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EIGENVALUE CLUSTER TRACES FOR
QUANTUM GRAPHS WITH EQUAL EDGE LENGTHS

ROBERT CARLSON

ABSTRACT. On a finite metric graph with standard ver-
tex conditions and equal edge lengths, the large magnitude
eigenvalues of the Schrédinger operator A + g cluster near the
eigenvalues of the Laplace operator A. Based on the spec-
tral ‘periodicity’ of A, the clusters can be partitioned into a
finite collection of classes. There is a class dependent formula
for the cluster trace (or average eigenvalue shift) in the large
magnitude limit which expresses the trace as a function of the
edge integrals fe q and data from the underlying combinato-
rial graph.

1. Introduction. Suppose A denotes the Laplace operator on
a finite metric graph G with edges of length 1 and standard vertex
conditions. The eigenvalues A, of A are known to have a simple
‘periodic’ structure. Let w? < w? < ..+ < w% be the distinct
eigenvalues of A in the interval (0,472]. The positive eigenvalues of
A are precisely the set of numbers

W = lwe +2mm]*, m=0,1,2,...,

with multiplicities independent of m.

The large magnitude eigenvalues p of a Schrédinger operator A+q will
fall into clusters around the unperturbed eigenvalues \,,, with cluster
multiplicities depending on the class k£ of \,. A previous paper [6]
studied the eigenvalues of A + ¢ by developing characteristic function
asymptotic expansions. One of the results in [6] was a contour integral
formula for the cluster trace or average eigenvalue shift in the cluster
about \,,. This formula showed that the average eigenvalue shift in the
cluster associated to A,, = W}%,m has a limit as m — oo, and the limiting

2010 AMS Mathematics subject classification. Primary 34B45.
This work was partly supported by Grant UKM2-2811- OD 06 of the U.S. Civilian

Research and Development Foundation.
Received by the editors on July 21, 2008, and in revised form on October 15,

2008.
DOI:10.1216/RMJ-2012-42-2-467 Copyright (©2012 Rocky Mountain Mathematics Consortium

467



468 ROBERT CARLSON

shift is given by a linear combination of the numbers fe q(z) dz, the
integrals of ¢ over the graph edges. The contour integral formulation
obscured the value of the coefficients, along with any geometric content
they might have.

The main aim of this paper is to redevelop the cluster trace formula,
making explicit the connection between the average eigenvalue shifts
and the underlying combinatorial graph. This development begins
in the second section with a review of quantum graphs, emphasizing
graphs whose edges are all of length 1. Most of the material in this
section is a reworking of results by other authors, although Theorem 2.8
seems to be new.

The third section develops some new material on eigenfunctions of
graphs with edges of length one. It is well known [14, page 31] that the
derivative of simple eigenvalues with respect to a (real) potential is the
square of the normalized eigenfunction. To exploit this fact, we consider
subsequential weak limits of squared magnitudes of eigenfunctions,
identifying the limits with features of the underlying combinatorial
graph.

The technical developments of Section 3 are used in Section 4 to
describe two important properties of clusters of eigenvalues p; of A+¢
near \,. If ¢ is differentiable, vanishes at the vertices, and satisfies
feq = 0 for each edge e, then the eigenvalues p; converge to A, as
n — 0o. When these conditions are relaxed, there is a general cluster

trace formula for
. L 2
Jim > (5~ ),
J
the limit being described in terms of the numbers feq and purely
combinatorial data from the graph.

2. Background.

2.1. The Laplace operator for continuous graphs. A review
of quantum graphs will help to establish notation and the background
needed for our results, Details and additional information may be found
in [5, 12] or in the collections [3, 8, 11]. Most of the material in this
section is closely related to developments in [1, 2, 9]. For this work
a graph G will be finite, with vertex set V consisting of Ny, vertices



QUANTUM GRAPH EIGENVALUE CLUSTER TRACES 469

and edgeset £ having Ng edges. To avoid minor technical issues, the
graph is assumed simple, and all edges have length 1. Multigraphs,
graphs with loops, or graphs whose edge lengths are integer multiples
of a common value can be easily incorporated by inserting additional
vertices. There are no boundary vertices; that is, every vertex has
degree at least 2.

The edges e, are initially assumed to be oriented and numbered,
although this is mainly for notational convenience. Consistent with
the edge orientations, each edge is identified with the interval [0, 1].
The usual metric and Lebesgue measure on intervals are extended to
G. L*(G) will denote the Hilbert space &,, L (e, ) with the inner product

<f,g>=/gfa:2/0 Fa@)gn@) dz, £ = (fur fare-o s I).

The Laplace operator is a self adjoint operator on L?(G) which acts

componentwise on functions in its domain by Af = —92f/9x?. The
domain of A may be characterized by vertex conditions. For vertices
v with degree deg (v) > 2, pick a local indexing ey,. .. ,€qeg (v) for the

edges incident on v. Assume the standard local coordinates, which
identify e,, with [0, 1] so that 0 corresponds to v for each edge. The
standard continuity and derivative (Kirchhoff) conditions at v are
required,

(2.1)
deg (v)
yn(o):yn-i-l(o)v n=1,... ,deg(v)—l, Z y’n(()):()‘
n=1

Let Dpax denote the set of functions f € L2(G) with f’ absolutely
continuous on each e,, and f” € L*(G). The domain D(A) is then the
set of f € Dmax satisfying the standard vertex conditions (2.1). By
the classical theory of ordinary differential operators [12, page S123]
the operator A is self adjoint with compact resolvent. The distinct
eigenvalues of A are denoted 0 = A\g < A; < Ag < -+ - .

For A € C, let E(X) denote the eigenspace for A with eigenvalue .
For w > 0, let A = w?, and with respect to a fixed edge orientation
write y(z) € E(w?) as

y(x) = A cos(wz) + Be sin(wz).
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The linear map 7 taking y to
y1(z) = Ae cos(Jw + 2nr]z) + Be sin([w + 2n7]z)

preserves vertex values, while y; satisfies the same interior vertex
conditions that y does. It is easy to check that the eigenvalues of
A exhibit the following ‘periodicity.’

Proposition 2.1. If w > 0, the linear map T : E(w?) — E((w +
2m)?%) is a vector space isomorphism.

The spectrum of A is determined by algebraic structures of the dis-
crete graph G. If A ¢ {n?n? | n = 1,2,3,...}, the positive eigenvalues
and their multiplicities are derived from the discrete Laplacian acting
on the vertex space of G. If A € {n?7? |n =1,2,3,...}, the key roles
are played by subspaces of the edge space of G.

2.2. The case X\ # n’r?. For a vertex v € G, let uy,... , Udeg (v)
denote the vertices adjacent to v. The vertex space V of a discrete
graph consists of functions f : ¥V — C. Among the linear operators
acting on the vertex space are the adjacency operator

deg (v)

Af(v) = Z £(us),

and the degree operator
D, f(v) = deg (v) f(v).
Define the operator A; by
Aif(v) = f(v) = DT Af(v),

which is similar to the discrete Laplacian I — D,, 1/ 2AD, 12 of [7, page
3.

Relating A; to A is facilitated by the following observation. If

-y =Xy, z€[0,1], X ¢ {n?r?},
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then

sin(wz)

(2.2) y(@,A) = y(0) cos(wz) + [y(1) — y(0) cos(w)]

sin(w)

The next lemma follows easily.

Lemma 2.2. Fiz A € C, and consider the vector space of solutions
of —y" = Ay on the interval [0,1]. The linear function taking y(z)
to (y(0),y(1)) is an isomorphism if and only if X ¢ {n’m? | n =
1,2,3,...}.

The following consequence for graphs is immediate.

Lemma 2.3. Suppose the edges of G have length 1, and \ ¢ {n*n? |
n=123,...}. Lety:G — C be continuous, and satisfy —y" = Ay
on the edges. If y(v) = 0 at all vertices of G, then y(z) = 0 for all
zeQG.

Theorem 2.4. Suppose A ¢ {n’*n% | n = 1,2,3,...} and y is an
eigenfunction for A. If v has adjacent vertices uy,... ,Udeg (v), then

deg (
deg ;

(2.3) cos(w)y(v)

Proof. Using local coordinates which identify each w; with 0, (2.2)
for y; on the edges e; = (u;,v) gives

w cos(w)

(24)  yi(v) = —wsin(w)y; (w;) + [yi (v) — yi(u;) cos(w)] sin(w)

Summing over 4, the derivative condition at v then yields

0= Z yi(v)
= —wsin(w Zyz u;) wcos(w) Z[yi(v) — ;i (u;) cos(w)].

sm( )
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Using the continuity of y at v and elementary manipulations gives
(2.3). o

Equation (2.3) is an eigenvalue equation, with eigenvalue cos(w), for
the linear operator T~'A acting on V. The next result makes the
connection between the spectra of A; and A explicit.

Theorem 2.5. If A\ ¢ {n?z% | n = 0,1,2,...}, then X is an
eigenvalue of A if and only if 1 — cos(w) = 1— cos(V/A) is an eigenvalue
of Ay, with the same geometric multiplicity.

Proof. Since Ay = I — T~ 'A, it suffices to consider T~ A. Suppose
y(z, A) is an eigenfunction of A satisfying (2.1). Then Theorem 2.4
shows that the (linear) evaluation map takingy:G - Ctoy:V — C
takes eigenfunctions to solutions of (2.3). The map is injective by
Lemma 2.3.

Suppose conversely that y : V — C satisfies

T~ Ay(v) = py(v), |u| < 1.

Pick A\ € cos™!(u). By Lemma 2.2 the function y : V — C extends to
a unique continuous function y(z,)\) : § — C satisfying —y” = Ay
on each edge. In local coordinates identifying v with 0 for each
edge e; = (v,u;) incident on v, this extended function satisfies (2.4).
Summing gives

Z yi(v) = sin(w ) [ sin(w) — cos® Z yi(ui)

wcos )
2O G

- sin(w Zyl (us) + deg (v)y(v )wSlCr(:(SL(;)J)
The vertex values satisfy (2.3), so
Zyl e )Cleg (v) cos(w)y(v) + deg (v)y(v)%ﬁ:) =0.



QUANTUM GRAPH EIGENVALUE CLUSTER TRACES 473

The extended functions, satisfying (2.1), are eigenfunctions of A. Since
the extension map is linear, and the kernel is the zero function, this
map is also injective. ]

2.3. The case A = n?7%. Turning to eigenvalues A € {n?r2}, recall
[7, page 7] that for both A; and A the eigenspace for eigenvalue 0
is spanned by functions which are constant on connected components
of G. For n > 1 the eigenspaces E(n?r?) for A have a combinatorial
interpretation closely related to the cycles in G.

Recall [4, pages 51-58] the construction of the edge space and cycle
subspace of G. The edge space E is the complex vector space of
functions f : £€ — C. The standard basis is the set of functions
{fe} with f.(e) = 1 while f.(e;) = 0 for edges e; # e. Suppose
(vo,...,vk—1) is an ordered K-tuple of distinct vertices of G such that
(vk, Ukt1) is an edge of G for k =0,... ,K — 2, as is (vk_1,vg9). The
cycle (vo, ... ,vk_1) is the subgraph of G with these vertices and edges.
The oriented cycle (vg,...,vk_1) orients the edges of the cycle from
Uk to vgy1 for K =0,..., K — 2 and from vig_1 to vg. Cycles are the
simple closed curves of a graph.

Given an orientation for the edges e of G, and an oriented cycle v, we
may define a function f, : £ — C by taking f(e) = 0 if e is not an edge
of the cycle, while if e is an edge of the cycle, f(e) = 1 (respectively
—1) if the graph orientation of e agrees (respectively disagrees) with
the cycle orientation of e. The cycle subspace Zg of the (oriented) edge
space is the span of the images of the cycles. If G is connected, the
cycle subspace has dimension Ny — Ny + 1.

When A = n%72 for n > 1, eigenfunctions of A have special vanishing
properties.

Lemma 2.6. Suppose ¢ € E(n?r?) forn=1,2,3,....

If G is connected, and ¥ (v) = 0 for some vertex v, then ¢ vanishes
at all vertices.

The eigenspaces E(4nmw?) have an eigenfunction vanishing at no
vertices.

The eigenspaces E((2n — 1)%7%) have an eigenfunction vanishing at
no vertices if and only if G is bipartite.
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Proof. Suppose ¥(v) = 0 for some vertex v. On each incident
edge, ¥(z) = Bsin(nmz), so at all adjacent vertices w one finds
¥(w) = Bsin(nm) = 0, which suffices for the first claim.

For the second claim the desired eigenfunction is simply cos(2nmz)
in local coordinates on each edge.

Suppose G is bipartite, with the two classes of vertices labeled 0 and
1. Pick local coordinates on each edge consistent with the vertex class
labels, and define the eigenfunction to be cos([2n — 1]7x).

Suppose conversely that for some eigenvalue (2n — 1)272 there is an
eigenfunction v vanishing at no vertex. Without loss of generality,
assume 7 is real valued. In local coordinates for an edge,

¥(z) = acos([2n — 1]rz) + bsin([2n — 1]7z), a #0.

If w and v are adjacent vertices, then ¥ (w) = —(v), showing that
vertices can be labeled by the sign of ¢, so G is bipartite. O

Let Fo(n?m?) denote the subspace of E(n?r?) consisting of those
eigenfunctions of A vanishing at the vertices. Fix an orientation for
the edges of G and edge coordinates z : e — [0,1] consistent with the
orientation. For each ¥ € Ey(n?m?) and each edge e, the restriction
of ¢ to e has the form 9.(z) = a.sin(2rnz). Thus, there is a linear
map Jy from Ep(n?7?) to the edge space of G taking 1 to the function
given by fy(e) = a.. If 9 is in the null space of Jy, then 1. is the zero
function for each edge e, so Jy is injective. First we treat the cases
when n is even.

Theorem 2.7. Forn =1,2,3,..., the linear map Jo : Eo(4n’m?) —
E has range equal to the cycle space Zyg.

Proof. Suppose «y is an oriented cycle and, for the edges of the cycle,
let t : e — [0,1] be an edge coordinate consistent with the cycle
orientation. An eigenfunction ¥ of A may be defined as 0 on edges
not in the cycle, while for the edges of the cycle 1.(t) = sin(2nzt).
For e in the cycle, if the cycle orientation of e agrees with the graph
orientation, then a. = 1. If the cycle orientation of e disagrees with the
graph orientation, then t = 1 — z and ¢, = —sin(2nrz), so a, = —1.
Thus, each oriented cycle is in the range of Jj.
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It suffices to prove the result for a connected graph. Suppose Z, has
dimension M. Pick a spanning tree 7 for G. There are [4, p. 53] M
edges e; of G not in T, and a basis of cycles 71, ..., such that each
«y; contains an edge e; ¢ T, with e; not contained in any other ;. Fix
n € {1,2,3,...}, and construct eigenfunctions ¢; as above for each ;.

Now suppose that ¢ € Ey(4n?r?). After subtracting a linear com-
bination ) a;t;, we may assume that 1) vanishes on all edges e; not
in the spanning tree. For every boundary vertex v of 7, ¢ vanishes
identically on all but one edge of G incident on v, and by the vertex
conditions it then vanishes on all edges incident on v. Continuing away
from the boundary of the spanning tree, we see that 1 is the 0 function,
so the functions ¢; are a basis for Ey(4n®r?). O

Let Iy : Zo — Eo(4n*m?) be J; .

A combinatorial construction of Ey((2n—1)272) is also available. Let
e ~ v indicate that e is incident on v, and let Z; denote the subspace
of the edge space consisting of functions f : £ — C with

D fle)=0, vev.

ex~v

Theorem 2.8. Forn =1,2,3,..., the linear map I, taking f € Z,
to g(x) € Eo((2n — 1)272) defined by

ge(z) = f(e)sin((2n — 1)mz),

1s an tsomorphism. The subspace Zi has an integral basis.

Proof. Since sin((2n — 1)wz) = sin((2n — 1)m(1 — z)), the edge
orientation does not affect the definition, so g is well defined. Clearly
g(x) satisfies the eigenvalue equation and vanishes at each vertex. The
condition Y, f(e) = 0 for all v € V gives the derivative condition,
s0 g € Eo((2n — 1)?7?). Moreover, the map is one to one.

Suppose ¥ (z) € Eo((2n — 1)27%). Then v.(z) = a.sin((2n — 1)7z)
on each edge, and the derivative condition (2.1) gives

Zae:(], v E V.

e~v
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FIGURE 2.1. Bowtie graph.

Thus the injection Jy maps Ey((2n —1)?7?) to Z;. This establishes the
isomorphism.

To see that Z; has an integral basis, let e, be a numbering of the
edges of G, and let x,, = f(e,). The set of functions Z; is then given

by the set of z1,...,x N, satisfying the Ny equations
5 50
en™~v

This is a system of linear homogeneous equations whose coefficient
matrix consists of ones and zeros. Reduction by Gaussian elimination
shows that the set of solutions has a rational basis, and so an integral
basis. O

2.1. An example. A simple example will help illustrate Theorems
2.5, 2.7 and 2.8, as well as material remaining to be considered.
The example is the bowtie graph in Figure 2.1. This graph has two
independent cycles (triangles) of length 3.

Each eigenspace E(4n’n?) has an orthonormal basis ¢1, ¢2, ¢3,
where ¢; = /2/Tcos(2nmz) on each edge, ¢ = +/2/3sin(2nmz)
on the left triangle, while vanishing on the other edges, and ¢35 =
\/2/3sin(2nmz) on the right triangle, while vanishing on the other
edges. The sum of the squares of the magnitudes of an orthonormal
basis for each eigenspace will soon be a concern. In this case, the
function |¢1(x)|> + |p2(z)|® + |¢3(z)|? is nonconstant, being strictly
smaller for almost every point on the central edge than at corresponding



QUANTUM GRAPH EIGENVALUE CLUSTER TRACES 477

points on the other edges. Let T;(z) denote the function which is the
constant € on the leftmost triangle, and 0 on all other edges. The
operator A + T; will still have ¢ and ¢3 as eigenfunctions, but with
eigenvalues 4n27? and 4n272 + .

Forn =1,2,3,..., each eigenspace E((2n—1)2r?) is one dimensional.
An eigenfunction ¢ can be constructed by letting ¢(z) = 2sin((2n —
1)) on the middle edge. The function ¢ then continues as — sin((2n—
1)mz) on the edges adjacent to the middle edge, and sin((2n — 1)7x)
on the remaining two edges. Notice that, on each edge, the function ¢
is an integer multiple of sin(wz). Also, |¢;(z)|? gives 4 times as much
weight to the points of the central edge compared to corresponding
points in the triangles.

3. Eigenfunctions of A and the shift map 7. This section
provides additional information about the eigenfunctions of A. The
shift map 7 discussed in Proposition 2.1 plays an important role. The
cases w = nw and w # nw are treated separately.

3.1. The case w = nm. As shown above, the eigenspaces E(n?r?)

are closely linked to subspaces of the edge space of G. Define an inner
product on the edge space, and its subspaces Zy and Z; by

1 -
(908 = 5 3 F(e)g(e)
ecf
Lemma 3.1. Forn=1,2,3,..., the maps
Iy : Zo — Eg(4n’n?), I : Zy — Eo((2n — 1)%7?)

and
T : E(n*n?) — E([nm + 27]?)

preserve inner products.

Proof. These results are elementary edgewise computations. Treating
Iy and I, first, suppose ¥, z € Ey(n?r?). For x € e,

y(z) = Aesin(nrz), z(z) = Besin(nrz).
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Then
1 -

— 1
/yE = A.B, sin2(n7rm) = §AeBe-
e 0

For the shift 7", suppose y, 2 € E(n?r?). For z € e write

y(z) = ™™ + BT, 2(x) = €™ 4 fe~ T,
and
Ty = aelnm+2rle | go—ilnm+2n]e
Tz = yeilnmtmla | go—ilnm+2nls
Then

/0 Ty(z)Tz(z) = o7y + B

1 1
+ Olg/ ei[2n1r+47r]w dzr + ﬂi/ efi[2n1r+47r]w dx
0 0

= a7+,6’5:/0 y(z)z(xz). O

Lemma 3.2. For a fived n, suppose y,z € E(n?n?). Then the
sequence T™yT ™z converges weakly in L?(G) to a function constant
on each edge.

Proof. For each edge e write

Ye(z) = Acsin(nmz + 0.),
T"ye(z) = Ae sin([nm + 2mz]z + 6.)

and
2e(x) = Besin(nmz + 7,),

T™ze(x) = Besin([nm + 2mn]|x + 7).
By an elementary formula,

T Yo (2)T ™20 (z) = Aezw

B AEB_ecos([er + 4Tr;7r]ﬂc + e +7e) ‘

(3.1)
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If ¢ € L*(G), then g. € L?[0,1]. Expanding ¢. in a Fourier series,

(3.2) ge(x) = ap + Z ay, cos(2wkz) + by, sin(2wkz),
k=1

one computes that

1 1
(33) lim Tmye’]_-mZeQE(w) = / %AEE COS(5e - 'Ye)QE(I)' o
0

m— 00 0

3.2. w # nm. Next we turn to the eigenvalues \ ¢ {n?72}. As noted
in (2.2), the eigenfunctions of A are identified through their vertex
values with eigenvectors of A; on the vertex space V. The vertex
space is given the inner product

(o0 = 5 O deg (0)f(0)g(0).

veEVY

For eigenfunctions y and z with the same eigenvalue w?, the operator
T™ acts by
(3.4)

1) —y(0
T™y(z, \) = y(0) COS([meW]xHy( ) — y(0) cos(w)

sin(w)

sin([w+2mm]z).
The following limiting behavior is observed.

Lemma 3.3. Suppose y and z are eigenfunctions for A with a
common eigenvalue w? ¢ {n?m?}. Then, for each edge e, the sequence

T"ye(x, \)T™2e(x, A) has the weak limit

_ 1 .

(3.5) %y(O)Z(O) + %Tz(w)[y(l) = y(0) cos(w)][z(1) — 2(0) cos(w)]

(3.6) lim [ T"yTmz = % Z deg (v)y(v)z(v).

m—ro0 g
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The sequence of operators T™ : E(w?) — E([w + 2mm]?) is bounded,
with a strictly positive lower bound.

Proof. For 6§ € R one has

[A cos(0) + Bsin(0)][C cos(#) + D sin(6)]

BD AC-BD B AD
= AC—; + © cos(26) + C+ sin(26).

Thus
Ty Tz = y(0)3(0) <o B Amle)
F(O)=(1) - 2(0) cos(ae)) 22 ;(jv)w]x)
&0 + [y(1) = y(0) cos(w)]msm(%z;(if)nﬂ]w)
+ [y(1) — y(0) cos(w)]
Bt

A Fourier series computation establishes (3.5). In particular, the weak
limit of |T™y,(z,\)|? is

yOF | ly() = y(0) cos(w)|?
3 2 sin”(w) '

(3.8)

Since y(1)y(0)+y(1)y(0) < |y(0)|?>+|y(1)|* and w # nm, the expression
in (3.8) is a positive definite form of the vertex values of e.
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Turning to the inner products,

_ 1 R
lim [ T™yTmz = —— i
m—oo Jo Y 2sin?(w) .

(3.9)

u~v

When the vertex values y(v) and z(v) come from eigenvectors of Ay,
(2.3) shows that

i Tms— L eg (v)y(v)z(v)
im ngyT z= 25in2(w);d g (v)y(v)z(v)
(3.10) — cos?(w)deg (v)y(v)z(v)

= 33 deg (n)y(v)2(v).

To see that the sequence of operators 7™ : E(w?) — E([w + 2mm]?).
is bounded, simply choose an orthonormal basis for E(w?) and apply
(3.6) to the basis elements. If there were no strictly positive lower
bound, then there would be a subsequence my, and functions y,,, with
|lYym,. || = 1, but ||T™*y,,. || — 0. Since the unit sphere in E(w?) is
compact, we may pass to a subsequence and conclude there is a unit
vector y which is the limit of y,,,. Since T is a bounded sequence of
operators,

Ty =T Y, + T (Y = Ym,) — 0,

contradicting (3.6). O

3.3. Some integrals. More information about the weak conver-
gence results from Lemmas 3.2 and 3.3 will be required. A general
observation about orthonormal functions will be helpful.



482 ROBERT CARLSON

Lemma 3.4. Suppose ¢1,...,¢0p 1S an orthonormal basis of con-
tinuous functions for a subspace S of L*(G). Then the function
Z;.VI:I \¢;(x)|? is independent of the choice of orthonormal basis for

Proof. Let ¢ be a subinterval of an edge e of G, and let P, denote
the orthogonal projection from L?(G) to the subspace of functions
with support in ¢. Let Ps denote the orthogonal projection onto S.
Computing the trace,

r(PsP,Ps) = Z/P% m /Zl% :

and this number is independent of the basis. The result follows since
¢ is any subinterval of any edge, and the functions ¢, are continuous.
O

Theorem 3.5. Assume that G is connected, ¢ € L?*(G), and
¢15... ,OM 1s an orthonormal basis of eigenfunctions for E(jw +
2mm)?).

In case w = 27, pick an orthonormal basis {1;} for the cycle space
Zy, with values ¥;(e) on the edge e. Then

(3.11)  lim_ Z |, (

In case w = m, pick an orthonormal basis {1;} for the space Zy, with
values 1;(e) on the edge e. Then

a12) g [ q(w)_ b ZZWJ / ()

e j=1

if G is not bipartite, and (3.11) holds if G is bipartite.
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In the case w ¢ {nm}, pick an orthonormal basis {1;} for the
eigenspace of Ay with eigenvalue 1 — cos(w). Then

013 tim [ o) Y10, = s
303 (IO + P

- 2R OFD) o)) [ (o)

Proof. Suppose w = 2m. An orthonormal basis for E([2(m +
1)7]?) may be constructed from an orthonormal basis of Zg using
Iy (see Theorem 2.7 and the following definition) as in Lemma 3.1,
together with the function which is v/2/y/Ng cos(2(m + 1)7z) on each
edge. Equation (3.11) can be verified by using (3.3). Using I; as
in Lemma 3.1, a similar argument applies if w = 7, except that the
function v/2/y/Ng cos((2m + 1)7z) is absent if G is not bipartite.

Suppose w ¢ {nm}. Pick an orthonormal basis {1; } for the eigenspace
of A; with eigenvalue 1 — cos(w). For each m, use formula (3.4) to
construct a basis {¢;(m)} for E([w + 2mn]?). This basis need not be
orthonormal. Notice that 7¢;(m) = ¢;(m + 1). Using the Kronecker
d notation, (3.6) gives

(3.14) lim /g $ip; = dij-

m—r0o0

From these ordered bases {¢;(m)} the Gram-Schmidt process will
produce an orthonormal basis {®;(m)}. By virtue of (3.14) we find

m—r 00 m—r0o0

M M
lim [ g(2) ) |¢;(@)]* = lim [ q(x) ) |2;(2)P,
g j=1 g j=1
and then (3.5) finishes the proof. O

The expressions in Theorem 3.5 simplify if fe ge has the same value
for each edge. The case w ¢ {nn} is highlighted in the next result. Here
E4(v) denotes the eigenspace of Ay with eigenvalue v = 1 — cos(w).
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Corollary 3.6. Suppose w ¢ {nr}, and v =1 — cos(w). Under the
hypotheses of Theorem 3.5, suppose that fe ge 15 the same for all edges.
Then

(3.15) lim Z|¢J 1> = dim(E; (v)) /0 e ().

m—r o0

Proof. In case w ¢ {nm}, computations as in (3.9) and (3.10) lead to

Jim [ o@D 16,00 = [ 0@y 3 S des et

g j=1 20 j
The additional simplification follows from the observation that
3 2 > deg (o)l (0
vEV J
is the trace, in the vertex space, of the orthogonal projection onto

FEq (l/) O

Lemma 3.7. Suppose Ym,z2m € E([w+2mn)?), with [|ym| = ||zm|| =
1, and with 0 < w < 2w. For each edge e of G, assume that q.(z) is

in C*[0,1] with ¢ (0) = ¢’(1) = 0 for j = 0,... ,k — 1, and that
[, ae(x) = 0. Then, for m sufficiently large,

1
/ YmZmQe(T)
0

the estimates hold uniformly for all y,, and zp,.

<Cm™*,

Proof. The easiest case is w = nw for n = 1,2, where y,,, = T™y and
zm = T™z for some y and z of norm 1. In the notation of Lemma 3.2,

|Ael, 1Be| < V2,

since

1
/ sin®(nmz + 6.) = 1/2.
0
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Equation (3.1) gives

1
/ T yTmzq.(x)
0

S C(|a(2n+4m)7r| + ‘b(2n+4m)7r|)7

and the well-known estimates on the Fourier coefficients of ¢. obtained
by integration by parts gives the result.

Suppose 0 < w < 27, with w ¢ {n7}. Again write y,, = 7™y and
Zm = T™z for some y and z in E(w). By Lemma 3.3, since ||yn|| =1,
lly|| < C independent of m or the function y,,. By Lemma 2.2, there is
a similar bound on the values y(v) for each vertex v. The same remarks
apply to z.

Equation (3.7) gives

1
‘ / T™yT ™ 2ge(x)
0

< O(‘A(2n+4m)7r| + |B(2n+4m)7r‘)7

where Aj and By are the Fourier coefficients of sin(2wz)q(z) or
cos(2wz)g(x). Again the integration by parts estimate for Fourier co-
efficients gives the result. ]

4. Perturbations of the graph Laplacian. In this section
perturbation theory for self-adjoint operators on a Hilbert space as
developed in [10] will be combined with the results of the previous
sections to draw some conclusions about the eigenvalues of operators
A +q on L?(G), where ¢ : G — C is bounded and measurable. Since A
is self adjoint with compact resolvent Rg()), the operator A + ¢ also
has compact resolvent R(A).

Let A\g < A1 < A2 < --- be the sequence of distinct eigenvalues of
A. Suppose that A\, has multiplicity m,,. By virtue of Proposition 2.1,
there is a Cy > 0 such that |A,11 — A\p| > Cinforn=1,2,3,.... The
eigenvalues u of A + ¢ cluster about the eigenvalues A, in the following
sense. There is a constant Cs such that for n sufficiently large the circle
I',, of radius C5 centered at A, will be in the resolvent set of A + g and
contain exactly m,, eigenvalues p, counted with algebraic multiplicity.
Moreover, there is a constant C3 such that every eigenvalue p with
|| > C5 is contained inside some I',,. Some restrictions on ¢ will
shrink the radii of these eigenvalue clusters as n increases.
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Theorem 4.1. For k = 1 or k = 2, assume that for each edge e
of G the function g.(z) is in C*[0,1] with qéj)(O) = qéj)(l) =0 for
j=0,...,k—1, and that [ q.(z) = 0. Then, for n large enough, the
eigenvalues p of A + q contained in |\ — A, | < Cs also satisfy

= An| = O(n~*2).

Proof. Improved estimates for the resolvent set of A + ¢ are obtained
via the usual resolvent expansion

R(\) = (A+q—A)7!
= Ro(\)(I + qRo(N)) !

(4.1) o
— Ro() (I n Z[—qRo@)}’“).

Let P; denote the orthogonal projection onto the eigenspace E(),)
of A, and let P, = I — P;. Write

Ro(A)qRo(A) = (PL+ P2)Ro(A)qRo(A) (P + P2).
For a bounded operator A on a Hilbert space

[A]l = sup [(Ad, )], o]l = [[¥]] = 1.

For 0 < [A—\,| < C3 and n large, the Cauchy-Schwarz inequality gives

[(P2Ro(A)qRo(X) P2, )| = [(gRo(A) P2, Ro(X) Pot))|

and
[(PLRo(N)qRo(X) P2, 1) = |(qRo(A) P2gp, Ro(A) Pitb)|

<alloo i
= Wllee iy — A

This last estimate also applies if P; and P, switch positions.
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The remaining term is

[(P1Ro(X)qRo(N) P16, )| = [(qRo(N) P1op, Ro(X) Pro)].

Since y = Py¢ and z = Py4 are in E()\,), Lemma 3.7 yields

/g q(z)yz| <

These estimates show we may choose Cy> 0 such that ||gRo(A)gRo(M)]|
< 1if Cyn~*/2 < A= ),| < Cy. In this region the series (4.1) for R(\)
converges in operator norm, so the region is in the resolvent set for

A +q. ]

1
A —An)?

Cs

[PLRo(A)qRo(A) P = nFIX — An2

Under weaker hypotheses it is still possible to obtain an asymp-
totic description of the sum of the eigenvalues in a cluster. For

=0,1,2,..., let T',, be a positively oriented circle of positive ra-
dius enclosing \,, with the corresponding closed disks being pairwise
disjoint. T',, will be chosen to lie in the resolvent set of A + ¢, so
that for n sufficiently large exactly m,, eigenvalues p of A + ¢, counted
with algebraic multiplicity, are enclosed. The regular distribution of
the eigenvalues A,, permits us to select I';, with radius r, satisfying
Cin < r, < Cyn for some positive constants Cy, Cs.

Recall [10, pages 74-81] that the part of the operator A+ g associated
to the contour I';, is

-1
T,=— [ (A+q)R( 2m/ AR(A

211 T,

Operator T, is degenerate and so has a trace [10, pages 523-525]. If
w; are the eigenvalues of A + ¢ inside I'y,, then

> (i — M) =tr -1 (A = X)) R(N) dA.

e
i €Ny Ln

These eigenvalue shifts have a limit if we restrict to a subsequence
A\p = [w + 2mn]?.
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Theorem 4.2. Suppose q is a bounded measurable function on G, and
let {¢;(m)} be an orthonormal basis for E(\,) with A, = [w + 2mm]%.

Then
Jim, 3 (5= = i 37 [ ale)osF o)

Hi€lrn

with the right hand side evaluated in Theorem 3.5.

Proof. From the resolvent expansion (4.1),

R(A) = Ro(A) — Ro(A)gq(z)Ro(A) + 5(A),

and

Notice first that

-1

A=A, A)dA = 0.
3t . O AR ar=0

Looking at S(X), we have

> (=1)*[Ro(N)g]*
k=2

=0(n"?), MeT,,

and if || - ||; denotes the trace norm [10, page 521], [13, page 330], then
elementary estimates give

|Ro(N)||1 = O(n~?), XeT,.

Since ||AB|1 < ||Al||| B, it follows that ||[S(\)|: = O(n=%/2) for
A eTl,. Thus,

1
lim tr — A=X)S(A)dA =0,

n—oco 21 r,
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and

1
Hm tr (T, — An) —tr— [ (A — A)Ro(A)gRo(\) dA = 0.

n—00 2mi Jr,

Let ¢y be an orthonormal basis of eigenfunctions for A. Then
1
Hn) = tr —— / (A — An)Ro(A)gRo(2) dA
211 'y

= %/ (A= An)Ro(N)qRo(A) dX br, dr)-
k In

The eigenfunctions with eigenvalue \; # X, contribute 0, so the sum
can be restricted to those eigenfunctions ¢; with eigenvalue A,.

t(n):%/r/\ AdAanSJ,aﬁJ Z/ z)|6;1* ().

To complete the proof, restrict the traces to come from a subsequence
An = [w + 2mmn]?, and use Theorem 3.5. O
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