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ON THE RATIONALITY OF MODULI SPACES
OF POINTED HYPERELLIPTIC CURVES

G. CASNATI

ABSTRACT. Let My, be the (coarse) moduli space of
smooth, integral, projective curves of genus g > 1 with n
marked points defined over the complex field C. We denote
by Hg,n C Mgy, n the locus of points corresponding to curves
carrying a g%. It is known that Hg , is rational for g = 1
and n < 10, for g = 2 and n < 12 and for each g > 3 and
n = 0. We prove here that the same is true for each ¢ > 3
and 1 <n < 2g+8.

1. Introduction. Let M, , be the (coarse) moduli space of smooth,
integral, projective curves of genus g > 1 with n marked points defined
over the complex field C, i.e. ordered (n + 1)-tuples of the form
(C,p1,... ,pn) where C is a smooth, integral, projective curves curve
of genus g and py,... ,p, € C are pairwise distinct points.

We denote by H,.,, C M, ,, the locus of points (C,p1,... ,p,) such
that C carries a g3. If g = 1,2 we have H,,, = M, , whilst, if g > 3
we have strict inclusions H4 ., C M, ,, and the points of H, , represent
pointed hyperelliptic curves.

The locus H,,, is irreducible. In [3] its Euler-Poincaré and orbifold
Euler characteristics are computed. Moreover, H, , is known to be
rational when n = 0 (see [5, 11, 12, 13]; see also [8, 16, 17] as general
references), then it seems to be quite natural to inspect the case n > 1.
A complete analysis in the initial case g = 1 can be found in [2], where
the author proves that H;, = M;, is rational for n < 2g + 8 = 10,
and in [4], where the authors prove that the Kodaira dimension satisfies
H(ﬂl,n) =0 and H(ﬂl,n) =1 for each n > 12 (here ﬁgvn denotes the
closure of Hg  inside the Deligne-Mumford compactification Mg,n of

Mg ).
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When g = 2, in the paper [7], the rationality of s ,, = M3, is proved
for n < 29+ 8 = 12 as a particular case of more general rationality
results for Mg ,, when 2 < g < 5. The proof is based on the existence
of a particular plane model of (C,p1,...,p,) € Ha,, which explicitly
depends only upon the fixed points pq,...,p,. As far as the author
knows, there are no results about /ﬁ(ﬂz,n) when n > 13.

In this short note we generalize this proof to H, ,, for each g as follows.

Main theorem. For each g > 1, the locus Hgrn C Mgy, is
irreducible for each n and it is rational for each n < 2g + 8.

Taking into account the above theorem and the complete description
in case g = 1 it is then natural to ask the following:

Main questions. What can be said on the birational structure of

Hgn when g > 2 and n > 2g + 9?7 For example, is k(Hy,,) > 0 in that
range?

Analogous results and questions for M, , have been partially an-
swered in the quoted paper [7] and also in [1, 9, 14].

Notation. We work over the field C of complex numbers. We denote
by GL3 the general linear group of 3 X 3 matrices with entries in C.

Let C[zy, ... ,zi] be the ring of polynomials in the variables z, . .. , zj
with coefficients in C, Clzy, . .. , zx]q4 the vector space of degree d forms.

The projective plane will be denoted by P%: we set
Ey :=1[1,0,0], E, :=10,1,0], E,:=10,0,1].

If V is a vector space then P(V) is the associated projective space. A
curve (' is a projective scheme of dimension 1. We denote isomorphisms
by = and birational equivalences by .

For other definitions, results and notation we always refer to [10].

2. The proof of the main theorem. Let p,: My, — M, be the
natural forgetful morphism. Inside M, ¢ there is the hyperelliptic locus
Hg,0, i.e., the locus of points representing smooth, integral, hyperellip-
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tic curves, which is a closed irreducible subscheme of dimension 2g — 1,
and we define H, , == p, ' (Hg0)-

Thanks to Lemma 3.1 of [6] we know that H, , is irreducible and its
dimension is 2g + n — 1. The locus H,,, is a coarse moduli space for
smooth and connected n-pointed curves of genus g carrying a g3, hence
hyperelliptic when g > 2.

In this section we will prove the main theorem stated in the introduc-
tion. As explained there, the cases ¢ = 1,2 or g arbitrary and n = 0
have already been known. Thus, from now on, we restrict to g > 3 and
n > 1.

2.1. The case n = 1. Let

VYI = mgc[xla wQ]g 2 wOC[xlafL?]g—f-l 5% C$g+2 g C[$1,$2,.’L’3]g+2.

Lemma 2.1.1. The general element of D € P(V7) is an integral
curve carrying a g-fold ordinary point at Ey as unique singularity.

Proof. Tt is an immediate application of the standard Bertini’s theo-
rem (see for instance [10, Theorem I1.8.18 and Remark I1.8.18.1]). O

Let D € P(V;) be general; then D has geometric genus g, by the
genus formula (see [10, Example V.3.9.2]) and the line r := {zq = 0}
cut out on D the divisor (g + 2)E;. The lines through Fy cut out
on D a g} (which is unique by [10, Proposition IV.5.3]), hence the
desingularization 7: C' — D is a hyperelliptic curve of genus g which
is naturally pointed by the point p; corresponding to the non—singular
point F;. Then we have a rational map

hi:P(Vi) --» Hg1.

Let A := (g+2)p;: Since the tangent line at E'; does not pass through
Ey, then p; is not a Weierstrass point of C, then A" (C, wc(—A)) =0
and, by construction, 7 is the morphism associated to a fixed basis of

H°(C,00(A)).
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Assume that D' € hy'(C’,p}) is another pointed curve. The exis-
tence of an isomorphism ¥: C' — C’ mapping p; to p| induces a projec-
tivity ¢ from |A]2 PZ to |A'[ 2 PZ (here A’ := (g + 2)p}) such that
¥(D) = D' and fixing E7, hence r. Moreover, it also must obviously
fix the unique singular point Ej.

We conclude that v is represented by a matrix in the solvable group

a070 0 0
G1 = 0 a1 aiz2 g GLg.
0 0 a2 2

Conversely, each projectivity 1: P4 — P% represented by a matrix
in G; maps Vi into itself. It follows that the fibers of h; are orbits in
V1 with respect to the action of G1; hence,

dim (im (hq)) > dim (P(V1)) — dim (G1) = 2g = dim (H41) :

we conclude that h; is dominant, since H 1 is irreducible, i.e.,
Proposition 2.1.2. There is a birational equivalence V1/G1 ~ Hg 1.

2.2. The case n = 2,3. In this case we consider

g+3—n

V, = m%C[ml,mg]g ® zoClz1, T2]g+1 ® Czj z1(z1 — mg)"fz

C Clz1, z2, T3] g+2-

Again (see Lemma 2.1.1),

Lemma 2.2.1. The general element of D € P(V,,) is an integral
curve carrying a g-fold ordinary point at Eqy as unique singularity.

Each general D € P(V,,) has geometric genus g and the line r :=
{zy = 0} cut out on D the divisor (9 +3 —n)E; + E2 + (n — 2)E where
E :=0,1,1]. Again the lines through Ej cut out on D a gi; hence, the
desingularization 7: C' — D is a hyperelliptic curve of genus g which is
naturally n-pointed by the points p1, ps and possibly ps corresponding
to the non-singular point F1, F2 and E. Thus, we have a rational map

hin: P (Vi) == Hg .
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Let
@0,0 0 0
GQ = 0 a1 0 C GL3a
0 a2
@0,0 0 0
G3 = 0 a1 0 c GL3a
0 0 ai 1
respectively.

An argument similar to the one for 1-pointed curves allows us to
prove the following:

Proposition 2.2.3. There is a birational equivalence V,,/Gp ~ Hgn,
n=23.

2.3. The case 4 <n <2g+ 8. Let D be an integral curve singular
only at Fy and having equation in

V= m%C[.’El,.’Ez]g D $00[$1,$2]9+1 D $?71$2(IE1 - 1172)6[1‘1,.’1}'2]1

C Clzy, 22, 23] g4 2.

As in the previous cases n = 1,2, 3, we have:

Lemma 2.3.1. The general element of D € P(V) is an integral
curve carrying a g-fold ordinary point at Ey as a unique singularity.

Again the lines through Ey cut out on each general D € P(V) a g3,
and the desingularization 7: C' — D is a hyperelliptic curve of genus g
which is naturally 4-pointed by the points p1, p2, ps, p4 corresponding to
the non-singular point E;, Es, E := [0, 1, 1], U where U is the remaining
intersection of D with the line r := {xg = 0}.

If we set
ao,0 0 0
G .= 0 ay,1 0 Q GL3,
0 0 ai,1

we can argue as in the cases n = 1,2, 3, obtaining:
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Proposition 2.3.2. There is a birational equivalence V/G =~ Hg.4.

Now take n > 5, and consider the incidence variety
X, :={(D,As,... ,A,) eP(V) x (PE)"*|A; €D, i=5,...,n}

The scheme X,, is fibered on (P%)"* with fiber PZ®". Taking
into account the above description of the curves corresponding to the
polynomials in V, the points of X,, represent n-pointed hyperelliptic
curves of genus g when 4 < n < 2g+ 8. The action on X, of the image
of G via the natural quotient map GLs — PGL3 is equivalent to the
action of C* given by [z1, z2, z3] — [21, aza, azs].

Again, we have, as in the previous cases, the following:

Proposition 2.3.3. There is a birational equivalence X, /C* =~
Hgm, 5 <n<2g+8.

We are now able to give the following

Proof of the main theorem. In view of Propositions 2.1.2, 2.2.2, 2.3.2
and 2.3.3 it suffices to prove that the quotients V,,/G,, n =1,2,3, V/G
and X,,/C* are rational.

In the first case V,, is a linear representation of a solvable and
connected algebraic group G,. Thus the quotient on the right is
rational by [15] or [18]. The same argument holds for the quotient
V/G.

On the other hand, if 5 < n < 2¢g + 8, we have checked above that
Hgn = Xn /C* where X,, is a C*-linearized projective bundle over the

rational base (P%)" 4 with typical fiber Pég+8_n over an open and

dense subset U C (P%)" 4.
The scheme X, is contained in the C*-equivariant trivial projective
bundle P(V) x Y. The subspace
W = ;ch[a:l,:cz]g ® 2oClz1, 2]g11 ® x{za(21 —22)C CV

is G-invariant; hence, L := P(W) x U C P(V) x U is a C*-invariant
unisecant L C P(V) xU (i.e., a divisor intersecting the general fiber in
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a hyperplane). It follows that the scheme LN X, is then a C*-invariant
unisecant on X, ; hence, X,, is C*-equivariantly birational to the vector
bundle C29+8-" x (P4)"~* for 4 <n < 2g + 8.

Obviously, the action of C* on (P%)"* is almost free (i.e., the
stabilizer in C* of the general point of (PZ%)" % is trivial). Thus, by the
results of Section 4 of [8], Hy ,, ~ X,,/C* ~ C298 " x (PL)"*/C* is
a vector bundle over the base (P%)"~*/C* with (2g+8—n)-dimensional
fiber.

Thus it suffices to prove that the quotient (P%)" /C* is rational.
This is more or less trivial: indeed, PZ is the quotient of C* modulo
the standard diagonal action of C*; hence, (P%)"~*/C* ~ C3(»=4)/T
where T = (C*)"~* x C* acts linearly. Since T is solvable and
connected being a torus, the rationality of (P%)"~*/C* again follows
from [15] or [18]. O
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