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DYNAMICS OF FINITE LINEAR
CELLULAR AUTOMATA OVER Zy

F. MENDIVIL AND D. PATTERSON

ABSTRACT. We investigate the behavior of linear cellular
automata with state space Z and only finitely many states.
After some general comments about linear cellular automata
over Zp, the general case is reduced to that of N being the
power of a prime. For a prime power modulus, it is proved
under fairly general conditions that the period length for
“most” orbits increases by a factor of p when the modulus
increases from p*F to pFtl. Some specific comments about
the maximal period length modulo N are also given for shift
invariant linear cellular automata.

1. Introduction. An automaton is a simple theoretical machine
which reacts in a deterministic way to its input. A cellular automaton
(CA) is a collection of automata, where the input given to each
automaton in the collection is a function of the state of the entire
collection. With this view, a CA is mainly a model of individual “cells”
interacting with their environment. Usually each automaton in a CA
can have one of finitely many states selected from some fixed set A,
and the collection of all automata has some graph structure so that
each automaton has some neighbors. The current configuration of the
CA is specified by giving the state of each automaton in the CA, and
this configuration is updated from each discrete time step to the next
by simultaneously updating all the sites (or individual automaton) by
an update rule. Most often this update rule has some type of local
rule which generates the global behavior. Usually the collection of sites
is a grid and the update rule is defined at each site according to some
function of its state and the states of its neighbors. Much of the interest
in CAs lies in the fact that, even with simple local update rules, the
global behavior can be very complicated. For a huge variety of examples
of this, see the recent book [13].
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To establish some notation, we let A index the collection of automata
so that the configuration space is given by A* = {f : A — A}. The
update rule is then a function ® : A* — A*.

Recall that a graph G is homogeneous if any graph isomorphism
between two finite induced subgraphs extends to an automorphism
of G. An example of such a graph is the 2D infinite lattice Z? or a
finite lattice with periodic boundary conditions. If A is homogeneous
as a graph, then the neighborhood, N'(z), of each z € A has a structure
which is independent of z. For such a CA, a local rule can take the form
of a function ¢ : AV — A, and we use this to define the update rule
by ®(f)(x) = ¢(f|ax(z))- These CA can have especially nice structural
properties.

Our attention in this paper is on Linear Cellular Automata. That is,
a CA where the update rule is linear. In this case, the state space A
is a commutative ring (with identity) and the configuration space A"
is a module over A. The update rule is required to be an A-module
homomorphism, i.e.,

®(af) = a®(f) and @(f+g) = 2(f) + 2(9)-

Since A% is a free A-module, it is generated by the elements {4, : = €
A}, where for y € A we have §,(y) =1if y = and 8,(y) =0 if = # y.
In this situation ® can be represented by a square matrix indexed by
A x A and with entries in A. For a very nice discussion of matrices
with entries in a commutative ring, see [5]. We focus on the case where
A = Zy, the integers modulo N and where A is a finite set.

There are a number of previous studies of linear CA with finite state
space, including the early paper [10]. Some more recent work in a
similar vein as the current paper are the papers [6, 11, 12] relating the
Ducci n-game to linear CA. Another series of papers is [2, 3, 4] which
studies the particular Ducci map in great detail. In particular, [2] has
some general results for (m, n)-binomial groups. Paper [3] builds upon
[2, 4] and has precise results on period lengths based on the theory of
cyclotomic fields. Notice that our Proposition 2 serves a similar role as
the use of the primary decomposition in [3] and, in particular, equation
(5) in Section 4.

The structure of the rest of this paper is as follows. In Section 2,
we discuss some general features of finite linear CA over Zy, in par-
ticular discussing the differences between cases of prime and composite
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modulus. Using tools from linear algebra and the Chinese remainder
theorem, the general case is reduced to the case of when the modulus
is a power of a prime. Section 3 investigates how the dynamics of the
CA change when the modulus is changed from p* to p*t!, where p is
a fixed prime. Finally, in Section 4 we discuss the nice special case of
when the graph is homogeneous and the dynamics are shift invariant
(i.e., has the same behavior at all sites).

2. Generalities. Throughout the rest of the paper we will let A
be a fixed L x L integer matrix; the matrix A is the update matrix
for our Linear Cellular Automata. We will also denote the modulus
by N. Thus, the configuration space for the CA is Z%. For a given
initial point = € Z]LV, the interest is in the behavior of the iteration
sequence x, Az, A%z, A3z, ...; this behavior is completely governed by
the behavior of the powers of A.

Prime moduli. If N = p, a prime, then Zﬁ is a vector space and
the behavior of A? can be predicted using spectral methods [10, 12].
Briefly, for each z € Zé, the minimal polynomial mg,(X\) € Z,[z] of x
is the monic polynomial of least degree for which m;(A)x = 0. The
polynomial m, () is a factor of the minimal polynomial m(\) for the
matrix A, as m(A4) = 0 and thus m(A)x = 0 for any . The order of
m(A) is the smallest T € N with m,(\) | A¥(AT — 1). In this case,
AT (Akz) = A*z, and thus the period length for A*z is T'. If m,(0) # 0,
then we can take £k = 0 and then z is in a periodic orbit of length T". For
m,(0) = 0, the smallest such k is the transient length for z as it takes
k steps for x to fall into a periodic orbit. Whether x has a transient
region or not, we still will refer to the period length of z.

To find the set of all possible orbit lengths in this case of a prime
modulus, it is only necessary to compute the minimal polynomial
m(A) for A. Let the prime factorization of m()) in Z,[z] be m(\) =
Fi)™ fa(A)™ -+« fr,(N)™.  Each prime factor f;(A) of m()\) corre-
sponds to an invariant subspace V; (via the primary decomposition
theorem), and all starting vectors in V; will fall into a periodic orbit
with length a divisor of the order of f;(A)™. In particular, there is a
maximal orbit length, and all other orbit lengths are divisors of this
maximal one (see Proposition 3).
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It is possible for a linear CA over Z, to have only two orbits: the
orbit of 0 (which is always a fixed point) and one other orbit of length
pY — 1 that is the orbit of any nonzero element of ZI’;J. One way to
construct such a CA is as follows.

Recall that GF(p’), the unique finite field of order p%, is a vector
space over Z, and that the collection of nonzero elements in GF(p’) is
a cyclic group of order p —1. If o is a generator for this multiplicative
group, then = — az is a linear function on Z2 = GF(p"). The linear
CA given by this linear function has only two orbits, one consisting of
all nonzero elements in GF(pl) and thus of length p© — 1 ([9] is a very
nice introduction to finite fields).

Composite moduli and the Chinese remainder theorem. The
Chinese remainder theorem is the key tool to use in the case of a
composite modulus. If N = pq, with gcd(p, ¢) = 1, then Z% = Zﬁ X Zé‘,
and this isomorphism extends to the action of A on Z%, Zﬁ and ZqL .
This observation is key to building up the dynamics of the CA modulo
N from the separate dynamics modulo p and gq. More specifically, let
ze€Zk, and let y € Zg and z € ZqL be the reductions of x modulo p
and g respectively. Then we see that the modulus N orbit of z reduces
to the orbits of y and z modulo p and g, respectively, as illustrated in
the equations below:

z Az A%z A%z ... ATrg ... ATag ... ATz=z modN
y Ay A%y A%y ... ATpy=y ... ATay ... ATy=y modp
z Az A%z A%z ... ATrz ... ATaz=z ... AT2=2 modyq.

In particular, this means that T is a multiple of both T, and Tj.
Because of the isomorphism given by the Chinese remainder theorem,
in fact we have T' = lem (T}, T;;). However, it is worth noting that, even
if ged (p, q) # 1 we still have T, | T and T, | T so lem (T}, Ty) | T, but
we might not have equality. Since this fact will be useful, we record it
as an observation.

Observation 1. If M | N, then the period length of z modulo M
divides the period length of z modulo N.

Square-free moduli. For IV a square-free integer, we can apply the
Chinese remainder theorem and the linear algebra tools to compute
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orbit lengths and transient lengths for starting vectors z € Z%. That is,
for N = pyps - - - p¢ with p; distinct primes, we can reduce the action of
Aon Z]LV modulo p; to obtain the action of A on Zﬁi, and this action can
be analyzed using spectral methods. If T; and k; are the orbit lengths
and transient lengths for z modulo p;, then T = lem (11, T, ... ,T})
and k = max{ky, ko, ..., ks} are the orbit length and transient length
of z modulo N.

General facts for any modulus. Some facts about general moduli
are useful. Since Z% is a finite set, eventually any trajectory will fall
into a periodic orbit. Thus, there are minimal k,T € N so that, for
any z, AT A¥z = A¥z. This means that as a matrix A¥(AT —T) =0
modulo N and so the period length for any x will be a divisor of T

There will be no transient regions for any  if and only if ker(A4) =
{0}. In any case, the submodule K defined by

K= ﬁ AnZk

n=1

is invariant under A, K = {z : A"z = z for somen € N}, and
A restricted to K is invertible. Notice that the intersection in the
definition of K is really a finite intersection as A"ZL will stabilize
at some point. We will call I the core of the linear CA. All points
eventually end up in K. Furthermore, AT = I when restricted to .

Proposition 1. For any linear CA on Z%, the transient length is
no greater than L(ni +ng + -+ + ng), where N = p'py? ---py* is the
prime factorization of N.

Proof. The sequence of submodules A"Z% of Z% can be no longer
than the length of the longest chain of distinct submodules of Z%;, the
length of Z%;. However, the length of Zy as a Zy-module is equal to
ni +no + - - -+ ng, and the length of a product of two modules is equal
to the sum of the lengths of the factors (see [1, Proposition 6.9]). Thus,
the length of Z% is equal to L(ny + ng + -+ + ny). O

Sometimes we will use the notation T, for the period length of the
vector x. Furthermore, we define the orbit space of x to be the set
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Ty+k—1
S. :{ Z a; Az a; € ZN} (where k is the transient length for z),
i=0

the submodule of Z% that is generated by the orbit of z. Clearly S, is
invariant under A. If z € K then S, C K and ATy =y for all y € S,.
The orbit spaces form the finest subspace decomposition of Z% into
A-invariant subspaces.

Proposition 2. If S, NSy = {0} for some z,2' € Z%, then
Tz+£l = lcm (Tz, Tml).

Proof. Tt is clear that, for n = lem (T}, T,/) we have A™(z + ') =
z+a'. Suppose A"(z+2') = z+a'. Then A"z—z = 2'— A"z’ € S, NS,
and thus A"z —z = 0 and 2’ — A"z = 0. But this means that T, | n
and T, | n and so lem (T}, Ty/) | n. O

For the case of a prime modulus, a bit more can be said.

Proposition 3. For p a prime modulus, there is some point x € Zg
whose period length T is mazimal and all other points y fall into an
orbit whose length is a divisor of T.

Proof. Since the possible period lengths for A on sz are the same
as those for A restricted to the core I, there is no loss of generality in
assuming that A is invertible.

Let the prime factorization in Z,[z] of the minimal polynomial of
matrix A be m(A) = fi(A)™ fa(A)"2 .- f,,,(A)™. Then by the primary
decomposition theorem, each f;(\) corresponds to an A-invariant sub-
space V; C Z. Let T; be the order of f;(X). Then the order of m(}) is
T =lem (Ty,Ts, ... ,Tp). We need to show that there is some element
T e Zlf whose order is T'.

The primary decomposition theorem gives that V; N V; = {0}, so by
Proposition 2 if x; € V;, then the period length of x = 21 + 25+ --- 4z
is the least common multiple of the period lengths of the x;. Thus we
show that there is some x; € V; with the period length of z; equal to
T;.
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For all x € V;, we have that mg()\) divides f;(\)", and thus
me(\) = fi(A\)*= for some 0 < k, < n;, as f;(\) is irreducible. If
no such z € V; with period length T; exists, then for all z € V;, we
have k, < n;; but then this means that f;(A)*y = 0 for all y € V;
where k = max{k, : x € V;} < n;, which contradicts the fact that the
minimal polynomial for A restricted to V; is f;(A\)™. O

Another useful fact is the following simple proposition.

Proposition 4. Ify € S, N Sy for some z,2' € Z%, then
T, | ged (T, Tyr).

Proof. We have y € S; so T, | T, and similarly T, | T/, and thus
Ty | ged (T, Ty ). O

3. Prime power moduli. The Chinese remainder theorem allows
us to construct a description of the dynamics of a linear CA modulo N
from descriptions of the dynamics of this same linear CA modulo the
prime power factors of N. Thus, understanding the dynamics of A
modulo p* is the main step in understanding the dynamics of A with a
general modulus. On the other hand, the modulus p' is easy, as linear
algebra tools are applicable and this case is the basic building block.
Thus, in this section our goal will be to examine how the dynamics
change when we change the modulus from p* to p*+!. The main idea
used in this section is an adaptation of ideas from [7, 8]. It is implicit
in the solutions to problems in subsection 3.2.2 (particularly number
8) in [8] and is explicit in [7].

We start with a simple observation which points out that the dy-
namics become more “complicated” as you move from modulo p* to
modulo pFti.

Proposition 5. The dynamics of A modulo p* are embedded as a
subset of the dynamics of A modulo pF+T.

Proof. Define the map ¢ : szk — Z;EHI by ¢(z) = pz. Clearly
A¢(z) = ¢(Az), and thus the orbit of z € Zf)‘k matches the orbit of
px € Zé‘kﬂ. O
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3.1. Lifting orbits and the ¥ function. Consider now an element
T € Zﬁk in a periodic orbit of length 7" modulo p*. This means that
ATz = 2 mod p* and thus ATz — z = pFy for some y € ZL. We will
now investigate the possible orbit lengths modulo p**! for elements
z e Zﬁkﬂ which satisfy Z = x mod pF. That is, Z = z + p¥z with
z € Zﬁ . Clearly, for any such z, we get a corresponding Z, so the set
of all “lifts” of = can be identified with ZIE . We are free to choose
which lift we identify as the origin in ZIE; however, the choice of that
T e Z;f;,e+1 all of whose coordinates satisfy 0 < Z; < p¥, is a natural
choice.

Another way of thinking about this is that we have the projection
e ngH — ng given by 7(Z) = Z mod p* and the set of all lifts of x
is the fiber F, = 7 !(z) C Z,I;k+1a and this fiber is naturally identified
with Z£ with 0 € Zﬁ being identified with x.

Now any z € F, has period a multiple of T, since the orbit of Z

modulo p**! reduces to that of z modulo p*. Thus, the orbit length of
a lift can either stay the same or increase by some factor.

Since ATz = x mod p*, we know that AT maps any lift of = to
another lift of z and thus corresponds to a map ¥ : F, — F,. Now,
ATz = 2 + yp* and thus

AT(z) = AT (z + 2p¥)
= AT (z) + p* AT (2)
=z +pry 4+ pFAT(2)
=z +pF(y+ AT2).

(1)

Now, in (1) we only care about y + ATz up to modulus p (as we are
only interested in the behavior of this iteration modulo p**!). Thus,
we define the ¥ function associated with x and going from modulus p*
to modulus pFt! as

(2) Uy, : ZZI; — Zlf, Uy (z) = ATz + y mod p.
The function ¥ completely describes the way the dynamics of the lifts

of z are different from the dynamics of z. For instance, if Ux(2) = z,
then we see that Z = x + p*z has the same period length as z as then
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AT (xz + pF2) = z + p*¥,(2) = = + pF2. In particular, if y # 0 then
U,.(2) # z, and so the period length of x+p”z is strictly greater than T.

Odd prime powers.

Lemma 1. Suppose that p is an odd prime, ker (A) = {0} modulo p,
M is the mazimum period length modulo p, © has period T modulo p*,
and M | T. Then

z4+ ATz + A%z 4+ 4 AP~y — pr mod p*t.

Proof. We see that ATz = x mod p* implies that ATz = z + p*y for
some y € ZL.

Now suppose that p is an odd prime. Doing all our calculations
modulo p*t1, we see
ATy = AT (2 + p*y) = = + p*y + p* ATy
Now since M | T we know ATy = y mod p, and thus ATy = y + pz for
some z € ZT. But then
ATy =+ pry+p* ATy = o+ pPy + "y + p2) = 2 + 22 y + P,
1

which equals z + 2pFy modulo pF+!.
induction we can show that

In a similar way using a simple

ATy =g+ jpky mod pk+1,
and thus
e+ ATz + A4+ APV g = pr+ (1424 +p—1)phy
p—1)p
=pz + ( 5 ) p*y =pz,
recalling that we are operating modulo p*+!. ]

Lemma 2. Suppose that p is an odd prime, ker(A) = {0} modulo p,
M is the mazimum period length modulo p, x has period T modulo p*,
and M | T. Then

ATg =z 4+ yp® mod p*! =  APTz =z + yp"*! mod p**2.
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Proof. Since ATz = z mod p*, we know that ATx = x + yp* + 2p*+!
for some y € Z) and z € Z". But, then,

ATy = AT (2 4+ yp® + 2p" ) = 2 4+ pF(y + ATy) + pF T (2 + AT 2),
and by induction

—|—pk+1(z+ATz+---—i—A(j*l)Tz)

for each j. Thus,

p—1
APT zT=xz+p (ZAJT > k+1<ZAjTZ>.
7=0

By Lemma 1, we have

p—1 p—1
Z ATy = py mod p* and Z ATz = pz mod p°.
J=0 j=0

Therefore,

S ATy =py+p’y, y €Z”

and
p—1

ZAsz =pz+p*d, ezt
i=0

and thus,

p—1 p—1
AT — m+pk(ZAjTy> +pk+1<ZAsz>
=0 =0
=z +p*(py + p?y') + p* 1 (pz + p*2")

=z + pF*ly mod pF*2. ]
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Putting these lemmas together we see that, in a fairly generic situ-
ation, the period length of an element x goes up by a factor of p for
each increase in the power of p in the modulus.

Theorem 1. Suppose that p is an odd prime, ker(A) = {0} modulo p,
M is the mazimum period length modulo p, x has period T modulo p*,
and M | T. Further, suppose that Uy (z) = ATz +y with y # 0. Then

\I/k+g(2) = APZTZ + y.

In particular, the period of any lift T € ZzI;kH of x € ng is p°T.

Proof. If y # 0, then the period of a lift 7 € Zﬁkﬂ of z is pT
by Lemma 2. Furthermore, Lemma 2 also shows that the y in the
definition of Wy is the same y in the definition of ¥y. The result
follows by induction. O

Powers of two. The situation for powers of two is more complicated,
mainly because Lemma 1 doesn’t work out the same. If ATz = z
modulo 2%, then ATz = x 4 2*y for some y € Z¥, and so

ATy = AT (z + 2%y) = o + 2Fy 4+ 28 4Ty,

Supposing that 7" is a multiple of the maximal period length modulo 2,
then ATy = y modulo 2, and thus ATy = y + 2y for some y' € Z~.
But then,

A%y = ¢+ 2%y + 2Fy 4 2F 1y = 2 mod 2F 1.

This proves the following proposition.

Proposition 6. Suppose that ker(A) = {0} modulo 2, M is the
mazimum period length modulo 2, x has period T modulo 2F, and
M | T. Then modulo 2*t1, either every lift of x has period T or
every lift of x has period 2T.

As for the relationship between ¥y and W1 in this case, it is a little
bit more complicated. The proof of the following is similar to that of
Lemmas 1 and 2, and we omit it.
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Proposition 7. Suppose that ker(A) = {0} modulo 2, M is the
mazimum period length modulo 2, ATz = x + 2Fy modulo 2¢+1 (so z
has period T modulo 2¥), and M | T. Then

ATy = 24 28y + ¢') mod 2F+2

where ATy =y +2y'. Thus, if T is a multiple of all the period lengths
for modulo 4,
ATy = ¢ + 281y mod 2FF2,

As a consequence, if T' is a multiple of all the period lengths for
modulo 4, then we know that ¥, has the same y vector as ¥y, ; and
thus the period length goes up the same factor for each increase in
exponent.

4. Circulant matrices. The special case of a linear CA with
A a circulant matrix has a nice additional structure which is worth
mentioning. In particular, these CA have an update rule which is shift
invariant. That is, if S(z1, 22, ... ,2L) = (z2,23,... ,2L,21) is the left
shift operation, then AS = S A and so the dynamical behavior of = and
Sz is the same. When A as a graph has the structure of a finite cycle,
this will occur exactly when the update rule has the same (relative)
definition at each site.

A particular example of interest is the L x L Wolfram rule 90 matrix

01 0O 0 01
1010 0 00
01 01 0 0 0
Wr,=|0 010 0 0 0
0 00O 1
10 00 01
We can compute that
0 if L =4k
2 if L=4k+1
(3) det (W) = ! *

—4 fL=4k+2
2 if L =4k + 3,
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and thus ker(Wp) = {0} modulo any odd N if L # 4k. In particular, a
linear CA based on W, has no transient states if and only if N is odd
and L # 4k.

Proposition 8. For a shift invariant linear CA, the maximal period
length is the period length of the vector x = (1,0,0,...,0), and all
other period lengths divide this period length.

Proof. First suppose that z is in a periodic orbit of period T. Then,
for any y € Z%, there are coefficients o; € Zy with

L-1
y= g a;S"x,
i=0

as the set {z,Sz,S%z,...,5% 'z} is a generating set for Z%. But
then,

L-1 L—1
ATy = Z a; AT S r = Z a; St =y.
i=0 i=0
This means that the period length for y is a divisor of T'. O

Proposition 8 remains true for any x as long as {z, Sz, Sz, ..., St~1z}
is a generating set for Z%.

Proposition 9. Let N = p{'py?---p,* be an odd number. Further-
more, let My, My, ... ,M; be the mazximal period length of Wi mod-
ulo p1,pa,...,pe, respectively. Then the mazimal period length of Wi,
modulo N is

lcm (Mlp;“*l, Mgp;rl, ... ,Mgp?‘fl).

Proof. This is just a consequence of Proposition 8 and Theorem 1
and the comments about the Chinese remainder theorem. O

This behavior of Wy, is generic for shift invariant linear CA.
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Theorem 2. Let A be a shift invariant matriz with ker(A) = {0} for
the odd modulus N = pi*py? - - - py*. Furthermore, let My, Ms, ..., M,
be the maximal period length of A modulo py,pa,--. ,pe, Tespectively.
Then the maximal period length of A modulo N is

Icm (Mlp;“*l, Mgp;rl, ... ,Mgp?‘fl).

More general shift invariant linear CAs. It is simple to gener-
alize the idea of shift invariance to more general linear CAs. Suppose
that A (the set of automata) has the structure of a homogeneous graph,
and let G be the set of all automorphisms of A. Then we have G acting
transitively on A. Further, § € G acts on A* by 0(f)(z) = f(0(z)). If
® commutes with this action, then matrix A which represents ® will
have a generalized form of invariance as being a circulant matrix. That
is, each 6 € G permutes the rows and columns of A, but A remains
fixed under each of these permutations. In cases like these, it is easy
to see that Proposition 8 and Theorem 2 remain true.
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