gaussian map

ΦX,F : Λ2H0(X,F) −→ H0(X,Ω1
X ⊗F2)

is given by
ΦX,F (σ ∧ τ) = (f dg − g df)⊗ T ⊗ T

[18]. Hence, the following diagram commutes:

(5.2)

R(F ,F) �
ΦX,F,F

H0(X,Ω1
X ⊗F2)

Λ2H0(X,F)

�
�

���

�
�
���

ΦX,F
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and
imΦX,F = imΦX,F ,F .

If L,M and N are line bundles, then there is a commutative diagram:

(5.3)

R(L,M)⊗H0(N )

�
a

�
ΦX,L,M⊗id

H0(Ω1 ⊗ L⊗M)⊗H0(N )

�
μ̂

R(L,M⊗N ) �
ΦX,L,M⊗N

H0(Ω1 ⊗ L⊗M⊗N ),

where the horizontal maps are defined using Gaussian maps as indicated
and the vertical map, μ̂ is a multiplication map for forms, defined as

ω ⊗ h �−→ hω,

for ω ∈ H0(Ω1 ⊗ L⊗M) and h ∈ H0(N ). Map a is defined by

(∑
σi ⊗ τi

)
⊗ hT ′ a�−→

∑
(σi ⊗ hτi),

if T ′ is a local generator of N .

Finally, we note the naturality of the Gaussian maps: for an appropri-
ate map f : X → Y , and sheaves G, Ĝ on Y , we construct the sheaves
f∗G, and f∗Ĝ on X . Then, there exists a commutative diagram:

(5.4)

R(G, Ĝ) �
ΦY,G,Ĝ

�

H0(Ω1
Y ⊗ G ⊗ Ĝ)

�

R(f∗G, f∗Ĝ) �
ΦX,f∗G,f∗Ĝ

H0(Ω1
X ⊗ f∗G ⊗ f∗Ĝ)

6. Surjectivity of the Gaussian map.

6.1. Gaussian maps for Hirzebruch surfaces. Consider the
Hirzebruch surface Fk, defined by the nonsingular fan

Δk = {(0, 1), (−1, 0), (k,−1), (1, 0)}.
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Given the divisors D, E on Fk, we have the multiplication map,

μ = μ(D,E) : H0(Fk,O(D)) ⊗H0(Fk,O(E)) −→ H0(Fk,O(D + E)).

We have defined the kernel of this map as

kerμ(D,E)
.
= R(D,E).

We have the following proposition:

Proposition 6.1 [4, 14]. Given the Hirzebruch surface Fk, defined
by the nonsingular fan

Δk = {(0, 1), (−1, 0), (k,−1), (1, 0)},

let D be a divisor on Fk. If D is ample, then the Gaussian map

ΦFk,D : R(D,D) −→ H0(Fk,Ω
1(2D))

is surjective.

In order to analyze Gaussian maps on double covers of Hirzebruch
surfaces, we will see that we have to think about more general Gaussian
maps

ΦFk,D,E : R(D,E) −→ H0(Fk,Ω
1(D + E)).

The main result for this section is:

Proposition 6.2. Given the Hirzebruch surface Fk, defined by the
nonsingular fan

Δk = {(0, 1), (−1, 0), (k,−1), (1, 0)},

let D and E be divisors on Fk. Then, if D and E are ample, the
Gaussian map

ΦFk,D,E : R(D,E) −→ H0(Fk,Ω
1(D + E))

is surjective.
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Proof. We assume that D = d1C1 + d2C2, E = e1C1 + e2C2, with
d0 = e0 = d3 = e3 = 0. The ampleness hypotheses, as we have
previously noted, are equivalent to requiring that d1 > 0, d2 > 0,
e1 > 0, e2 > 0. In the argument below, if a divisor w1C1 + w2C2 is
given in terms of the basis C1, C2 of the Picard group of Fk, we write
the divisor as an ordered pair (w1, w2).

We construct two commutative diagrams using Diagram 5.3. We omit
denoting the surface Fk in the cohomology groups.

Diagram 1.

R((1, 1), (d1, d2)) �

Φ1 H0(Ω1(d1 + 1, d2 + 1))

R((1, 1), (1, 1))⊗H0(O(d1 − 1, d2 − 1)) �

Φ2⊗id

�

a1

H0(Ω1(2, 2))⊗H0(O(d1 − 1, d2 − 1))

�

μ̂1

Diagram 2.

R((d1, d2), (e1, e2)) �

Φ3 H0(Ω1(d1 + e2, d2 + e2))

R((d1, d2), (1, 1))⊗H0(O(e1 − 1, e2 − 1))

�

a2

�

Φ1⊗id
H0(Ω1(d1 + 1, d2 + 1))⊗H0(O(e1 − 1, e2 − 1))

�

μ̂2

Here Φ1 = ΦFk,C1+C2,D, Φ2 = ΦFk,C1+C2 and Φ3 = ΦFk,D,E .

Since C1 + C2 is ample, looking at Diagram 1, we see that Φ2 ⊗ id
is surjective by Proposition 6.1. Also, μ̂1 is surjective using Proposi-
tion 4.5. Therefore, the commutativity of the diagram forces

R((1, 1), (d1, d2))
Φ1−→ H0(Fk,Ω

1(d1 + 1, d2 + 1))

to be surjective.

Next, considering Diagram 2, we have just seen that Φ1 ⊗ id is
surjective. Since D + C1 + C2 = (d1 + 1)C1 + (d2 + 1)C2 and
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E − (C1 + C2) = (e1 − 1)C1 + (e2 − 1)C2 satisfy the hypotheses of
Proposition 4.5, μ̂2 is surjective by that proposition.

Thus, the commutativity of Diagram 2 forces the Gaussian map

ΦFk,D,E : R(D,E) −→ H0(Fk,Ω
1(D + E))

to be surjective.

Note that the only case of Proposition 6.1 used in the above proof is
the very simple case ofD = C1+C2. Thus, we may view Proposition 6.2
as giving an alternative proof of Proposition 6.1, once the simple case
of D = C1 + C2 only is proved in 6.1.

6.2. Gaussian maps for general toric surfaces. Let S be a
smooth toric surface given by the nonsingular fan Δ = {(ai, bi)}n+1

i=0

with D =
∑n+1

i=0 diCi, E =
∑n+1

i=0 eiCi divisors on S. (Recall the
definition of the curves Ci from Section 2.)

Here again, we have the multiplication map

μ : H0(S,O(D)) ⊗H0(S,O(E)) −→ H0(S,O(D + E)),

and its kernel
kerμ

.
= R(D,E).

Corresponding to Proposition 6.1, we have Murray’s theorem ([14,
Theorem 3]) for smooth toric surfaces:

Theorem 6.3 [14]. Let S be a smooth toric surface given by the

nonsingular fan Δ = {(ai, bi)}n+1
i=0 , and let D =

∑n+1
i=0 diCi be an ample

divisor on S. Then the Gaussian map

R(D,D)
Φ−→ H0(S,Ω1(2D))

is surjective.

We don’t formulate here such a neat analog of Proposition 6.2 for
general toric surfaces, but a useful version for the purposes of this
paper is given below.
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Proposition 6.4. Let S be a smooth toric surface given by the
nonsingular fan Δ = {(ai, bi)}n+1

i=0 . Suppose that L is a divisor such
that L, L+KS and L+KS + Ci are ample, for every i. Suppose that
G is a divisor such that G− 2L is ample. Then the Gaussian maps

R(L,G)
Φ−→ H0(S,Ω1(G+ L))

and

R(G,G− L)
Φ−→ H0(S,Ω1(2G− L))

are surjective.

Proof. Note that the ampleness hypotheses imply that the following
divisors are ample: G − L = G − 2L + L, G = G − L + L, G + L,
G + L +KS, G + L +KS + Ci (for every i), 2L+KS = L +KS + L
and 2L+KS + Ci = L+KS + Ci + L (for every i).

We construct two commutative diagrams using Diagram 5.3, as in
Proposition 6.2.

Diagram 1.

R(L,G) �
Φ1

H0(S,Ω1(G+ L))

R(L, L)⊗H0(S,O(G− L))

�

a1

→ �
Φ2⊗id

H0(S,Ω1(2L)) ⊗H0(S,O(G− L))

�

μ̂1

;

Diagram 2.

R(G,G− L) �
Φ3

H0(S,Ω1(2G− L))

R(L,G)⊗H0(S,O(G− 2L))

�

a2

�
Φ1⊗id

H0(S,Ω1(G+ L)) ⊗H0(S,O(G− 2L))

�

μ̂2

.

Now, looking at Diagram 1, the necessary ampleness hypotheses are
satisfied so that we may apply Theorem 4.3, yielding the surjectivity
of μ̂1. We also have the necessary ampleness hypotheses to apply
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Theorem 6.3 above, yielding the surjectivity of Φ2 ⊗ id. Thus, Φ1

is surjective.

Passing to Diagram 2, the necessary ampleness hypotheses are satis-
fied so that we may apply Theorem 4.3 again, to get surjectivity for μ̂2;
since we have just seen that Φ1 is surjective, this yields the surjectivity
of Φ3.

We note the following consequences of Diagram 5.3 and Fakhruddin’s
theorem, but we will not use these in the rest of the paper.

Lemma 6.5. Let S be a smooth toric surface. Suppose that L,M
and N are all ample divisors on S. Then, the map

a : R(L,M)⊗H0(S,O(N)) −→ R(L,M +N)

is surjective.

Proof. Using the ampleness hypotheses and Fakhruddin’s theo-
rem 4.2, we see that the diagram below has short exact sequences as
rows (as indicated) and that the center and right maps are surjective.
Since the diagram is commutative, this forces the left map to be sur-
jective. (We delete mention of S in the diagram.)

0 � R(L,M)⊗H0(O(N)) �

�

a

H0(O(L)) ⊗H0(O(M)) ⊗H0(O(N))

�

1⊗μ

�

μ⊗1
H0(O(L+M))⊗H0(O(N)) �

�

μ

0

0 � R(L,M +N) � H0(O(L)) ⊗H0(O(M +N)) �

μ⊗1
H0(O(L +M +N)) � 0.

Corollary 6.6. With the hypotheses of Lemma 6.5, the Gaussian
map Φ : R(L,L + N) → H0(S,Ω1(2L + N)) is surjective if and
only if the multiplication map μ̂ : H0(S,Ω1(2L)) ⊗ H0(S,O(N)) →
H0(S,Ω1(2L+N)) is surjective.

Proof. Consider the commutative diagram below:

R(L,L+N) �
Φ H0(S,Ω1(2L+N))

R(L,L)⊗H0(S,O(N)) �
Φ1⊗id

�

a

H0(S,Ω1(2L))⊗H0(S,O(N))

�

μ̂

.
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Murray’s theorem 6.3 on the surjectivity of the Gaussian map gives us
that Φ1 is surjective, and since a is surjective by the above lemma, we
see that Φ is surjective if and only if μ̂ is surjective.

7. Double covers.

7.1. General definitions and theorems concerning double
covers. A general reference for the notation and results of most of
this section is [1].

Lifting the discussion directly from [1], we let Y be a smooth projec-
tive surface and L a line bundle on Y such that L⊗2 = L ⊗ L has a
section s. Let D ⊆ Y be the divisor corresponding to the zeroes of the
section s. Let Ỹ be the total space of L with p : Ỹ → Y the line bundle
projection. Then the pullback bundle p∗L is a line bundle on Ỹ .

(7.1) p∗L

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p∗Ỹ

�
p̂

�

t

� Ỹ

�

p

Ỹ �
p

Ỹ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭L

By definition, p∗Ỹ = {(a, b) ∈ Ỹ × Ỹ | p(a) = p(b)}. Now, there

is a section t of p∗L defined by t(e) = (e, e) ∈ p∗Ỹ , where e ∈ Ỹ
and t is a section of p∗L, since p̂ is defined by p̂(a, b) = p(a). Define

X = {z ∈ Ỹ | (p∗s− t2)(z) = 0}. Then X ⊆ Ỹ . Define π : X → Y as
p|X .

Locally, X is defined by an equation s = t2. Over a point of Y where
s �= 0, we have 2 points of X . Over a point of Y where s = 0, we have
only one point of X . Then {s = 0} ⊂ Y is the branch divisor, D. D is
a divisor, non-negative, in the linear system of L⊗2.

So double covers of Y are determined by a line bundle L and an
effective divisor D in the linear system determined by L⊗2. If the
divisor D is locally defined by s = 0, then the double cover is locally
defined by t2 = s. In fact, the following holds:

Proposition 7.2. Let Y be a smooth compact surface and L a line
bundle on Y such that L⊗2 has a global section s, not identically zero.
Then a surface X and a map π : X → Y exist such that:
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1. OY (D) = L⊗2.

2. D is the divisor on Y corresponding to section s.

3. D is an effective divisor in the linear system of L⊗2.

4. X is smooth at x0 if and only if s is smooth at π(x0). Thus, X is
smooth if and only if D is smooth.

Definition 7.3. Let X and Y be surfaces, D the divisor on Y , and
π : X → Y as defined in Proposition 7.3. Then π : X → Y is defined as
the double covering of Y branched along the divisor D and determined
by the line bundle L.

Further results from [1] include:

Lemma 7.4. Let π : X → Y be the double covering of Y branched
along a smooth divisor D and determined by the line bundle L, i.e.,
L⊗2 = OY (D). Then

1. KX = π∗(KY ⊗ L).
2. π∗OX

∼= OY ⊕ L−1.

Theorem 7.5 (The projection formula, applied to double covers).
Let π : X → Y be a double cover branched along a smooth divisor D
and determined by L, with D ∼= L⊗2. If F is a sheaf on X and is a
locally free OY -module of finite rank on Y (i.e., a vector bundle on Y ),
then

π∗(F ⊗ π∗G) ∼= π∗F ⊗ G

as sheaves.

In particular, if G is a locally free sheaf on Y and F = OX , then

π∗π
∗G = π∗(OX⊗π∗G) ∼= π∗OX⊗G = (OY ⊕L−1)⊗G = G⊕(L−1⊗G).

We will also need to compute the cohomology of sheaves of the form
π∗Ω

1
X , for a double cover π : X → Y . This requires the introduction

(see the Appendix) of the sheaves Ω1
Y (logD), in view of the following

theorem:
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Lemma 7.6 (see, e.g., Duflot [3]). Let π : X → Y be the double
covering of Y branched along a smooth divisor D and determined by
the line bundle L, i.e., L⊗2 = OY (D). Then

π∗Ω
1
X = Ω1

Y ⊕ (Ω1
Y (logD)⊗ L−1).

Now passing from sheaves to their cohomology, we first restate some
general theorems about sheaf cohomology, applied to the double cover
case, without proof. References include [1, 7, 9].

Note that if π : X → Y is a double cover branched along a smooth
divisor D, determined by L, with D ∼= L⊗2, and if F is a sheaf on
X , then, since π has finite fibers, the Leray spectral sequence for π
degenerates, and

Hi(Y, π∗F) ∼= Hi(X,F)

for every i ≥ 0.

Letting G be a locally free sheaf on Y , we see that

Hi(X, π∗(G)) ∼= Hi(Y, π∗π
∗(G)) ∼= Hi(Y,G)⊕Hi(Y,L−1 ⊗ G).

We’ll generally use additive notation for line bundles, viewing them
in terms of their associated divisors. Thus, we get:

Theorem 7.7. Let π : X → Y be a double cover branched along
a smooth divisor D and determined by the line bundle O(L), where

D = 2L. Suppose that G̃ is a divisor on Y , and Ẽ = π∗G̃. Then

a. Hi(X,OX(Ẽ)) ∼= Hi(Y,OY (G̃))⊕Hi(Y,OY (G̃− L)).

b. Hi(X,Ω1
X(Ẽ)) ∼= Hi(Y,Ω1

Y (G̃))⊕Hi(Y,OY (G̃−L)⊗Ω1
Y (logD)).

Proof. We leave the proof of a to the reader. For b, we use the various
theorems cited in the exposition of this section:

Hi(X,Ω1
X(Ẽ)) ∼= Hi(Y, π∗(Ω

1
X(Ẽ)))

∼= Hi(Y, π∗(Ω
1
X ⊗OX(Ẽ)))

∼= Hi(Y, π∗(Ω
1
X ⊗ π∗OY (G̃)))
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∼= Hi(Y, π∗Ω
1
X ⊗OY (G̃)).

Now, by Lemma 7.6,

π∗Ω
1
X = Ω1

Y ⊕ (Ω1
Y (logD)⊗ L−1),

so we obtain b by switching to additive notation.

8. Gaussian maps for double covers.

8.1. Review of the results of [3]. Consider smooth projective
varieties X and Y of the same dimension with X a double cover of Y
with smooth branch locus D, and the covering map π : X → Y ; the
divisor L is such that D = 2L.

Given the map π : X → Y , let G be a divisor on Y . Consider the
following Gaussian map:

(8.1) Λ2H0(X, π∗O(G))
ΦX,π∗O(G)−→ H0(X, (π∗O(G))2 ⊗ Ω1

X).

Using the discussion and isomorphisms of subsection 7.1, we may
identify ΦX,π∗O(G) with

(8.2)

Λ2H0(Y,O(G)) ⊕ Λ2H0(Y,O(G − L))

⊕ (H0(Y,O(G)) ⊗H0(Y,O(G− L)))

ΦX,π∗O(G)−→ H0(Y,Ω1
Y (2G))

⊕H0(Y,O(2G− L)⊗ Ω1
Y (logD)).

For ease of reference, we will refer to the various components of this
map as follows. Let:

V0 = Λ2H0(Y,O(G)),

W0 = Λ2H0(Y,O(G − L)),

V1 = H0(Y,O(G)) ⊗H0(Y,O(G − L)),

and

A0 = H0(Y,Ω1
Y (2G)),

A1 = H0(Y,O(2G− L)⊗ Ω1
Y (logD)).
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We have the following theorem from Duflot [3]:

Theorem 8.3 [3]. Suppose that X a double cover of Y with smooth
branch locus D, the construction giving the covering map π : X → Y ;
and using the divisor L such that D = 2L. Given the Gaussian map

Λ2H0(Y,O(G)) ⊕ Λ2H0(Y,O(G− L))⊕ (H0(Y,O(G))

⊗H0(Y,O(G− L)))

ΦX,π∗O(G)−→ H0(Y,Ω1
Y (2G))⊕H0(Y,O(2G− L)

⊗ Ω1
Y (logD)),

then we have:

ΦX,π∗O(G)|V0 : V0 −→ A0(8.3)

ΦX,π∗O(G)|V1 : V1 −→ A1

ΦX,π∗O(G)|W0 : W0 −→ A0,

and

ΦX,π∗O(G)|V0 = ΦY,O(G).

Let

μG,G−L : H0(Y,O(G)) ⊗H0(Y,O(G− L)) → H0(Y,O(2G− L))

be the multiplication map as indicated. We also have the following
proposition:

Proposition 8.3 [3]. With the same hypotheses as Theorem 8.2,
there is a commutative diagram of exact sequences

(8.4)

R(G,G− L) � �

�

ΦG,G−L

H0(Y,O(G)) ⊗H0(Y,O(G− L)) �

μG,G−L/2

�

ΦX,π∗O(G)|V1

H0(Y,O(2G− L))

�

r

H0(Y,Ω1(2G− L)) � � H0(Y,Ω1(logD)⊗O(2G− L)) � H0(Y,OD(2G− L)).
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Moreover, if μG,G−L is surjective, and H1(Y,Ω1
Y (2G−L)) = 0, then

this is a commutative diagram of short exact sequences.

This leads to the following corollary:

Corollary 8.5 [3]. With the same hypotheses as Theorem 8.2 plus,
assuming that μG,G−L is surjective, and H1(Y,Ω1

Y (2G−L)) = 0, then:

a. The snake lemma gives an exact sequence

0 −→ kerΦG,G−L −→ kerΦX,π∗O(G)|V1 −→ ker r

−→ cokΦG,G−L −→ cokΦX,π∗O(G)|V1 −→ cok r −→ 0.

b. If H1(Y,Ω1
Y (2G− L)) = 0, then coker r = H1(Y,O(2G− 3L)).

c. If H1(Y,O(2G − L)) = 0 and ΦY,G,G−L is surjective, then
cokΦX,π∗O(G)|V1

∼= H1(Y,O(2G− 3L)).

d. If H1(Y,O(2G− L)) = 0, and ΦY,G,G−L and ΦY,G are surjective,
then

corankΦX,π∗O(G) = h1(Y, 2G− 3L).

9. Gaussian maps: Canonical divisors of double covers.
Again consider smooth projective surfaces X and Y with X a double
cover of Y with smooth branch locus D, and the covering map π : X →
Y ; the divisor L is such that D = 2L.

As we have noted previously, KX = π∗(KY + L).

Theorem 9.1. Given smooth surfaces X and Y with X a double
cover of Y with smooth branch locus D, covering map π : X → Y and
defining divisor L such that D = 2L: If H0(Y,KY ) = pg(Y ) = 0, then

corankΦX,KX = corankΦY,KY +L + h0(Y,Ω1(logD)⊗O(2KY + �L)).

Proof. We use the notation of the previous section. SinceH0(Y,KY ) =
pg(Y ) = 0, W0 = 0 and V1 = 0. The result is obtained from a direct
application of Theorem 8.2.
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9.1. Double covers of general toric surfaces. Let S be a smooth
toric surface, defined by a fan of n+2 vectors as usual. Since pg(S) = 0,
we have the following corollary to Theorem 9.1:

Corollary 9.2. If S is a smooth toric surface, π : X → S is a double
cover of S branched along a smooth curve D, constructed from the line
bundle L such that 2L = D, then

corankΦX,KX = corankΦS,KS+L + h0(S,Ω1(logD)⊗OS(2KS + L)).

From Murray’s result on the surjectivity of the Gaussian map for
smooth toric surfaces, Theorem 6.3, we have:

Lemma 9.3 [14]. If S is a smooth toric surface, L is a divisor on S
and KS + L is ample, then

corankΦS,KS+L = 0.

Combining this lemma with the previous corollary yields:

Corollary 9.4. Suppose that S is a smooth toric surface. Let
π : X → S be a double cover of S branched along a smooth curve
D, constructed with the divisor L such that 2L = D. If KS + L is
ample, then

corankΦX,KX = h0(S,Ω1(logD)⊗OS(2KS + L)).

We may compute h0(S,Ω1(log D) ⊗ OS(2KS + L)) using results
from the Appendix. Applying Theorem 11.8 to Corollary 9.2, with
E = 2KS + L,D = 2L yields:

Theorem 9.5. Suppose that S is a smooth toric surface. Let
π : X → S be a double cover of S branched along a smooth
curve D, constructed with the divisor L such that 2L = D. If
h1(S,OS(2KS + L)) = 0 and h1(S,Ω1

S(2KS + L)) = 0, then



GAUSSIAN MAPS FOR TORIC SURFACES 1511

a.

h0(S,Ω1
S(log 2L)(2KS + L)) = h0(S,Ω1

S(2KS + L))

+ h0(S,OS(2KS + L))

− χ(2KS − L)

+ h0(S,OS(L−KS)).

b.

corankΦX,KX = corankΦS,KS+L + h0(S,Ω1(2KS + L))

+ h0(S,OS(2KS + L))− χ(2KS − L)

+ h0(S,OS(L−KS)).

Theorem 9.5 combined with Theorem 9.3 yields:

Theorem 9.6. Suppose that S is a smooth toric surface. Let
π : X → S be a double cover of S branched along a smooth curve D,
constructed with the divisor L such that 2L = D. If h1(S,OS(2KS +
L)) = 0, h1(S,Ω1

S(2KS + L)) = 0 and KS + L is ample, then

corankΦX,KX = h0(S,Ω1
S(2KS + L)) + h0(S,OS(2KS + L))

− χ(2KS − L) + h0(S,OS(L−KS)).

Combining Theorem 9.6 with Lemma 3.3 gives:

Corollary 9.7. Suppose that S is a smooth toric surface. Let
π : X → S be a double cover of S branched along a smooth curve
D, constructed with the divisor L such that 2L = D. If KS + L and
2KS + L are ample, then

corankΦX,KX = χ(OS(2KS + L)) + χ(Ω1(S, 2KS + L))

− χ(2KS − L) + h0(S,OS(L −KS)).

One can use this corollary to compute specific values for the corank;
for example, since we have, using the Riemann-Roch theorem, that

χ(2KS + L) =
1

2
(2KS + L)(KS + L) + 1
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and

χ(2KS − L) =
1

2
(2KS − L)(KS − L) + 1,

and Theorem 3.3 tells us that χ(Ω1(S, 2KS + L)) = (2KS + L)2 − n,
we get that

χ(OS(2KS + L)) + χ(Ω1(S, 2KS + L))− χ(OS(2KS − L))

=
1

2
(2KS + L)(KS + L) + 1

− 1

2
(2KS − L)(KS − L)− 1 + (2KS + L)2 − n

= 40− 5n+ 7KS · L+ L2.

Hence,

Corollary 9.8. With the hypotheses as in Corollary 9.7, then

corankΦX,KX = 40− 5n+ 7KS · L+ L · L+ h0(S,OS(L−KS)).

9.2. Double covers of Hirzebruch surfaces. Let π : X → Fk

be a double cover of Fk branched along a smooth curve D, such that
D ∼ 2αC1 + 2βC2, α ≥ 0, β ≥ 0. The divisor L satisfies 2L = D;
L ∼ αC1 + βC2.

Adapting Corollary 9.8 for Hirzebruch surfaces, we have:

Corollary 9.9. If X,Fk, and L are as described above, and α ≥ 5,
β + 2k ≥ 5 and β + 2− k ≥ 0, then

corankΦX,KX = 39 +
11

2
KFk

· L+
3

2
L2.

Proof. We will use Corollary 9.8. To have KFk
+ L = (−2 + α)C1 +

(k − 2 + β)C2 and 2KFk
+ L = (−4 + α)C1 + (2k − 4 + β)C2 ample
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using Theorem 2.13, we need α ≥ 5 and β + 2k ≥ 5, which we assume.
Then Corollary 9.8 says

corankΦX,KX = 30 + 7KFk
· L+ L2 + h0(Fk,OFk

(L−KFk
)).

We have that L−KFk
= (α+2)C1+(β+2− k)C2. Using Lemma 3.5,

since α ≥ 5, α+2 ≥ 0. By supposition, β+2− k ≥ 0, therefore we can
compute

h0(Fk,OFk
(L −KFk

)) = χ(L−K)

=
1

2
(L −KFk

)(L− 2KFk
) + 1

=
1

2
(L2 − 3L ·KFk

+ 2K2
Fk

) + 1.

Substituting this into the above yields:

corankΦX,KX = 30 + 7KFk
· L+ L2

+
1

2
(L2 − 3L ·KFk

+ 2K2
Fk

) + 1

= 39 +
11

2
KFk

· L+
3

2
L2.

Remark. Even if β+2− k < 0, we can still compute h0(Fk,OFk
(L−

KFk
)) using Lemma 3.4, but we do not do this here.

10. Gaussian maps on double covers of toric surfaces.

10.1. Double covers of Hirzebruch surfaces. In this section
and the next, we put together results from essentially all of the pre-
ceding sections. We consider Gaussian maps for “large” divisors on
double covers of Hirzebruch surfaces. We use without further comment
notation from Section 8.

Lemma 10.1. Let π : X → Fk be a double cover of Fk branched
along a smooth irreducible curve D, constructed with the line bundle L
such that D = 2L. Consider a divisor G on Fk. Then, if G − L is
ample:
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a. ΦX,π∗O(G) |V0= ΦFk,G : V0 → A0 is surjective. Thus,
corankΦX,π∗O(G) = corankΦX,π∗O(G) |V1 .

b. μ : H0(Fk,O(G)) ⊗H0(Fk,O(G − L)) → H0(Fk,O(2G − L)) is
surjective.

c. H1(Fk,Ω
1(2G− L)) = 0.

d. H1(Fk,O(2G− L)) = 0.

e. ΦFk,G,G−L is surjective.

Proof. For part a: this follows from Theorem 8.2 and Proposition 6.1,
since ΦX,π∗O(G) |V0= ΦFk,G; note that the hypothesis that G − L is
ample implies that G = (G−L) +L is also ample. We have seen that,
considering the line bundle L used to construct the double cover, with
2L = D, and writing L ∼ αC1 + βC2, we have α ≥ 0, β ≥ 0. Thus,
G− L ample implies G− L+ L is ample as well.

Part b follows from Proposition 4.4 since G and G− L are ample.

Parts c and d follow from Lemma 3.3 since 2G−L = G+ (G− L) is
ample.

Finally, part e follows from Proposition 6.2 since G and G − L are
ample.

Combining Lemma 10.1 with Corollary 8.5 yields one of our main
theorems:

Theorem 10.2. Let π : X → Fk be a double cover of Fk branched
along a smooth irreducible curve D, constructed with the line bundle L
such that D = 2L. Consider a divisor G on Fk. Then, if G − L is
ample,

corankΦX,π∗O(G) = h1(Fk,O(2G− 3L)).

We would like to compute the corank of the above Gaussian maps
more precisely. As remarked previously, considering the line bundle
L used to construct the double cover π : X → Fk branched over the
irreducible smooth curve D, with 2L = D, and writing L ∼ αC1+βC2,
we have α ≥ 0, β ≥ 0. Also, if G is a divisor on Fk, with G−L ample,
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and we write G ∼ m1C1 + m2C2, we must have, by Corollary 2.13,
m1 > α ≥ 0,m2 > β ≥ 0.

Corollary 10.3. With the hypotheses of Theorem 10.2, write L ∼
αC1 + βC2 and G ∼ m1C1 +m2C2. If (2m1)/3 ≥ α and (2m2)/3 ≥ β,
then

corankΦX,π∗O(G) = 0.

Proof. Since m1 > (2m1)/3 ≥ α and m2 > (2m2)/3 ≥ β, then by
Theorem 10.2,

corankΦX,π∗O(G) = h1(Fk,O(2m1 − 3α, 2m2 − 3β)).

Also, h1(Fk,O(2m1 − 3α, 2m2 − 3β)) = 0 by Lemma 3.6.

On the other hand, the corank above is not always zero. For example,
suppose that X is a double cover of F3, branched along a smooth curve
D linearly equivalent to 14C1+2C2; thus, L = 7C1+C2. Now, suppose
that G ∼ 8C1+3C2. Then, the conditions of Theorem 10.2 are satisfied.

For simplicity, we will write hi(F3,O(aC1 + bC2)) as hi(a, b) from
now on. We compute h1(−5, 3) as follows: We know that

h1(−5, 3) = −χ(−5, 3) + h0(−5, 3) + h2(−5, 3)

= −χ(−5, 3) + 0 + h0(3,−2),

using the Kodaira-Serre duality and Lemma 3.4, part 1. Now,

χ(−5, 3) =
(−5, 3)(−3, 2)

2
+ 1 =

45− 9− 10

2
+ 1 = 14,

and, using Lemma 3.4, part 2, we compute

h0(3,−2) = 15.

Thus,

corankΦX,π∗(8,3) = 1.
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10.2. Smooth toric surfaces. Let S be a smooth toric surface,
defined by a fan of n+ 2 vectors as usual. Recall the definition of the
curves Ci from Section 2. Corresponding to Lemma 10.1, we have:

Lemma 10.4. Let π : X → S be a double cover of S branched along a
smooth irreducible curve D, constructed with the line bundle L such that
D = 2L. Consider a divisor G on S. Then, if L,L+KS, L+KS +Ci

(for every i) and G− 2L = G−D are all ample:

a. ΦX,π∗O(G) |V0= ΦS,G : V0 → A0 is surjective. Thus, corank
ΦX,π∗O(G) = corankΦX,π∗O(G) |V1 .

b. μ : H0(S,O(G)) ⊗ H0(S,O(G − L)) → H0(S,O(2G − L)) is
surjective.

c. H1(S,Ω1(2G− L)) = 0.

d. H1(S,O(2G− L)) = 0.

e. ΦS,G,G−L is surjective.

Proof. Note that the ampleness hypotheses imply that the following
divisors are ample: G − L = G − 2L + L, G = G − L + L, G + L,
G + L +KS, G + L +KS + Ci (for every i), 2L+KS = L +KS + L
and 2L+KS + Ci = L+KS + Ci + L (for every i).

For part a: this follows from Theorem 6.3 and Lemma 8.2, since
ΦX,π∗O(G) |V0= ΦS,G. Part b follows from Fakhruddin’s theorem 4.2
since G and G− L are ample. Parts c and d follow from Theorem 3.3
since 2G − L = G + (G − L) is ample. Finally, part e follows from
Proposition 6.4.

Combining Lemma 10.4 with Corollary 8.5 yields:

Theorem 10.5. Let π : X → S be a double cover of S branched
along a smooth irreducible curve D, constructed with the line bundle L
such that D = 2L. Consider a divisor G on S. Then, if L,L+KS, L+
KS + Ci (for every i) and G− 2L = G−D are all ample:

corankΦX,π∗O(G) = 0.
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Proof. Using Corollary 8.5, corankΦX,π∗O(G) = h1(S,O(2G − 3L)).
However, since G− 2L and G−L are both ample, so is 2G− 3L. Thus,
by Theorem 3.3, h1(S,O(2G− 3L)) = 0.

APPENDIX

11. Ω1
M (log D). The following discussion is excerpted from Saito

[17] for the reader’s convenience.

Theorem 11.1 [17]. Let M be an n-dimensional complex manifold,
and V ⊂ M a hypersurface of M defined by an equation h(z) = 0,
where h is holomorphic on M . Let ω be a meromorphic q-form on M ,
which may have poles only along V . Then the following four conditions
for ω are equivalent:

1. hω and h dω are holomorphic on M .

2. hω and dh ∧ ω are holomorphic on M .

3. A holomorphic function g(z), a holomorphic (q − 1)-form ξ and a
holomorphic q-form η on M exist such that:

(a) dimCV ∩ {z ∈ S : g(z) = 0} ≤ n− 2.

(b) gω = (dh/h) ∧ ξ + η.

4. An (n − 2)-dimensional analytic set A ⊂ V exists such that the
germ of ω at any point p ∈ V − A belongs to (dh/h) ∧ Ωq−1

M,p + Ωq
M,p,

where Ωq
M,p denotes the module of germs of holomorphic q-forms on M

at p.

This leads to the following definition:

Definition 11.2 [17]. A meromorphic q-form on M is called a q-
form with logarithmic pole along V or logarithmic q-form if it satisfies
the equivalent conditions of Theorem 11.1. Let hp = 0 be a reduced
equation for V , locally at p ∈ V . A meromorphic q-form is logarithmic
along V at p if hpω and hpdω are holomorphic.

We denote

Ωq
M,p(logV )

.
= {germs of logarithmic q-forms at p},

Ωq
M (logV )

.
= ∪p∈MΩq

M,p(logV ).
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Theorem 11.3 [17]. If M is a complex manifold, V a smooth hyper-
surface of M defined by an equation h(z) = 0 where h is holomorphic
on M , then Ωq

M (logV ), q = 0, 1, . . . , n, are coherent OM -modules.

Saito defines the residue morphism as follows:

Definition 11.4. If ω is a meromorphic q-form on a complex
manifold M and a holomorphic function g(z), a holomorphic (q − 1)-
form ξ and a holomorphic q-form η on M exist such that gω = (dh/h)∧
ξ + η, then the residue morphism, res, is a sheaf homomorphism:

res : Ωq
M (log V ) −→ OV

ω
res�−→ 1

g
ξ.

Using Saito’s definition of the residue morphism, we have the residue
exact sequence for logarithmic q-forms:

Theorem 11.5 (see, e.g., [17, page 276]). If M is a complex manifold
and V is a smooth hypersurface on M , then the sequence

0 −→ Ωq
M −→ Ωq

M (logV )
res−→ OV −→ 0

is exact.

Applying this short exact sequence to a general surface Y , D a smooth
curve on Y and any divisor E on Y , we get the short exact sequence

(11.6) 0 −→ Ω1
Y (E) −→ Ω1

Y (logD)(E) −→ O(E)|D −→ 0.

Recall the standard short exact sequence

(11.7) 0 −→ OY (−D)(E) −→ OY (E) −→ O(E)|D −→ 0.

Using the associated long exact sequences gives us the following theo-
rem:
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Theorem 11.8. Suppose that Y is a smooth surface, E a divisor, D
a smooth curve on Y .

a. If h1(Y,Ω1
Y (E)) = 0, then

h0(Y,Ω1
Y (logD)(E)) = h0(Y,OY (E)|D) + h0(Y,Ω1

Y (E)).

b. If h1(Y,OY (E)) = 0, then

h0(Y,OY (E)|D) = h0(Y,OY (E))−χ(E−D)+h0(Y,OY (KY +D−E)).

c. If h1(Y,OY (E)) = 0 and h1(Y,Ω1
Y (E)) = 0, then

h0(Y,Ω1
Y (logD)(E)) = h0(Y,Ω1

Y (E)) + h0(Y,OY (E))

− χ(E −D) + h0(Y,OY (KY +D − E)).

Proof. Note that χ(E−D) = h0(Y,OY (E−D))−h1(Y,OY (E−D))+
h2(Y,OY (E−D)) and h2(Y,OY (E−D)) = h0(Y,OY (KY +D−E) by
the Kodaira-Serre duality. If h1(Y,OY (E)) = 0, then the sequence

0 −→ H0(OY (E −D)) −→ H0(Y,OY (E))

−→ H0(Y,OY (E)|D) −→ H1(Y,OY (E −D)) −→ 0

is exact. Thus,

h0(OY (E−D))−h0(Y,OY (E))+h0(Y,OY (E)|D−h1(Y,OY (E−D)) = 0.

Therefore,

h0(Y,OY (E)|D = h1(Y,OY (E−D)−h0(OY (E−D))+h0(Y,OY (E)).
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