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SHARP GLOBAL BOUNDS FOR JENSEN’S INEQUALITY

SLAVKO SIMIC

ABSTRACT. In this article we find the form of a sharp
global upper bound for Jensen’s inequality. Thereby, previous
results on this topic are essentially improved. We also give
some applications in Analysis and Information Theory.

1. Introduction. The form of Jensen functional J¢(p,x) is given

by (cf. [4]),
Jr(p, %) := Zpif(-’lfi) - f(ZPiﬂUi)a

where, in this case, f(-) stands for a convex function defined on the
domain Dy, Dy C R, x := {z;} is a finite sequence of numbers from Dy
and p := {p;}, >_p; = 1 denotes a positive weight sequence associated
with x.

Throughout the paper we assume that all terms of the sequence x
belong to some closed interval I, i.e., that for some fixed a,b : z; €
l[a,b] :=IC Dy,i=1,2,....

Therefore, the global bounds for J¢(p,x) will depend only on f and
I (cf. [8]). For instance, the famous Jensen’s inequality asserts that for
x€el,

0 < J¢(p,x)-

One can see that the lower bound zero is of global nature since it does
not depend on p or x but only on f and the interval I whereupon f
is convex. It is also obvious that zero is the best possible global lower
bound for the Jensen functional.

In the same sense, an upper global bound was given by Dragomir in
[3]-
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Theorem A. If f is a differentiable convexr mapping on I, then we
have

(b—a)(f'(b) — f'(a)) == Ry(a,b).

There are a number of papers where the inequality (1) is utilized in
applications concerning some parts of Analysis, Numerical Analysis,
Information Theory, etc., (cf. [1, 2, 3, 5, 9]).

Our article [9] contained an upper global bound without differentia-
bility restriction on f. Namely, we proved the following
Theorem B. If p, x are defined as above, we have that

@ e < 1)+ 1020 (50 = 55w,

for any f that is convex over I := [a,b).

Moreover, in [8] we introduced the characteristic C(f) of a convex
function f, i.e., a constant depending only on f, defined by

[pf(a) +qf(b) — f(pa + qb)]
fla)+ f(b) —2f(a+0b)/2 |

C(f):= sup

p;a,bEDy

For example,

C®) =1/2; C(—vz)=(V2+1)/4
C(zlogz) = (elog2)™; C(—logz) = 1.

Since 1/2 < C(f) < 1, the inequality (2) is improved to

(3) J5(p,x) < C(f)Ss(a,b) := S¢(a,b).

In this article we shall give another global bound T (a, b) for Jensen’s
inequality, which is better than both of the aforementioned bounds
Ry(a,b) and S¢(a,b) and is, in fact, best possible.
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As an application, we determine T (a, b) in the case of the generalized
A — G inequality as a combination of some well-known classical means.
As a consequence, new global upper bounds for A — G and G — H
inequalities are established. Sharp bounds for Shannon’s entropy
and Kullback-Leibler divergence, probability measures which are of
importance in Information Theory, are also given.

2. Results. Our main result is contained in the following

Theorem C. Let f, p,x be defined as above and p,q >0, p+q = 1.
Then

= pif(xi) ( me)
(4) < mthvf(a) +qf(b) — f(pa + qb)]
= Tf (a7 b)

This upper bound is very precise. For example,

T,2(a,b) = ma,x(pa2 +qb? — (pa+ qb)z) = max(pq(b— a)2) =—(b— a)z,
P p

and we obtain at once the well-known pre-Griiss inequality

szx - (Z}%%)Q i (b—a)?,

with the constant 1/4 as best possible.

Remark 1. It is easy to see that, for fixed a,b € Dy, a # b, the
function g(p) := pf(a) + (1 — p)f ( ) — f(pa + (1 — p)b) is concave
for 0 < p < 1 with ¢g(0) = g(1) = 0. Hence, there exists the
unique positive max, g(p) = g(po) = Ty(a,b) attained at the unique
po = po(a,b) € (0,1).

An interesting question suggested by the referee is: how does the
result from Theorem C look if, instead of I, one considers a convex
subset of a vector space.
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The generalization follows immediately if one considers a convex
polytope in R™, but this is not the topic of the actual article. Similar
generalizations are left to the readers.

The next theorem approves that the inequality (4) is stronger than

(1) or (3).

Theorem D. Let D; be the domain of a convex function f and
I :={a,b] C Dy. Then the inequalities

(i) Tf(a,b) < Ry(a,b);
(i) T¢(a,b) < S¢(a,b),
hold for each I C Dy.

We also show that the bound Ty (a, b) is sharp by the following

Theorem E. For an arbitrary convez function f and I = [a,b] € Dy,
there exist a sequence Xg € I and an associated weight sequence po, such
that

Jf(p(),X()) = Tf(a, b)

The explicit form of T¢(a,b) is given by the next assertion.

Theorem F. For a differentiable convex mapping f, we have that

f(b) = f(a) bf(a) — af(b)

(5) Trlab) =21 e

ef(av b) + - f(Gf (av b)),

where ©¢(a,b) is the Lagrange mean value of numbers a,b, defined by

1)~ 1))

ortat)i= (1) (1=

We shall give some applications of the above results in Analysis and
Information Theory.
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3. Applications.

3.1. Applications in analysis. The following well-known A — G
inequality [7] asserts that

A(p,x) = G(p,x),
where
A(p,x) = Zp,-xi; G(p,x) := Hmfi, x € RT,
are the generalized arithmetic and geometric means, respectively.
As an illustration we determine a new converse of A — G inequality.

Theorem G. For x; € [a,b], 0 <a <b,i=1,2,..., we have

Alp.x) —
(6) 1< Glo ) = L(a,b)I(a,b)/G*(a,b) := Ay(a,b),
where
G(a,b) := Vab; L(a,b) := bgzﬁ%ﬁ)ga; I(a,b) = (6" /a®)/ =) /e,

are the geometric, logarithmic and identric means, respectively.

As a consequence, we also get a converse of the G — H inequality

G(p,x)

(7) 1< Hip.x)

S Al (CL7 b)a

where the generalized harmonic mean H(-,-) of positive numbers x1, s,

. s defined by
—1
pi
H(p,x) := <Z rc_> .

Analogously, we obtain
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Theorem H. For x; € [a,b], 0 <a <b,i=1,2,..., we have

I(a,b)
L(a,b)

0 < A(p,x) — G(p,x) < 2(A(a,b) — L(a,b)) — L(a,b) log
:= Az(a, b);

0< Zpia:i log z; — (Zp,ml> log (szml> < I{a,b) - CZEZ’;;)

= Ag(a, b)

Remark 2. It is well known that, for 0 < a < b,
min{a, b} < G(a,b) < L(a,b) < I(a,b) < A(a,b) < max{a,b}.

Those inequalities can be used for a simplification of the expressions
A, i=1,2,3.

3.2. Applications in information theory. Define probability
distributions P and @ of a discrete random variable X by

PX=))=p; >0, QX=i)=¢>0, i=12,...,r

D pi=) a=1
Among the other quantities, of utmost importance in Information

Theory are the Kullback-Leibler divergence Dk r,(P||@) and Shannon’s
entropy H(X), defined to be

D r(P||Q) : szlog
X) :Zpik)g_-
1 b

The distribution P represents here data and observations, while @
typically represents a theoretical model or an approximation of P. Both
divergences are always non-negative. For example, Gibbs’s inequality
states that Dk, (P||Q) > 0 and Dk (P||Q) = 0 if and only if P = Q.
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Applying the above results we obtain the following estimates.
Theorem 1. (i) Denoting m := min(q;/p;); M := max(q;/pi),

1=1,2,..., we have

(8) 0 < Dkr(P||Q) < log Ay(m, M).

(ii) Denoting p := min{p;}; v := max{p;}, i = 1,2,..., we have
9) 0<logr— H(X) <logAi(u,v).

Since G, L, I are homogenous means of order one, it follows from (6)
that Aj(a,b) is a homogenous function of order zero, i.e., Ay(ta,tb) =
Al(a,b), t> 0.

For example, if p; € (a,,10a,), a, > 0, we have
log A4 (ar, 10a,) = log A1(1,10) ~ 0, 619.

Hence,
0<logr— H(X) <0,62

for each r € N.
4. Proofs.

Proof of Theorem C. Since z; € [a,b], there is a sequence {);},
Ai €[0,1], such that x; = M\ja+ (1 — A\;)b, i =1,2,... . Hence,

> pif(w) - f(me)
=Y mifa+ (1= 20)0) = £( D pihia+ (1= A)))
<Y pihif(a) + (1= X)f (b))
—f(aXpri+ 0> p - 2))
= 1@ (Yo mn) + 10) (1= Y ms)
(el ) (- T
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Denoting > piX; := p; 1 — > piA; := ¢, we have that 0 < p,q < 1;
p+ g = 1. Consequently,

= Snie) - 1(Spe)
Spf( ) +af(b) — f(pa+ gb)
< m;}X[pf (a) +qf(b) — f(pa + gb)]

= Tf (CL7 b),
and the proof of Theorem C is done.

Proof of Theorem D. (i) Since f is convex (and differentiable, in this
case), we have for all z,t € I:

fl@) = f(t) + (z = ) f' (1)

In particular,

f(pa+gb) > f(a)+q(b—a)f'(a);  f(pa+gb) > f(b)+p(a—Db)f'(b).
Therefore,

pf(a) +qf(b) - (pa+qb)
=p(f(a) — f(pa+ qb)) + q(f(b) — f(pa + qb))
< p(g(a—b)f'(a)) + a(p(b — a)f'(b))
—PQ(b a)(f'(b) = £'(a)).
Hence,

Tt(a,b) == mgX[pf (a) +qf(b) — f(pa + gb)]

< max[pg(b — a)(f'(b) — f'(a))]
1

= 0 )(fB) - 1'(@) = Ry(a,b).
(ii) Because
pf(a) + qf( )= flbatab) o [pf(a) +af(b) — f(pa+qb)
Sy(a,b) ~ papen, L f(a) + f(b) —2f(a+D)/2

= Cf(a,b),
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we get at once that

Ty(a,b) = max[pf (a) + o/ () - f(pa -+ b)) < CySy(a,b) i= 3(a,b)

Proof of Theorem E. For fixed [a,b] C Dy, a way of constructing the
sequences xo and pg can be the following: choose z1 = a; T3 = z3 =
--- =10, and let p; = py where the number pg is defined in Remark 1.
Hence, by the same remark, we obtain that

Jf(pO, XO) = Tf(aa b)

Proof of Theorem F. Applying the standard technique for finding
extremals of a function of one variable, the desired result follows.
Details are left to the reader.

Proof of Theorem G. By Theorem C, applied with f(z) = — log z, we
obtain

A
(P, 7) < T 1ogz(a,b) = max[log(pa + gb) — ploga — qlogb].
p

0=legs s =

By the standard argument, it is easy to find that the unique maximum
is attained at point py given by

b 1 _b—L(a,b)
b—a logb—loga  b—a

bo =

Since 0 < a < b, we get 0 < py < 1 and, after some calculation, it
follows that

A(p, ) b—a blogb — aloga
<1 — | =1 — 1L
G(p,z) — °8 logb —loga og(ab) + b—a

Exponentiating, we obtain the first assertion from Theorem G.

0 <log




2030 SLAVKO SIMIC

By a change of variable x; — (1/z;), i = 1,2,..., the proof of the
second proposition easily follows from the previous one since then

(o) mo 2) dwm

A1(1/b,1/a) = Ay (a,b).

and

Proof of Theorem H. Applying Theorems C and F with f(t) = €,
f(t) = tlogt, the desired results follow.

Proof of Theorem 1. A variant of inequality (6) asserts that

0 <log (Zpﬂ%) — Zpi log z; <logAi(a,b).

Putting there z; = ¢;/pi, @ = 1,2,... with a = m := min{z;};
b= M :=max{z;},7=1,2,..., and taking into account that > ¢; = 1,
the assertion from part (i) follows.

Taking the distribution @ to be uniform, the last result follows from
the previous one by noting that

1 1 11
Al <_7_> :A1<_7_> :Al(lu’Jl/)‘
rv’ Ty vou
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