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STRUCTURE THEORY OF
TENSOR PRODUCT LOCALLY H*-ALGEBRAS

MARINA HARALAMPIDOU

ABSTRACT. The tensor product of two proper Hausdorff
locally m-convex H*-algebras with continuous involution, en-
dowed with the projective tensor product topology, along with
its completion, are algebras of the same type with the factors.
Under appropriate conditions, a canonical orthogonal basis
is provided in the completion of the tensor product algebra.
Based on this, the minimal closed 2-sided ideals are deter-
mined, yielding, in turn, the second Wedderburn structure
theorem.

0. Introduction. The theory of H*-(Banach) algebras with the
corresponding Wedderburn structure theorems have been developed by
Ambrose in [1]. The notion of an H*-algebra is the abstract version
of characteristic properties of the algebra L?(G) of a compact group
(with the convolution as ring multiplication). It is known (ibid) that
an H*-algebra lies between the group algebra of a compact group and
that of a (non-compact) locally compact group.

In [9-11, 14, 15] we considered extensions of the results in [1] to
locally m-convex topological algebras. Our point of view is justified by
theoretical reasons with an increasing interest in topological x-algebras
(function algebras, topological K-theory, [7, 19, 20]), especially, in
x-algebras endowed with locally convex topologies generated by C*-
seminorms, applicable, for instance, even to relativistic quantum the-
ory. See, e.g., [2, 3, 16, 18]. In this context, we also note that a
particular locally m-convex H*-algebra admits a locally m-convex C*-
topology (cf. [13, page 198, Proposition 2.5], [4, page 265, Proposition
2.3]; see also [5, 6]). Our study reveals some hidden characteristic
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properties of H*-(Banach) algebras, as for instance, among others, the
(bs) and (Pbs) properties (see Section 2 and Theorem 2.1).

In [8], Grove, employing results of [1], considered tensor products
of H*-algebras and gave, among other things, the second Wedderburn
structure theorem for the resulted tensor product H*-algebra.

Here, we consider tensor products of locally m-convex H*-algebras,
thus generalizing results of [8]. In particular, we prove that the
tensor product of two proper Hausdorff locally m-convex H*-algebras
with continuous involution, in the projective tensor product topology,
as well as its completion are algebras of the same type with the
factors (Theorem 4.2). The existence of a canonical orthogonal basis
(Definition 3.2) in a complete algebra, as before, is crucial for its
structure. Thus, we give the framework in which such a basis exists. As
a matter of fact, the basis at issue is generated by analogous ones in the
factor algebras. More precisely, we give conditions so that each factor
algebra is decomposed through minimal closed 2-sided ideals (second
Wedderburn structure theorem). Each one of these ideals contains a
family of axes, which in turn, generates a canonical orthogonal basis for
the ideal. The family consisting of the union of the bases, as they vary
over the factor ideals, gives a canonical orthogonal basis for the factor
algebra (Proposition 3.4). The bases in the factor algebras give in turn,
the required basis for the completion of the tensor product algebra
(Theorem 4.4). Based on this, we determine the minimal closed 2-
sided ideals in the algebra concerned (Proposition 5.1). Thus, we have
at hand the “building stones” for a decomposition of the algebra in
question, thus getting the analogous here second Wedderburn structure
theorem, as we did for the factors (Theorem 5.5).

1. Notation and preliminaries. Throughout this paper all alge-
bras are over the field C of complexes. AF(S) = A;(S) (respectively
AE(S) = A,(S)) denotes the left (right) annihilator of a (non-empty)
subset S of an algebra E. If A.(E) = (0), E is called proper, while
E is said to be preannihilator, if A(E) = A.(E) = (0). If Eis a
topological algebra (separately continuous multiplication), £;(E) = L,
(L.(E) = L, L(E) = L) denotes the set of all closed left (right, 2-
sided) ideals in E. A topological algebra E is topologically simple if
(0) is the only proper closed 2-sided ideal in E. A locally convex (re-
spectively locally m-conver) H*-algebra is an algebra E equipped with
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a family (pa)aca of Ambrose seminorms in the sense that p,, a € A,
arises from a positive semi-definite (pseudo-) inner product (, )4, such
that the induced topology makes E into a locally convex (respectively
locally m-convex) (topological) algebra. Moreover, the following con-
ditions are satisfied: For any « € E, there is an z* € E, such that

(1.1) (Y, 2)a = (1, 772)a
(1.2) (yz,2)a = (y,22")a

for any y,z € E and a € A. The element x* (not necessarily unique) is
called an adjoint of . If E is proper and Hausdorff, * is unique and
the correspondence z — z* defines on E an involution (see [9, page
451, Definition 1.1; page 452, Theorem 1.3]).

In what follows, a locally m-convex H*-algebra is called, for short, a
locally H*-algebra.

Given a locally convex H*-algebra (E, (ps)aca) the orthogonal S+
of a non-empty subset S of F is

(1.3) St={zcE: (z,9)a =0 for every y € S and a € A},

being a closed linear subspace of E. If I is in £; (respectively L., L),
then It is a closed left (respectively, right, 2-sided) ideal in E [9, page
456, Lemma 3.2]. Two elements z,y € E, are called orthogonal if
(z,y)a = 0 for every a € A, while S,T C E are mutually orthogonal if
their elements are pair-wise orthogonal. Besides, two elements z,y € F
with z # y are called algebraically orthogonal if xy = yz = 0. Two
orthogonal and algebraically orthogonal elements of E are called doubly
orthogonal. Besides, an element of E is said to be H-primitive if it
cannot be expressed as the sum of two (non-zero) doubly orthogonal
projections. In this respect, an idempotent (projection) of an algebra
E is an element z € E with 0 # = = 22, Zd(E) denotes the set of
all projections in E. A family (z;)icx of elements in an algebra E
is called (algebraically) orthogonal, if for every i # j in K,z;x; = 0.
Moreover, a maximal family of doubly orthogonal, H-primitive, self-
adjoint, projections of a locally convex H*-algebra, which also has an
involution, is called a family of azes. In particular, if the underlying
space is Hausdorff, then any two elements of a family of azes, being self-
adjoint idempotents, are orthogonal, if and only if they are algebraically
orthogonal. If (E))ea is a family of mutually orthogonal subalgebras in
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a locally convex H*-algebra, then their algebraic direct sum is called an
orthogonal direct sum (in short, orthodirect sum), denoted by @ +FE)
AEA

(see also [17, page 119] and [22, page 46]). Besides, by the topological
orthogonal direct of the E\’s is meant the closure @ 1E) of their
AEA

orthodirect sum.

2. Hereditary Ambrose algebras. A closed (left) ideal I of a
locally convex H*-algebra E is called orthocomplementedif E = I+
(It is called the orthocomplement of I in E; see comments after (1.3)).
E is called an orthocomplemented algebra, if every closed (left) ideal I
is orthocomplemented in E. A locally H*-algebra whose every closed
left (right) ideal is a left (right) orthocomplemented algebra is named
a hereditary left (right) orthocomplemented algebra (see [12, page 3728,
Definition 3.4; see also page 3727, Theorem 3.1] as well as [9, page 457,
(3.3)]). A locally convex H*-algebra E has the (H)-property (on the
left), if the following condition holds:

Every closed left ideal I in E, with I C Ex, for some
(H) x € Id(E), has an orthocomplement in Ex. Namely,
Bz =Ipt1+.

A proper Hausdorff complete locally H*-algebra with continuous
involution, having the (H)-property is called an Ambrose algebra. A
(bs) Ambrose algebra is an Ambrose algebra (E, (pa)aca), satisfying
the condition:

There ezists a non-zero (self-adjoint) element w € E
(bs) of the form w = h*h, h € E, such that sup p,(w) < +00
acA

(see [14, page 65, Lemma 1.1]). Of course, every strong spectrally
bounded x-algebra (viz. a locally m-convex *-algebra (E, (pa)aca) with

sup pa(x) < 400, for every z € Fj; see [20, page 488, (3.63)]) has the
acA

(bs)-property.

The next result gives rise to the class of hereditary Ambrose algebras
(cf. Definition 2.3). In what follows Cy[z] stands for the C-algebra of
polynomials in z without constant term. For a (bs) Ambrose algebra E
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and z a (non-zero) self-adjoint element of it, Cy[z] is self-adjoint and
hence a proper Hausdorff complete locally H*-algebra with continuous
involution (see [11, page 145, proof of Theorem 3.3] and the footnote
in [14, page 69]).

Theorem 2.1. Let (E,(pa)aca) be an orthocomplemented (bs)
Ambrose algebra satisfying the condition:

Every subalgebra of E of the form Cy|z], with z a

(Pbs) . .
self-adjoint element in E, has the (bs)-property.

Then FE is the topological orthodirect sum of the minimal closed 2-sided
ideals E; generated by Ex;, i € K (where (z;)ick is a family of azes in
E). Each one of the E;’s is a topologically simple, proper, Hausdorff,
complete, locally H* -algebra with continuous involution. In particular,
E;, i € K has the (H)-property if

(21) [’I(I) - £1(Ei), Ie El(E,), 1€ K.

Thus the E;’s are orthocomplemented Ambrose algebras.

Proof. E has a family of axes, say (z;)ick, such that

(2.2) E= ® *RL(Ex))= & 1E,.
€K 1€EK

Namely, E is the topological orthodirect sum of the minimal closed
2-sided ideals RL(Ez;) = E;, generated by FEx;, i € K.

[(2.2) above is called a canonical analysis of E (with respect
(¥)  to a family of axes (z;);ck), while the E;’s are called canon-
ical factors of EJ.

Moreover, each F; has all the properties, stated in the first part of
the theorem, but (bs) (see [9, page 457, Lemma 3.4] and [11, page
143, comments after Lemma 2.4; page 144, Theorem 3.1; and page 148,
Theorem 3.8]; cf. also the Note after this proof).

Now, suppose that (2.1) is fulfilled; E, as proper, is left preannihilator
(see [9, page 452, Theorem 1.2]); hence, by Corollary 3.2 in [12,
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page 3728], every closed 2-sided ideal in E is a (left) complemented
algebra (this is independent of (2.1)). Therefore, by (2.1) and [12, page
3727, Theorem 3.1; see also its proof] every I in £;(E;),i € K is a
left (ortho)complemented algebra, as well. So, for J in £;(F;) with
J C E;z, for some x € Id(E;), we get E;x = JOLJ+, E;z being a
closed left ideal in E;. Namely, E;,i € K has the (H)-property and
this completes the proof. Notice that, by abuse of notation, we put
here JP = J+, where JP = J+ N E;z (see [12, page 3727, Theorem 3.1
and its proof]). Namely, “p” denotes the relative orthocomplementor
on F;zx. O

Note. Concerning the previous proof, we note that Theorem 3.8 in
[11] still holds by employing the (Pbs) condition, in place of (PH). In
this context, the same as before, remains true for Theorems 3.3, 4.5
and Corollary 3.9 therein. On the other hand, the following results in
[14], viz. Theorems 1.2, 2.1 and 2.4 with the Scholium after it, along
with Propositions 2.3, 2.9 and Corollaries 2.2, 2.5, 2.7 and 2.8 are again
valid, under the condition (Pbs).

Remarks. By Theorem 3.9 in [9, page 458], the algebras E and E;,
i € K, as in Theorem 2.1, are actually dual (viz. A;(A,(I)) = I for
all I € £,(F) and A,.(A(J)) = J for all J € L,.(F), respectively
for the E;’s) (a fortiori annihilator algebras, namely preannihilator
algebras where the right (respectively left) annihilator of any proper
closed left (right) ideal, is non-zero). Besides, (2.1) holds for any
commutative topologically semiprime, annihilator algebra (see [12, page
3726, Theorem 3.12 and page 3728, comments after Theorem 3.1]).
Moreover, (2.1) is satisfied, if I € Li(E;) is *-closed (viz. I* C I;
actually, I* = I) and the algebra E; is left orthocomplemented: Indeed,
for I € £i(E;), i € K, we get B; = [&tI+. If z € I, (2,y)q = O for
everyy € I, a € A. Since I is *-closed, yy* € I and hence (z, yy*), = 0.
Namely, (zy,y)o = 0 for every y € I, o € A. Thus xy € I+. Moreover,
zy € I, and hence zy = 0 for every y € I. Namely, I+ C AlE" (I).
Thus E; C I+ A (I) and hence E; = I + A (I) from which we get
Li(I) C L;(E;) (see also [12, page 3728]). On the other hand, if (2.1)
is satisfied, F; is left complemented (see the proof of Theorem 2.1).
See also Proposition 2.5 below and the comment preceding it. Finally,
(2.1) always implies that E; is left complemented in the sense of [12].
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Corollary 2.2. Theorem 2.1 holds for any orthocomplemented strong
spectrally bounded Ambrose algebra that satisfies (2.1) and has the
(Pbs)-property.

In view of Theorem 2.1, we set the next definition, in the context
of which canonical orthogonal bases appear (see Definition 3.2 and
Proposition 3.4 below).

Definition 2.3. Let (E,(py)aca) be an orthocomplemented (bs)
Ambrose algebra. Then, (i) E is called a pre-hereditary Ambrose
algebra, if it satisfies the (Pbs)-property.

(ii) F is said to be a hereditary Ambrose algebra, if every closed
subalgebra has the (bs) property and every canonical factor E;, i € K
(with respect to a family of axes (x;);ck ), satisfies (2.1).

It is obvious that a hereditary Ambrose algebra is pre-hereditary.
Moreover, each E; has the (Pbs)-property: Indeed, for any non-zero self-
adjoint element z in F;, i € K, the subalgebra Cy[z] = E; [ Co[z] is
a closed subalgebra in E; hence, by definition, it has the (bs)-property.

Scholium (of terminology). In Definition 2.3 two types of heredi-
tary properties appear. The (a priori) property (bs) and the (a posteri-
ori) property of orthocomplementation (see also Theorem 2.1). Hered-
ity of orthocomplementation is given with respect to the minimal closed
2-sided ideals as in Theorem 2.1. This is exactly what one really needs
to state a structural theorem for certain tensor product Ambrose al-
gebras (see Theorem 5.5 below). Apart from this, types of hereditary
complemented algebras have already appeared in [12, Section 3] (see
also Section 1 above). In that case, heredity of complementation applies
to closed left (right) ideals of a left (right) complemented topological
algebra (cf. also Proposition 2.7 below).

For the commutative case, every orthocomplemented (bs) Ambrose
algebra satisfies (2.1) and hence it is a hereditary complemented Am-
brose algebra (here, heredity of complementation is taken in the sense
of [12]), as the following corollary shows (see also its proof).

Corollary 2.4. Every commutative pre-hereditary Ambrose algebra
E is the topological orthodirect sum of minimal closed (2-sided) ideals,
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say E;, i € K, being algebras of the same type with E (having not
necessarily the (bs)-property). Moreover, the factors E;, i € K, are
topologically simple.

Proof. By Theorem 2.9 in [12, page 3725],
It = A(I)(= A (I),I € L(E;), i€K.
Thus (2.1) is fulfilled. The assertion now follows from Theorem 2.1. O

In the rest of this section, the results are still valid when interchanging
left by right. We refer now to some hereditary properties related with
substructures of a certain locally H*-algebra.

Proposition 2.5. Let (E, (pa)aca) be a Hausdorff left orthocomple-
mented locally H*-algebra. Then every I € L;, which is *-closed, is an
algebra of the same type with E.

In particular, I has the (H)-property, if Tw with w € Id(I) is *-
closed.

Proof. If x € I+, then for any y,2 € I, a € A,
<£Uy, z>oc = <Q}‘, Zy*>a =0.
Thus zy = 0 for every y € I, and hence € A;(I). Therefore,
E = Ie*+1+ C I+ A1) from which we get in turn, £ = I + A;(I)
and £;(I) C L; (see also [12, page 3728, comments preceding Corollary

3.2]). The first part of the assertion follows now from Theorem 3.1 in
[12, page 3727] and Lemma 1.4 in [9, page 453].

To prove the (H)-property for I, consider a closed left ideal J
in I with J C Tw for some w € Id(I). It is easily seen that
Iw € £;(I). By assumption, Tw is *-closed so that, by applying similar
reasoning as above, we get L£;(Iw) C L;(I). Therefore, Tw is a left
orthocomplemented algebra (see [12, page 3727, Theorem 3.1]) and
hence Tw = J®1J* (here J' denotes the relative orthocomplement
induced from I) and this completes the proof. ]

Based on Proposition 2.5, we provide another proof concerning the or-
thocomplementation of the factors E; as in Theorem 2.1 (see also (2.2)):
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Let z be an element in F;. Since E; = (Ex;E) (viz. the linear span of
Ez,E), z = Z?Zl yjz;w; and hence z* = 2?21 w;*z;y;*. Thus E; is
x-closed and, therefore, by Proposition 2.5, it is an orthocomplemented
algebra.

Corollary 2.6. Every Hausdorff left orthocomplemented locally H* -
algebra E whose every closed left ideal I is x-closed is a hereditary left
orthocomplemented algebra.

Proposition 2.7. FEvery hereditary left orthocomplemented locally
H*-algebra E along with every closed left ideal I in E have the (H)-

property.

Proof. Let J be a closed left ideal in E with J C FEz for some
xz € Id(E). Since Exz € £; and J is a (closed) ideal in Ex, we get
Exz = Jo+J+. Namely, F has the (H)-property. Now, let K be a
closed left ideal in I with K C Ix for some z € Id(I). It is easily seen
that Iz € £,(I). So, since EIz C Iz, we get Iz € L;, as well. Hence,
Iz = K&t K+ (L denotes the relative orthocomplementor) and this
terminates the proof. O

3. Canonical orthogonal bases. For completeness sake, we
state the following result taken from [10, page 1184, Lemma 4.7]. In
this context, we still note that, the continuity of the involution of an
Ambrose algebra, therein, is not needed in the following lemma.

Lemma 3.1. Let (E,(pa)aca) be a topologically simple Ambrose
algebra and (x;)icx a family of axes in E. Moreover, let (Eij) (i jyck>
be the family of linear subspaces defined by E;; = z;Ex;, (i,j) € K>.
Then there exists a family (z;;) € [] Eij, such that

(1,5)EK?

[y

xii:mi,iEK.

N}

)

) TijTjk = Tik, 0, j, k € K.

3) iz =0, 4,4, k,l € K with j # k.

4)

5) pa(zij) = const. =/t for any i,j € K with o € A.

. .
Ty = xji, 1,J € K.
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The x;;’s, as before, are called matriz units [10, page 1185]. As
concerns 5), we note that t, > 1, a € A [10, page 1185; see also
the comments after Lemma 4.7]. Besides, it is easily checked that the
family (x:;) jyex> is linearly independent.

Lemma 3.1 supplies all the properties of a canonical orthogonal basis
in a locally H*-algebra, in the sense of the next.

Definition 3.2. Let (F,(pa)aca) be a locally H*-algebra and

(zi)ick a family of axes in E. A family (zi;)ijjex> € [ ziEBx;(=
(4,5)eK?

E;;) is called a canonical orthogonal basis for E, if the x;;’s satisfy
properties 1)-5) of Lemma 3.1, and every z € E has the form

z = Z)\”x” = lignz(;,
17]
such that z5 = )" \;;z;; (finite sum; dependent on 4), A\;; € C, § € A.
(2]

The next result justifies the above definition.

Proposition 3.3. Every topologically simple pre-hereditary Ambrose
algebra (E, (pa)aca) has a canonical orthogonal basis.

Proof. By Theorem 3.1 in [11, page 144], E has a family of axes, say
(7s)icx, which gives a family (zi;) (i j)ekz, as in Lemma 3.1 (see also
the comments following it). Besides,

E = @J-xiExj = @J‘Eij.
[2Y) 2]

[11, page 145, Theorem 3.3]. Thus, for z € E, z = lillsnz(; with

zs € EBL:ciEa:j. Therefore, zs = Y z;wsz; (finite sum). So, since
E;; is one-dimensional (see [10, page 1183, Lemma 4.5]), we get
TWsT; = )\?jxij, with )\fj € C uniquely determined. ]

Proposition 3.4. Let (E, (pa)aca) be a hereditary Ambrose alge-
bra. Then, each canonical factor E;;i € K (see (x) in the proof of
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Theorem 2.1) has a canonical orthogonal basis, say (x};)ner? (here
L; depends on i). Moreover, the family

B = {(xi:l)(k,l)eLf}ieK

s a canonical orthogonal basis for E.

Proof. Each canonical factor E;, i € K of E is a topologically
simple orthocomplemented (bs) Ambrose algebra (see Theorem 2.1 and
Definition 2.3). Moreover, E;, i € K has the (Pbs)-property, as well
(see the comments after Definition 2.3). Namely, E;, i € K is, finally,
a pre-hereditary Ambrose algebra. Therefore, by Proposition 3.3, each
E; has a canonical orthogonal basis, as in the statement. Obviously, the
elements in B satisfy properties 1)-5) of Lemma 3.1. Besides, for y in

ZéBKLEi, Y=Y Yi € E;. Hencey =3, >, AliThy = Dkl N Th-
Namely, B spans iéBKlEi. Since (xi;l)(k,l)eLf is a basis for F;, the AL,’s
are uniquely determined. Now, for z € E, z = lignz(s, with (z5)sen a
net in @ LE;. Thus, by the preceding argument, zs = szl )\};lx};l
(finite ;igl) and this completes the proof. O

4. Tensor products of locally H*-algebras. In what follows
E’ denotes the topological dual of a topological vector space E. By
considering locally H*-algebras, we set the next definition (see also
[21, pages 364, 375]).

Definition 4.1. Let (E, (pa)aca), (F,(g8)pecp) be locally H*-
algebras. A topology 7 on E ® F' is said to be compatible on E ® F, if
the following conditions are satisfied:

1) E® F is a locally H*-algebra.

2) The canonical bilinear map ¢ : E x F — E ® F is separately
continuous. Namely, if (7,),er is a family of submultiplicative semi-
norms defining 7, then for any v € T, there exists (a, 3) € A x B with
Ty (z ®y) < palz)gp(y) for any s @y € EQ F.

3) For any equicontinuous subsets S C E’ and T C F’ the set
ST ={z'®y : (¢,y) € S x T} is an equicontinuous subset of
(E®F).
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Let (E, (pa)aca), (F,(g3)pecn) be locally convex spaces. Then the
relation

(4.1) (Pa ®45)(2) = Ta,p(2) = inf Y pa(:)as(v:)

i=1

where the infimum is taken over all expressions of z in the form
z= 1 ,%;®y; € EQF, defines a family (r,g)(a,8)cAx B Of seminorms
on E®F, making it a locally convex space. The locally convex topology
defined on E ® F via (4.1) is the projective tensorial topology . We
denote by F ® F the respective locally convex space and by EQF its

completion (see [21, page 365, Lemma 2.1, see also page 366]). Now,
restricting ourselves to tensor products of locally H*-algebras, we get
the following result. In its proof, we use the notion of a “positive
element” in the sense that, an element = in a x-algebra E is positive
(we write z > 0 or 0 < z), if it has the form = = )", | z;z;*, z; € E,
1<i<n,and n € N. We denote by E* the set of positive elements in
E (a convex cone) with 0 € ET. A pre-ordering in E, denoted by > or
yet <, is defined by setting z > y (or y < z) if and only if z —y € E™T.
Besides, z € Et is strictly positive (we write z > 0 or 0 < z) if x # 0.

Theorem 4.2. Let (E,(pa)aca), (F,(qs)pen) be proper Hausdorff
locally H*-algebras with continuous involution. Then E ® F and EQF

are algebras of the same type as the given ones.

Proof. Each seminorm 7, g, (o, 3) € A x B (see (4.1)) is submulti-
plicative (see [21, page 15, Corollary 3.1 and page 377, Lemma 3.2]).
Thus E ® F is, in particular, a locally m-convex algebra. If ( , )q,

™
(, )8, (@,8) € A x B are the quasi-inner products corresponding to
Pa, qp respectively, then (4.1) is written in the form

rap(z) =inf > (zi, @) (i, viy *.

Moreover, the linear space E ® F' is equipped with a family of quasi-
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inner products defined by the relation

(4.2) (5 )a®(, )8)(22) = (2,2 )as
= > (@oa)alynyi s,

3,j=1

forany z = 370 | 2;®y;, 2 = 37", 2;'®y;’ in EQF and (o, §) € AxB.
In particular, denote by ||-||«,3 the quasi-norm defined by (, )4, 3, which
actually, coincides with the greatest (projective) cross norm, see also
(4.1),

12197 == inf > pal@i)gp(yi), z€E®F.
i=1

Thus
1/2

n
2 2 .
12llap = (Zpa(m 45 (w) ) =)o
=1

= inf Zpa(ﬂﬁi)%(yi) =71a,8(2),

i=1

and hence r, g(z) = (z,z)i/; for every z € E ® F. Namely, the

seminorm r, g arises from the quasi-inner product ( , )s . Routine
computations show that (1.1) and (1.2) are fulfilled and hence E ® F

is a locally H*-algebra. By Lemma 2.2 in [21, page 369], E® F is a

Hausdorff space. Now, if z € EQ F with 2 # 0, then 2 = )" | z; ® y;,
where (z;), (y;),1 < i < n are families of linearly independent elements
in E and F respectively [21, page 361, Lemma 1.2]. Thus z; # 0 and
y; # 0 for every 1 < i < n and hence, by the “properness” of E and
F, z;xf # 0 and y;y7 # 0, 1 < i < n (see [9, page 452, Theorem
1.3]), while the conjugate correspondence * in E and F, respectively, is
actually an involution [9, page 452, Theorem 1.3]. Now, by (1.1) and
(1.2), we see that Y ;' @ y; is an adjoint of z = Y | @ ® y;.
Thus, by defining z* = (3, @ ® ¥;)* = >, af @ yf, we get
zz* =" wiwf Quiy;. Besides, for every 1 <i <n, 0 < zjz}+yy; <
Yo (zi @ yi) (@ ® yi)* = 22*. Namely, zz* is strictly positive, which
means that zz* # 0. This assures that E ® F is proper [9, page 452,

s
Theorem 1.3]. Now, by the continuity of the involution in E and F, we
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get (pa ® qp)(2*) = (Pa ® q8)(2), 2z € E® F. Therefore, E ® F has a

continuous involution too. The rest of the assertion now follows from
[9, page 453, Theorem 1.5 and the comment following it]. O

Theorem 4.3. Let (E, (pa)aca), (F,(¢5)scn) be proper (Hausdorff)
locally H*-algebras. If (Tr1)kyenz, (Ymn)(mn)cr> are canonical or-
thogonal bases for E and F' respectively, then the family

B = {1 ® Ymn, (k,I,m,n) € A? x L?}
18 a canonical orthogonal basis for E@F .

Proof. Tt is easily seen that B spans F ® F. If Zk L Aetrmn (Tgt ®

ymn) - 0 then Zm n(zk 1 )\klmnxk:l) 29 ymn = 0. Since (ymn)(m n)EL?
is linearly 1ndependent Zk | Akimn®rr = 0 for every m,n (see for
instance [21, page 361, Lemma 1.3]). So that Agymn = 0 for every
k,l,m,n over the finite sums. Namely, B is linearly independent.
Moreover, properties 1)-5) are satisfied by the elements in B, as follows
by the respective ones in the factors. Now, let z be an element in
E®F E®F. Then z = 1111125 with (25)5€A a net in ® F. Since B

spans

E @, Fa 25 = Z fklmnxkl ® Ymn

k,l,m,n

(finite sum; dependent upon ¢), &kimn € C. Thus B is, finally, a

canonical orthogonal basis for EQF. O

Now, based on Proposition 3.4 and Theorem 4.3, we get the following.

Theorem 4.4. Let (E, (po)aca), (F, (q8)per) be hereditary Ambrose
algebras and ((mkl)(k l)eLZ)zeK; ((ymn)(m,n)eA§ )jem canonical orthog-
onal bases in E and F, respectively. Then, the family

{(#ht @ Ymn) (k1 mmyeLzx a2} ig)e K x M
is a canonical orthogonal basis for EQF .

Notation. In the framework of Theorem 4.4, any z € E®F has the

form
Z Nimn it @ Yin = lign 25,

k,l,m,n
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such that
z5 = Z A xh, @yl (finite sum), A € C.

klmn
k,l,m,n

5. A Wedderburn-type structure theorem. Let (E, (py)aca),
(F,(gg)pen) be hereditary Ambrose algebras and (z;)iex, (¥j)jem
families of axes in E and F respectively. Then, by Theorem 2.1 (see
also its proof, as well as Definition 2.3),

E = @J‘RE(EIJ = EBJ‘EZ and F = EBJ'R;C(FyJ) = @J‘Fj
7 2 J J

where E; (respectively F}) are minimal closed 2-sided ideals in E (re-

spectively F'), each one of which is a topologically simple, proper,

Hausdorff, complete (bs), locally H*-algebra with continuous involu-

tion, having the (H)-property. In this framework we state the next

result that describes the minimal closed 2-sided ideals in E®F (with
™

respect to canonical orthogonal bases of the factors).

Proposition 5.1. Let (E, (pa)aca), (F,(qs)sen) be hereditary
Ambrose algebras and (x;)ick, (Y;j)jem families of axes in E and F,
respectively. For a fized pair (i,j) in K x M, consider the canonical
orthogonal bases (xil)(k,l)eLf and (y%n)(m’n)eA? of the factors E;,
F};, respectively. Denote by I the closed linear span of the set S =
{2}y ® Y, (k1) € L7, (m,n) € A3} in EQF. Then I is a (closed)
2-sided ideal identical with Ei@)Fj. Moreover, the closed 2-sided ideals

E;®F;, (i,§) € K x M are minimal and mutually orthogonal.

Proof. Applying Theorem 4.3 for the proper locally H*-algebras F;,
F};, we get that .S spans F; ® F};, while S is a canonical orthogonal basis
for E;&F;. Thus (S) = E; ® Fj and I = (S) = E; ® F; = E;®F;.

It is easily seen that I = E;®F; is a (closed) 2-sided ideal. Let

m

z= ZZ:1 Tp®Yp, 2’ =3, 1 T, @Y, be elements in E; ® Fj, E;, ® Fj,
respectively, with ¢ # iy and j # jo. Then (see also (4.2)),

n,m

(5.1) <Zazl>a,ﬁ’ = Z <xmx;¢>a<ymyzi>ﬁv (a,8) € Ax B.

i,j=1
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Besides, E;, E;, (respectively F}, Fj,) are orthogonal (see [11, page 148,
Lemma 3.7]). Thus (5.1) assures that E; ® F}, Ey, @ Fj, are orthogonal
in F® F. Now, by taking limits, we get that E; ®F E,0®F]0 are

orthogonal in E®F.

We complete the proof by showing that the closed ideal E;®Fj, (i, j) €

K x M, is minimal: Our argument follows [8 page 77, Theorem 2.2].
So, let J be a nonzero closed 2-sided ideal of E®F contained in EZ®F-.

Then, there exists an element 0 # z € J, w1th

_ ij T
z = E )\klmnxkl QYL = h(rsn zs,

k,l,m,n
such that

Z )\;cjlmn (x;cl ® yinn) (ﬁnite Sum)’ A;cjlmn €C

k,l,m,n

with some A2 = 0. Since (w};l)(k’l)ele and (Z/%n)(m,n)eAg are
canonical orthogonal bases (see Definition 3.2), we easily get

so that z}, ® y4,,, € J. Now, for an arbitrary element z,, ® yl, in the
canonical basis of E;QF} (see above), we obtain
s

The previous relations and the fact that J is a 2-sided ideal lead to
T,, ® yls € J. Thus, J contains the elements of the closed linear span
of E;®F; hence, J = E;®F;. O

Our next task is to give a “decomposition” of EQF through the
minimal closed ideals Ei&f)Fj provided by Proposition 5.1. For this,

™
we use the next result, which actually, holds without the assumption of
continuity of the involution.
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Proposition 5.2. Let (E, (pa)aca), (F,(gs)pen) be Ambrose alge-
bras. If (z;)ick, (yj)jem are families of axzes in E and F, respectively,
then J = (x: ® yj)(i.j)ek xm 15 a family of azes in E® F.

Proof. It is easily checked that the elements z; ® y;, (¢,j) € K x M
are doubly orthogonal, self-adjoint projections. We show that z; ® y;,
(i,7) € K x M are also H-primitive. By Lemma 4.3 in [10, page 1183],
z;Ex; 2 C, i € K and y;Fy; 2 C, j € M within isomorphisms of
topological algebras. Moreover, for each (i,j) € K x M

(@ @ y;)(E © F)(zi ® y;) = (z:iBz;) © (y;Fy;)

via a topological algebraic isomorphism. Therefore, (z; ® y;)(E ®

F)(z; ®y;) 2 C® C = C within isomorphisms of topological algebras.
Thus (z; ®y;) (E®F)(z; ®y;) is a division algebra (with a unit element

z; ® y;) and hence, (F ® F)(z; ® y;) is a minimal (closed) ideal (see

also [22, page 46, Corollary 2.1.9]). Now, by Lemma 3.3 in [10, page
1181], z; ® y; is H-primitive. Finally, we show that J is a maximal
family (with respect to the properties of its elements). Namely, a
family of axes. Suppose that J is contained in a family, say S, of
doubly orthogonal H-primitive, self-adjoint projections. Let w ® z be
an element in S, but not in J; then (z;Qy;)(w®z) = 0 = (wQz)(z;Qy;)
and (@; @ yj, w ® 2)q,p = 0 for all (i,j) € K x M. Thus z;w Q@ y;z =
0 = wz; ® zy; and (z;, w)a(y;, 2)p = 0 for all 4, j. If z; w # 0 for some
to € K, then from z;,w ® yjz = 0 for all j € M, we get y;z = 0 for
all j’s and thus zy; = 0 = y;z and (z,y;) = 0 for all j’s. Namely, z
is (doubly) orthogonal to every y;, but this contradicts the maximality
of (y;). O

In this context, the following lemma has an interest per se. We still
note that the same result gives one of the characteristic properties for
left modular complemented H-algebras studied in [15].

Lemma 5.3. Let (E,(pa)aca) be an Ambrose algebra having the
(Pbs)-property. If I is a left ideal of E that contains a family of
aves, say (z;)ick, of E, then I* = (0). In particular, if E is also
orthocomplemented, then I is dense in F.
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Proof. Suppose I+ # (0). Then, there exists some 0 # y € I+ with
0 # x = y*y € I+ (see [9, page 452, Theorem 1.3; page 456, Lemma
3.2]). Consider the subalgebra F' = Cy[z]. Since 2" = 2"~z € I+ for
all n € N, we get

(5.2) FCIt

The continuity of the involution implies that F' is self-adjoint, and hence
it is a proper Hausdorff complete locally H*-algebra with continuous
involution (see also [9, page 453, Lemma 1.4]). By assumption, F' has
the (bs)-property and thus, by [11, page 144, Theorem 2.7], it has a
(nonzero) self adjoint projection, say y, which by (5.2), belongs to I-.
By [10, page 1182, Theorem 3.4], y = Z;'L=1 y; with y;,1 £ j < n
(nonzero) doubly orthogonal (H)-primitive self-adjoint projections in
E. Therefore, y; = y;y € I+ for all j’s. Among the y;’s, we pick
(without any loss of generality) y;. We prove that the latter element
is doubly orthogonal to the z;’s. Indeed, since wx; € I+ for all w € E
and zy; € I+ for all 2z € E, we get (wz;, 2y1)q = 0 for every w, z € E,
a € A, i € K. In particular, {(z;,y1)a = 0, for all a € A, i € K.
But, in a Hausdorff locally convex H*-algebra with an involution, the
last equality is equivalent to y1z; = z;y1 = 0, i € K (see Section
1). Namely, the elements y;,x;,7 € K are doubly orthogonal, and this
finally, contradicts the maximality of (z;);ex. Therefore, we get the
first part of the assertion. Now, assume that E is orthocomplemented.

By the above argument, T = (0), and hence I = E. i

As an immediate consequence, we get the following result. In this
context, we still note that the (bs)-property in the definition of a pre-
hereditary Ambrose algebra (cf. Definition 2.3) is not needed in the
proof. Thus, we have

Corollary 5.4. In any pre-hereditary Ambrose algebra E, every left
ideal, containing a family of axzes in E, is dense in it.

Theorem 5.5 (2nd Wedderburn structure theorem). Let (E,(pa)aca),
(F, (gs)sen) be hereditary Ambrose algebras and (z;)ick, (Yj)jem fam-
ilies of axes in E and F, respectively. Then EQF is the topological
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orthodirect sum of its minimal closed 2-sided ideals Ei(EAi)Fj, (i,7) €
K x M.

Proof. We first note that the minimal closed 2-ideals, as in the
statement, are mutually orthogonal (see Proposition 5.1). Fix (4,j) €
K x M, and take the ideal F;®@F;. By Proposition 3.4, the canonical

s

factors E;, F;j have canonical bases (};) (x,1)er25 (Yun) (m,n)eA2» TeSPeC-
JeL? ; 2

tively. Since E;, F; are proper Hausdorff locally H*-algebras (see [9,

page 457, Lemma 3.4]), we get that

(5.3) (zhy ® yfnn)(k,z,m,n)eLg x A2

is a canonical orthogonal basis for E;®F; (Theorem 4.3). On the other
hand, due to Theorem 4.4, the respective canonical basis for EQF

contains members from (5.3), when ¢,j run over K and M. This

implies that the family (E;®F;)(; j)ex xn spans EQF. So, if z € EQF,

z = lim 25 with z; € @1 E;®F; (cf. also the notation after Theorem 4.4)
(2¥] ™

and hence EQF = GBJ-E,@FJ-, that completes the proof. ]

,J
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