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GENERATION OF THE SYMMETRIC FIELD
BY NEWTON POLYNOMIALS
IN PRIME CHARACTERISTIC

MAURIZIO MONGE

ABSTRACT. Let Ny, = 2™ +y™ be the mth Newton poly-
nomial in two variables, for m > 1. Dvornicich and Zannier
proved that in characteristic zero three Newton polynomials
Ng, Ny, N are always sufficient to generate the symmetric
field in z and y, provided that a,b, ¢ are distinct positive in-
tegers such that (a,b,c) = 1. In the present paper we prove
that in the case of the prime characteristic p the result still
holds, if we assume additionally that a,b,c,a — b,a —c¢,b — ¢
are prime with p. We also provide a counterexample in the
case where one of the hypotheses is missing.

The result follows from the study of the factorization of
a generalized Vandermonde determinant in three variables,
which under general hypotheses factors as the product of a
trivial Vandermonde factor and an irreducible factor. On the
other side, the counterexample is connected to certain cases
where Schur polynomials factor as a product of linear factors.

1. Introduction. Let F = k(z,y) be the function field generated
over a field k by the algebraically independent transcendentals z,y,
and let S be the subfield of symmetric functions. Let N, be the mth
Newton polynomial (or power sum) in  and y

Ny =2™ +y™, form > 1.

Note that if the characteristic is p, then Ny, = Ngf, for each k£ € N.

We will also call Na,b (respectively ./\/,I’b,c) the subfield of F' generated
by N,, Ny (respectively N,, Ny, N.) over k, i.e.

Na,b:k(Na;Nb)a Na,b,c:k(NaaNbaNc)-

In [5] Mead and Stein calculated the degree of the extension S/N,
in characteristic zero and conjectured that S = Na,b,c (i.e., Na, Np, N,
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generate the whole symmetric field) whenever a, b, ¢ are distinct inte-
gers such that (a, b, c¢) = 1, also providing evidence for their conjecture.
This conjecture was finally settled in [1] by Dvornicich and Zannier, by
computing the Galois group of a polynomial connected to a fundamen-
tal determinantal equation via the Riemann Existence theorem. The
solution of the conjecture then followed after they proved that such a
Galois group must be the full symmetric group, and considering the
action of the Galois group on a system of equations connected to the
problem.

These topological methods do not seem to admit an immediate
generalization to the prime characteristic case. However, we will show
that the same result also follows from the irreducibility of the main
factor of the fundamental determinantal equation, and that in many
cases such irreducibility can be proved by elementary methods.

It should also be noted that it is not possible to expect the conjecture
to hold in prime characteristic without any additional hypothesis, since
whenever a,b are distinct positive integers such that (a,b) = 1, then
a, pa, b are coprime integers and Np, = NP, 50 N, pap = Nap (that can
be easily seen to be # S, in general). It is not enough just to request
that a, b, c all be prime with p: in the last section to show that there
exist triples of coprime integers a, b, ¢, all prime with p, such that N, .
is strictly contained in S. The degree of such a non-trivial extension
can be computed explicitly, and we will also exhibit a formula for this
degree for a family of triples a, b, ¢ such that the differences are not all
prime with p.

2. Preliminary results. We will now prove that the solution of
our problem only depends on the characteristic of the field of constants
k. This allows us to replace k with any other field with the same
characteristic, provided that x,y are still algebraically independent.

For any field L, let NI be the field generated over L by a collection
of Newton polynomials N,,, ... , N, (actually we will always be in the
case of s = 2,3). Similarly, let FX (respectively S”) be the field of
functions (respectively symmetric functions) in x,y over L. Then we
have:

Proposition 2.1. Let K be a field such that x,y are algebraically
independent over K, and let k be a subfield. Then

[$% + N] = [S* : NG,
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intending that whenever one of the two degrees is finite, then the other
one is finite too and the two degrees are equal.

Proof. In fact, we can consider the following diagram:

Since x,y are algebraically independent over K, it follows that K
and F* are linearly disjoint over k (see [3, Proposition 3.3, Chapter
8]). Consequently we have that N X and S* are linearly disjoint over
NPF as well (see [3, Proposition 3.1, Chapter 8]), implying the equality
whenever S¥ /NV¥ or SK /N X is an algebraic extension of finite degree. O

Note that this proposition allows us to replace the field K with any
other field L with the same characteristic, as they both contain the
same prime field (Q or F,).

Another simple but crucial observation is that we just need to calcu-
late the degree [S : V] when N, is the field generated by a collection
of Newton polynomials N,,,...,N,, satisfying (a1,...,as) = 1. In
fact, if the aq,...,as have a non-trivial gecd, g say, we obtain a field
that is contained in the symmetric field in z9,vy9. If we call N, /g the
field generated by N, /g,...,N,, /g, and call S(9) the symmetric field
in 29,y9, we have that

[S: N =[S : SW)SW : N,] = g*[S : Nayg)-
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Consequently, we can always assume (ai,...,as) = 1 with no loss of
generality.

2.2. Field generated by two polynomials. We now extend to
the prime characteristic case the results obtained by Mead and Stein
in [5]. We have the following

Proposition 2.3. Let a > b be coprime integers. If k has positive
characteristic p, let’s assume a,b prime with p. Then the extension
S/Nayp is a separable algebraic extension of degree

ab/2 if ab is even,

[S = Nap] = { [(a — 1)b]/2 if ab is odd.

Proof. We can immediately see that the extension is a finite separable
algebraic extension, because the Jacobian (see [3, Section 5, Chapter
8]) of the algebraic map (z,y) — (2@ + y*, z® +y?) is

amafl a a—1 _ B _ B
det (bil‘bl bzb1> :ab(xa 1yb ! _xb lya 1)7

that is, # 0 since we assumed a, b to be prime with the characteristic,
or the characteristic to be zero. Note for future reference that we did
not need to assume a, b to be coprime to achieve this.

To calculate the degree of the extension we will calculate the degree
of F/N,p; the degree of S/N,, will be precisely half of it. Observe
that when we add z to the field NV, ; we get

ya:Na_xaa yb:Nb_xba
and consequently y € N, () since a, b is relatively prime. This proves

that = is a primitive element for F, i.e., F = N, ;(x), so we have to
calculate the degree of x over Nmb.

But z is a solution of the polynomial

FX) = (Na = X" — (N, = X*)* € Nap[X],
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that is homogeneous of weight ab, if we assign weight 1 to X and a,b
to Ng, Ny, respectively. Furthermore, N,, N, must be algebraically
independent over k, since F' has transcendence degree 2 over k, and
F/N, is algebraic.

The constant term of f(X) is N® — Ng, and it is irreducible. In fact it
is homogeneous of weight ab, and a factor should have weight multiple
of both a and b, and thus ab since a, b is relatively prime. Consequently
f(X) is irreducible as well as homogeneous, and its degree in X is ab
when one of a,b is even (and in this case p # 2, since (ab,p) = 1), or
(a — 1)b otherwise. O

3. Case with some of a,b,c divisible by p. In this section we
will work in characteristic p, assuming the base field to be F = Fp for
convenience. We will see that we are not actually losing much assuming
all of a, b, c to be prime with p. In fact, we have

Proposition 3.1. Suppose that at least two of a,b, c are divisible by
p. Then Ny . cannot be S.

Proof. Assume a,b to be divisible by p. Then N, is contained in
S(®) the symmetric function field in z?,y?. But N, has degree at
most p over Ny p e, since it is generated by N, that satisfies XP — N,..
On the other hand, the degree [S : S(p)] is p?, 50 Ny p,. cannot be equal
to S. i

Conversely, the following proposition shows that the case with only
one among a, b, ¢ divisible by p can be reduced to the case where they
are all prime with p.

Proposition 3.2. Suppose a, b, ¢ all prime with p. Then for all k > 1
we have Nopec =Ny pphe-

Proof. The extension Ngp /N, p . is purely inseparable, being
generated by N, that satisfies the purely inseparable equation

X" — Ny, =0.

But this extension is contained in the extension kS'/./\fayb,pkC that is
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separable (since, as we have seen in the proof of Proposition 3.1, S/N,
is separable). Thus, being both separable and purely inseparable, the
extension N 4 c /N, p pr. must be trivial. 0

4. The main result. Most of this section is dedicated to proving
the following

Proposition 4.1. Let a > b > c be relatively prime positive integers,
and suppose that a,b,c,a — c,a —b,b— c are prime to the characteristic
p. Then we have that

Na,b,c =S.

Proof. We will argue by contradiction, assuming the degree of
F/./\/a,b,C to be ; 2. Let F~" be a separable algebraic closure of the
rational functions F', and suppose that there exist z,w € F° different
from z,y such that

(1) ™ +y™ =2"+w™, form=a,b,c.

Since z, y are separable over N, ; . we can restrict our attention to the
— sep
separable closure F'™ .

It is easy to see that there cannot be two of x, y, z, w with a constant
ratio: in fact x,y are algebraically independent, and the same must
be true for z,w, since k(z,w) 2O Npc, and N, p . has transcendence
degree 2. Now suppose that z = ux, with 4 € k. Then replacing z with
px and eliminating w from (1), we have

(1= p®2®+y")" = (1 - pb)a® + )",
(1= pz* + %) = ((1 - p%)z° +y°)",

relations between x and y, which are assumed to be algebraically
independent. Consequently they must be trivial, and considering the
coefficients of z®, z°, z* we deduce that this can happen if and only if
p® = pb = p¢ =1, ie., p =1 since(a,b,c) = 1. But in this case z = z
and y = w, and x,y are not different from z, w.

To proceed let’s extend to F°? the standard derivation 8/dz on the
field F(z,w) (as we said before, z,w are algebraically independent),
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that we will indicate with a prime. Taking the derivative of (1) we get
the non trivial relations

(2) ™ g 4 ymly = 2™ for m = a,b,c,

since we required a, b, ¢ all to be prime with p. This system of equations
can also be written as

re—¢ a—c  ,a—c z . xcfl 0
xb—c yb—c Zb—c A yl . yc—l — 0
1 1 1 —ze7t 0

This last equation shows that z,y, z must be solutions of the determi-
nantal polynomial R(X,Y,Z) defined as

Xa—C Ya—C ZG—C
R(X,Y,Z) =det | Xt=¢ yb-c zb=c
(3) 1 1 1
=ZM4XB _yB)_ zB(x4 —v4)
4 XBYB(XA_B _ YA_B),

where we have put A = a — ¢, B = b — ¢, and that we will see as a
polynomial in Z with coefficients in F[X,Y].

Let V(X,Y,Z2) = (X - Y)(Z — X)(Z —Y), the Vandermonde de-
terminant in X,Y, Z. If we let d = (A, B), then R(X,Y, Z) is clearly

divisible by V(X¢,Y4, Z%), that is not zero on (z,y, z), since no two of
x,y, z have constant ratio.

Thus, the quotient

R(X,Y,Z)

T(X,KZ) = TA7B(X,Y,Z) = m,

that we are going to show to be irreducible, must vanish on (z,y, 2).
Let’s observe that T'(X,Y, Z) is symmetric; it is also the Schur poly-
nomial s)(X%, Y4 Z%) in X9 Y% Z¢ associated with the partition
A = (A/d —2,B/d — 1,0) of the theory of symmetric functions, fol-
lowing the notation of [4].

To prove the irreducibility of T(X,Y, Z) in F[X,Y, Z], let’s consider
the polynomial
R(X,Y,Z)

IX0,Y,2) = =y
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that has an intermediate form between R(X,Y,Z) and T'(X,Y, Z), and
that we will use to extract information about T'(X,Y,Z). It can be
written as

4) 22 x=¢V) - 2P ] (X —&v)+xBY? [ (x —oY).
¢P=1 e4=1 94-B=1
¢i#1 i1 07#1

The (, £, 0 appearing in the (4) are respectively the Ath, the Bth and
the (A — B)th roots of the unity, with the dth roots removed. They
are all different, since p does not divide A, B, A — B, and the greatest
common divisor of any two of A, B, A — B is precisely d.

4.2. Irreducibility of T(X,Y,Z). The strategy we are going to
use to prove the irreducibility of T'(X,Y, Z) can be seen as a variation
of Eisenstein’s criterion, in a sense that will be specified below.

Let f(U) = >.;_, fiU" € R[U] be a polynomial in U over a commuta-
tive unitary ring R with degree s > r for some r > 1, such that f,. ¢ P
for some prime ideal P C R, f; € P for j <r and fo € P\ P?

fO)=fU+ 4+ U+ fraU ™ o+ AU+ fo
R m m m
P P P P\P2

If it can be factored as f(U) = g(U)h(U), we can easily deduce from
the factorization modulo P that one of its factors, g(U) = 3_ g;U" say,
must inherit this ‘signature’ and satisfy g, ¢ P, g; € P for j < r and
go € P\ P?, and in particular its degree is at least . If r is equal to
s, the degree of f, this forces h(U) to have degree zero, and we recover
precisely Eisenstein’s irreducibility criterion. The polynomials that we
are studying do not satisfy the requirements for Eisenstein’s criterion,
but this will be compensated by the fact that they are symmetric.

For convenience, this property of f(U) will be called signature of
length r relative to the ideal P, and since we can similarly have such a
signature in the first r coefficients of the highest degree terms rather
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than in the lowest degree terms

f(U) = f.s Us —+ fs—1Us_1 4.4 fs_r+1Us—'r'+1

m m m
P\ P2 P P
+ fsfrUS_T +t f07

R
P

we will respectively speak about upper signatures and lower signatures.

Note that T'(X,Y, Z) is primitive in Z (for instance because I(X,Y, Z)
is), so we will just have to show that it cannot split into factors with
degree > 1 in Z.

Arguing by contradiction, suppose that T'(X,Y, Z) can be factored
into k£ > 1 irreducible factors with degree > 1 in Z, Hle Gi(X,Y,Z),
say. Observing the form of

I(X,Y,2) =T(X,Y,2)(2* - X¥) (27 - Y

that we wrote in (4), we can see that the terms of degree < B in Z
are divisible by (X — 0Y) for all 4=5 = 1,0 # 1, that the coefficient
of the constant term in Z is divisible only once, while the coefficient
of ZB is not divisible. Thus, this polynomial has a lower signature of
length B relative to the ideal Py = (X — 0Y) for all 04=8 =1, 4 #£ 1,
and similarly it has an upper signature of length A — B relative to the
ideal Q¢ = (X — CY) for all (P =1,¢¢ £ 1.

This polynomial has both an upper and a lower signature, unless
either d = B, or d = A — B, and these cases will be considered
separately.

4.3. Case 1 (with B # d and A — B # d). The irreducible factors
of I(X,Y, Z) that inherit an upper (respectively lower) signature must
have degree in Z at least B (respectively A — B), and they must be
factors of T'(X,Y, Z). Since the degree in Z of T'(X,Y, Z) is precisely
A — 2d, there must be one ‘big’ factor, G1(X,Y, Z) say, that inherits
both an upper and a lower signature, or T'(X,Y, Z) would have degree
> Ain Z. For the same reason, this big factor G1(X,Y, Z) must inherit
all signatures of I(X,Y, Z) relative to the Py and Q..
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Thus, we have that any product of some of the remaining factors

[[Gi(x,Y,2), with1C{2,3,...,k}, I#2,
iel

must be monic in Z, have constant term of the form X"Y™* (for some
r,s > 0), and in particular it cannot be symmetric. It follows that
T(X,Y,Z) cannot be factored as a non trivial product of symmetric
polynomials, i.e., the action of the symmetric group Ss as permutations
of XY, Z on the irreducible factors is transitive.

Such an action does not preserve the degree in Z, but it preserves
the total degree, and the G;(X,Y, Z) must have the same total degree.
As we have seen, G1(X,Y, Z) has degree in Z at least A — B, and its
leading coefficient is the product of precisely B — d factors in X,Y of
the form (X — ¢Y'). Thus, its total degree is at least A — d.

On the other side the total degree of T'(X,Y, Z) is precisely A+B—3d.
Were the number of factors > 2, then the total degree should be at least
2(A—-d)z A+ B - 3d,

since A > B and d > 0. This contradiction proves that G1(X,Y, Z)
must be the only factor, and that T'(X,Y, Z) is irreducible.

4.4. Case 2 (with B=d or A— B = d). Let’s show that the case
with A — B = d can be reduced to the case with B = d. Since

XA yA A 1 1 1
det | x y? z4 (XY Z)A . det | x-Atd y-A+d g-Atd
1 1 1 B X—A Y—A Z—A
x2d y2d g2dN 1 1 1 )
det | x4 yd zd (XYZ)Zd-det x4 y-d4 z-d
1 1 1 X72d Y*Zd Z*Zd

we have that
Taa(X,Y,Z) = (XYZ)A72. Ty o o( X1, Y71, Z7Y).

Consequently, from a factorization of T4 4—4(X 1, Y1, Z71) e FI XL,
Y=, Z7'] we can deduce a factorization of T4 4(X,Y, Z), distribut-
ing factors of (XY Z)4~24 on the factors of Ta 4 o(X 1Y% Z71)
to make all exponents positive. The only case where a non trivial
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factorization can become a trivial factorization is when one of the fac-
tors of Ty a—a(X ™', Y1, Z7") is a non trivial monomial X ~"Y ~*Z~!
for r,s,t > 0, but this cannot happen in view of the definition of
Ta,a-d(X,Y, Z).

To prove the irreducibility of T4 ¢(X,Y, Z), we will show that the
variety defined in P?(F) is nonsingular. The irreducibility follows
immediately, since two irreducible factors would define two projective
varieties with non empty intersection (by the theorem of Bézout, see
[2]), and on a point of this intersection all derivatives of the product
would be zero.

Let’s consider first the case with d = 1 and put for convenience A = k
for some integer k > 2, and B =1. If k = 2, then T}, 1(X,Y, Z) = 1, so
let’s suppose k > 2. It’s easy to see with a direct computation, or by
considering the Jacobi-Trudi identity (see [4]), that T 1(X,Y, Z) is the
(k — 2)th complete symmetric function, i.e., the sum of all monomials
of degree k — 2, denoted as hy_2(X,Y, Z) in the notation of [4].

We have that

0 0 0
(aX tov t az)Tk,l(X,Y,Z) =k Tp11(X,Y, 2),

k times the sum of all monomials of degree k — 3, since the contribution
to the monomial X"Y*Z? for r,s,t >0, r + s+t =k — 3, is given by

0 0 0
7XT+1YSZt 7.XTYS+1Zt 7XTYSZt+1 — k . XTYSZt.
X "oy * oz

Suppose that there exists a point with homogeneous coordinates
(z,y, z) satisfying the system of equations

Tk71(X, Y,Z)=0,

(90/0X)Tr 1 (X, Y, Z) = 0,
(0/0Y)Ty 1 (X,Y,Z) =0,
(8/82)T1,1(X,Y, Z) = 0.

Since k is prime to characteristic p, the point (z,y, z) must also be a
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solution of

X 0 0 0
Tk,l(Xayaz) - ? ‘ (8_X + 3_Y + a_Z>Tk,1(X7Y7Z)
k—2
=y vizkmi= ] (v -¢2).
i=0 k—1_1
¢#1

Since we also supposed k£ — 1 to be prime to characteristic p, the
coordinates of this point must satisfy y = ¢z for some ¢* 1 =1,¢ # 1.
Repeating the computation with other variables we have that any two
of z,y, z differ by a (k — 1)th root of the unity different from 1.

Consequently, this point is of the form (¢t,vt,t) € P2F, with
¢! = ¢*~! = 1 and ¢,,1 all different, and ¢ # 0. But we have
that

) _ 9 R(X,Y,2)
gz (XY, 2) = 0Z V(X,Y,Z)
CEZF X -Y) - (XE—YF)
- V(X,Y,Z)
_R(X.Y.2) (0/02)V(X,Y, Z)

V(X,Yy,2)>

where as usual we called V(X,Y,Z) the Vandermonde determinant
and R(X,Y,Z) the determinantal polynomial defined in (3) for A =
k, B = 1. Evaluating at (¢t,9t,t), and taking into account that
R(¢t, 9t t) = 0, we deduce that

tk:—3

iTk,l(X7Y,Z) =(k-1)

— # 0.
0z (pt,t,t) (]- - ¢)(1 o ¢) 7&

Let’s now take care of the case with d > 1, and write A = kd, B = d.
To prove the irreducibility of Tk a(X,Y, Z) = Ty 1 (X%, Y4, Z9), we will
show that it defines a nonsingular variety as well. So, let’s consider the
system of equations

Tia (X%, Y7, 2%) =0,

dX4 1. (0/0X)T (X4, Y, Z2%) =0,
dY=t - (8/0Y) Ty 1 (X4, Y4, Z4) = 0,
dz*=1 - (0/02)Tk1 (X, Y4, Z%) = 0.
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Clearly any point (z,y, z) such that z, y, z are all # 0 cannot satisfy this
system, because this would imply that (:cd, y?, zd) would be a singular

point for T(X,Y, Z), and this cannot happen as we have just seen.

So let’s suppose that the above equations are satisfied in a point
(z,y, z) with y = 0, say. Such a point must be a solution of

Te1(X40,2%) = [ (x-9¢2%,
k—1_1

¢#1

implying that z¢ and z¢ differ by a factor that is a (k — 1)th root of
unity different from 1. Consequently, (z¢,y?, 2%) must be of the form

(6t,0,t) for ¢*~1 =1,¢ # 1 and t # 0, and all we have to show is that

tk—3

iTk,l(X,Y,Z) =(k-1)

£ 0.
0z (6.0 1 ¢

4.5. Conclusion. We just proved that T'(X,Y, Z) is irreducible as
a polynomial in Z with coefficients in F[X,Y, Z], and consequently it
will also be irreducible in F(X,Y)[Z] thanks to Gauss’s lemma, since
the ring F[X, Y] is factorial.

Recall that the following equations
(5) " +y" - 2" =wm, form=a,b,c

are assumed to be satisfied for some w, z different from x,y, and that
T(X,Y,Z) is a relation satisfied by z,y, z.

Note that z must be transcendental over F(z). In fact, suppose that
this is not the case: y is a root of the polynomial R(z, U, z), considered
as a polynomial in U over F(z, z), and consequently of T'(z, U, z) since
no two of z,y, z have constant ratio. Furthermore, T'(z,U, z) cannot
vanish identically, since its constant term is a homogeneous polynomial
in z,z, i.e., of the form [[(z — 6,2), and z, 2z do not have a constant
ratio.

This implies the existence of a non trivial algebraic relation of y
over F(z, z), and consequently that y is algebraic over F(z), but this is
impossible since we assumed x, y to be algebraically independent. Let’s
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also note for future reference that w must be transcendental over F(z)
as well.

The algebraic independence of z, z allows us to define an isomorphism
e : F(z,y) = F(z, z) that fixes the constants and such that

T, Yy r— 2.

Since z is a root of the polynomial T'(z,y,U) in U, we can extend e
to F(z,y, z) defining the image of z to be any root of

el(z,y,U) = T(ew,ey,U) = T(,2,U) = T(x,U, 2),

since T'(X,Y, Z) is a symmetric polynomial. In particular, we can put
e(z) =v.
Let’s now extend ¢ to the algebraic closure of F(m,y,z), and let

u = e(w) (actually we have w € F(z,y,z), but we will not have to
use this fact). Applying € to (5) we get

(6) g™+ 2" —y™ =™, form=a,b,c.
Adding together (5) and (6) we get
(7) 2z = w™ +u™, form=a,b,c

(recall that the hypotheses rule out the case of characteristic 2).
Eliminating u from (7) for m = a,b we have

(8) (2z% —w?)® — (22° — wh)* = 0.

This is a non trivial algebraic relation of w over F(z), that had been
proved to be transcendental over F(x). This contradiction concludes
the proof. O

A comment on the hypotheses we required at the beginning of the
theorem is needed. Let’s restrict to the case of a, b, ¢ coprime and all
prime to p, as we are allowed to do thanks to Proposition 3.2. Computer
experiments show that in many cases where p divides the differences
a—c,a —b,b— c the Newton polynomials N,, Ny, N, still generate the
full symmetric field.
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A careful analysis of the proof shows that in Case 1 of the proof
of the irreducibility of T'(X,Y,Z) we did not actually use the fact
that A = a — ¢ is prime to p (in Case 2 this hypothesis is important
and necessary, as we will show with some examples below). We have
omitted this small weakening of the hypothesis to avoid complicating
the statement too much.

Furthermore, the conclusive step works flawlessly without T(X,Y, Z)
being irreducible, provided that we know its factors to be all symmetric
polynomials. 1t is possible to show examples where precisely this
happens (such as T7 3(X,Y, Z) in characteristic 2), but it seems difficult
to show this for some classes of polynomials.

On the other hand, if we do not require a — ¢,a — b,b — ¢ to be
prime to p, there are cases where N,, Ny, N. do not generate the full
symmetric field. A family of cases where this happens is related to the
factorization of Tpr 1(X,Y, Z), for r > 1. In fact, we have

Tr1(X,Y,Z)= [] (Z-aX+(a-1)Y),
aerr
a#0,1

as we will show below together with a few other factorizations of the
polynomials T4 g(X,Y, Z), for A, B, A — B not all prime to p.

5. A family of counterexamples. Let p be a prime # 2, and for
each n € F,, let’s consider the polynomial

(9) Py(X)=X?-2nX +n.

Note that a root of P, (X) cannot be root of P, (X) for n # x, because
the equation
X2 —2nX +n=0,

considered as an equation in 7 for a given X determines univocally 7,
unless X = 1/2, which is never a solution because P,(1/2) =1/4 # 0
for each n € Fy,.

Furthermore, each P,(X) has distinct roots unless its discriminant
4(n? — n) vanishes, and this can only happen for n = 0, 1.

Thus, as 7 varies in F), the polynomials P,(X) have 2p — 2 different
roots overall, and note that 2p—2 > p for p > 3. Consequently, since in
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F,, there are only p elements, one of these roots will belong to F,2 \ Fp,
and this implies that at least one of the P,(X) is irreducible in Fj,[X]
for some n € F,.

Let P,(X) be irreducible, and let a, 8 € F,2 \ F), be its roots. These
roots are interchanged by the Frobenius automorphism %

Z:F —F, T+ 7P,

In particular, they are interchanged applying # any odd number of

times, i.e., - -

™ =g, g =0
for any integer k.

Note also that, by construction, we have
2a8 =2n=a+ 0.
If we now define
(10) z=az+ (1 - a)y, w=(1-a)z+ ay,

we have that, for any integer k,

2k+1 2k+1 2k+1 2k+1
P +1+wp +1:Zp sz wP

= (az + (1 - a)y)”"" (az + (1 - a)y)
(O e ay)” (1 - )z + ay)

= (Bz""" + (1= By ) (az + (1 - a)y)

+((1 =Bz + 8y (1 - @)z + ay)

=(2aB8—a—B+1)(z” 4 + yp2k+1+1)
2k+1

+(B+a—28a) (" Ty +ayr )
_ xp2k+1+1 + yp2k+1+1.

Thus, if we take a, b, c equal to p?*+1 +1,p**t1 + 1,1 for k > £ > 0,
we have found an ‘alternative’ pair z,w in (10) that satisfies equation

(1), and consequently N,, Ny, N. cannot generate the full symmetric
field.
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We can also calculate the degree of the symmetric field over the field
generated by Npri1, Npsy1, Ny for r > s > 0, because all we have to
do is count the number of z that together with some w satisfy (1).
In particular those different from z,y can be found among the roots
of Tpr,s71(x,y,U)Ps considered as a polynomial in U, and given the
factorization of T},-—s 1 (,y, U) in linear factors we know that they must
be of the form z = az + (1 — a)y for a € Fpr—s, a # 1,0.

Furthermore, w is uniquely determined as w = (1 — a)z + ay, and if
we put 8 = o, then «, 8 must satisfy the condition 20,3 = o+ 3, and
are the roots of a polynomial P,(X) for some n € F,. If a = 3, then
a = 0,1, and we get z = y or z = x respectively, so let’s consider the
case a # (. Now, if we put v = a?", the condition 2ay = a + 7 must
be satisfied as well, and consequently 3 =y = o?".

We have that % ¢ (i.e., & applied s times) maps « to §, and applied to
the coefficients of P, (X) we get another polynomial of the same form,
P,.(X) say. Since P,(8) = P.(8) = 0, this implies that n = &, and it
follows that symmetrically #* maps 3 to «, and leaves 7 fixed. Since
the same is true for Z", we have that 7 is fixed by .#™ for m = (r, s),
i.e., that n € Fpm, while o has degree precisely 2 over F,=, in other
words that o € Fem \ Fym.

We can now distinguish two cases: when 2m { (r — s), we have
that Fpem N Fps = Fym, and the only o allowed are 0,1, and
Npry1, Nps 41, N1 consequently generate the full symmetric field.

On the other hand, when 2m | (r — s) we have that Fjem C Fjr—s,
and all we have to do is count the number of solutions of

X2 X 417 =0, X € Fpom \ Fym

while 7 varies in F,m. Repeating the same computation we did at the
beginning of this section, we deduce that the total number of solutions
in F,2m is precisely 2p™ — 2, and that each X € F,~ is a solution for
some 7 except for X = 1/2, and the number of these bad solutions
in Fpm is precisely p™ — 1. Adding the trivial solutions o = 0,1 and
dividing by two we obtain the degree.

In conclusion, for any r > s > 1 and m = (r, s), the degree of the
symmetric field S over the field generated by Npri1, Npsi1, Ny is

| (1 if 2m f (r — )
[S . Npr—&-l,ps"rl:l] = { (pm + ]_)/2 if 2m | (T - 3).
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We can easily see that in characteristic 2 we can construct an
analogous family of counterexamples considering the pair

z=az+ (1 - a)y, w=(1-a)z+ ay,

where a € Fy2 \ Fy is a third root of the unity, but in this case the
indices a, b, ¢ must be chosen of the form 22! +1,22% 4+ 1, 1, where even
powers of 2 appear.

In fact, in characteristic 2 the condition 2a8 = a + 3 is equivalent
to o = B (and this in characteristic # 2 can never happen, unless
a=0,1).

To calculate the degree of S over Nory1, Nos i1, N7 let’s observe that
all we have to do is count the number of elements o € Fo-—s that are
left fixed by .#° and %", and they are precisely the elements of Fom,
for m = (r, s). Dividing by two we get the degree of the extension

[S :N2r+1725+171] = 2m71.

5.1. Factorization of certain families of T'(X,Y,Z). We will
now show that

(11) Tr1(X,Y,Z)= [] (Z-aX+(a-1)Y).
acF,r
a#0,1

To check the equality, calling as usual V(X,Y,Z) the Vandermonde
determinant, it is enough to observe that we have

xp" yp" gp"
Tp1(X,Y,2)- V(X,Y,Z)=det | X Y Z |,
1 1 1

and the determinant vanishes if we put Z = aX — (a — 1)Y for each
a € Fpr. We have to exclude the factors (Z — aX + (o — 1)Y) for
a = 0,1, because they are precisely the factors dividing V(X,Y, Z),
but the remaining p” — 2 factors are factors of T,r 1(X,Y, Z), which has
degree precisely p” — 2 in Z. To conclude we have just to verify that
the constant factor by which they may differ is 1, but this is obvious
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considering that the two expressions appearing in (11) are both monic
in Z.

Another factorization of the same flavor is the following:

(12) Ty 1 1(X,Y,Z2) = [[ (Z2-aX-pY).

a,BEF,r
a,B#0

In fact, when we replace Z = o X +3Y, we have that for each o, B € F)r
this substitution makes
TP”*l,PT*l(Xa Y, Z) : V(Xprila Ypril, Zpril) - XYZ
2r 2r

xe" yr" gp
= det, xpr"  yp" 7P
X Y A

g

vanish, and discarding as before the factors (Z — aX + fY) where
a =0 or # =0, we are left with p?>” — 2p” + 1 linear factors, and this is
precisely the degree of Tpzr_q ,r_1(X,Y,Z). To prove the equality, we
must again observe that both factors are monic in Z.

It can also be interesting to observe that all these substitutions
Z =aX + BY, for o, 8 € Fpr, also make the determinant
xr yr zr
det [ X7 y»" 2z
X Y VA
vanish for each s >t > 1 that are both divisible by 7.

This determinant is also a multiple of T},: 1 pt—1(X,Y, Z), and differs
from it for a factor V (X?" 1, y?"~1 zP"~1). XY Z, that can vanish
after the substitution only if we put either a or 3 equal to 0.

Consequently for all s > ¢t > 1, both divisible by 7, we have that
Toor_1r1(X,Y, Z) ‘ T 1 1(X,Y, 2Z).

Since actually both of these polynomials are polynomials in X7 ~1,
Y? 1 7zP"~1 we must also have the following divisibility rule:

Tyri11(X,Y, Z) ‘ Tipe1 /51005t -1 /1) (X, Y Z).
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6. Irreducibility of T,r;1:(X,Y,Z). We will now show that
Tpr411(X,Y, Z), for r > 1, that we just showed to be a factor of a class
of T(X,Y, Z), is irreducible. Note that such polynomials do not belong
to the family of polynomials that we have shown to be irreducible
in Case 2 of Proposition 4.1 proving that the projective variety that
they define is nonsingular, and in fact the point with homogeneous
coordinates (t,t,t) for ¢ # 0 is a singular point for Tpr41,1(X,Y, Z).

We will use the following strategy: let

F(2)= fuZ" 4+ iZ + fo € k[X1,... , Xn, Z]

be a homogeneous polynomial in Xy,...,X,, Z, considered as a poly-
nomial in Z with coefficients in k[X1,...,X,]. Let’s suppose that
there exists a P € k[X4, ..., X,] such that fj is a power of P, and that

P+t fi. Then f(Z) is irreducible in k[X7,..., X,, Z].

Suppose in fact that f(Z) = a(Z)b(Z), with a(Z) = Y, a; Z",
b(Z) =Y, b:Z%, both of degree > 1 in Z. Then we have that

fo = aobo, f1 = aibo + agbs.

Since the factorization is not trivial, and the factors are homogeneous,
ag and by have to be non trivial powers of P, but this is absurd since
it would imply that P | f;. Consequently, f(Z) cannot factored in
factors with degree > 1 in Z, and to deduce the irreducibility in
k[X1,..., Xy, Z] it suffices to show that it is primitive as a polynomial
in Z, but this is obvious considering that P 1 f.

To apply this strategy to Tpr11,1(X,Y, Z), consider that it is the sum
of all monomials of degree p” — 1, and if viewed as polynomials in Z its
constant term is

pr—l s i

; r ; Xp - Yp s
> Xyt = ~ v - X-Y)y L
i=0

On the other hand, the coefficient of the term of degree one in Z is

pT—2 r_1 r_1

. ” . Xpr _YP
Yoxyrri= S = [ (XY
i=0 X-Y pT—1_q

¢#1
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Thus, we have verified that the constant term is a power of X —Y, and
this is a factor that does not appear in the coefficient of Z.

Consequently, the irreducibility follows, applying the above strategy.
Knowing the irreducibility of this family of polynomials provides us one
more case where Proposition 4.1 is true, in particular when a, b, c are
coprime integers, prime to the characteristic p, and such that a—b = p”
for some r >1and b —c=1.
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