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EXISTENCE OF SOLUTIONS OF
SECOND-ORDER PARTIAL NEUTRAL FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH INFINITE DELAY

HERNAN R. HENRIQUEZ AND EDUARDO HERNANDEZ M.

ABSTRACT. In this paper we establish the existence of
mild solutions for a class of abstract second-order partial
neutral functional differential equations with infinite delay in
a Banach space.

1. Introduction. In this work we study the existence of mild solu-
tions for a class of abstract second-order neutral functional differential
equations with infinite delay. Throughout this paper, X denotes a
Banach space endowed with a norm || -|| and A is the infinitesimal gen-
erator of a strongly continuous cosine function C(:) of bounded linear
operators on the Banach space X. We will be concerned with equations
of the form

(1.1)
s (t) ~ 9(t,m)) = Aa(t) + Stz #'(), e T=[0,a]
(1.2) o= € B,
7' (0) =z € X,

where z(t) € X, the history z; : (—o00,0] = X, 6 — z(t + ), belongs
to some abstract phase space B defined axiomatically, and f and g are
appropriate functions.

Motivated by the fact that ordinary neutral functional differential
equations (abbreviated, NFDE) arise in many areas of applied mathe-
matics, this type of equation has received considerable attention in re-
cent years. The literature concerning first- and second-order ordinary
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neutral functional differential equations is very extensive. We refer the
reader to the books Hale and Lunel [21], Lakshmikantham, et al. [31],
Kolmanovskii and Myshkis [29], Gopalsamy [18], Bainov and Mishev
[9], and to the papers [6, 8, 30, 33, 34, 39, 40, 43-46] related to
the subject of this paper. On the other hand, first-order partial neu-
tral functional differential equations have also been studied by several
authors, including Adimy [1-5], Hale [20], Wu [43, 44], Benchohra
[13], Chen [15] and Ezzinbi [16] for finite delay, and Herndndez and
Henriquez [22, 23|, Bouzahir [14], Herndndez [25] and Nagel [36] for
the unbounded delay case.

In addition, some abstract second-order neutral Cauchy problems
have been considered recently in the literature, see for instance [11,
12, 32]. However, in these works the authors assume that the operator
C(t) is compact for ¢ > 0. In this case, it follows from [42, page 557]
that the underlying space X must be finite dimensional. A neutral
differential equation of abstract type similar to those considered in [11,
12] is studied in [24]. We refer to this paper for a list of references with
concrete examples. In [24], the authors develop a technical framework
to establish the existence of mild solutions for a class of abstract second-
order neutral functional integro-differential equations with finite delay
of the form

d

(1) la'(8) — g(t,20)

= Axz(t) —I—/0 F(t,s,ms,m'(s),/o f(s, 7z, 2' (1)) dT> ds,

(1.5) zo = ¢ € B, z'(0) =z € X,

for t € I = [0,al, in a Banach space X. Here A is the infinitesimal gen-
erator of an arbitrary strongly continuous cosine function of bounded
linear operators on X; the history x;: [—7,0] = X, 2,(0) = z(t + 6),
belongs to some abstract phase space B defined axiomatically, and F,
f and g are functions that satisfy appropriate conditions.

In this work we extend that theory to study the existence and
qualitative properties of solutions for the general class of second order
abstract neutral functional differential equations with infinite delay
described by (1.1)—(1.3).
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Next, we review some fundamental facts needed to establish our
results. For the theory of cosine functions of operators, we refer the
reader to [17, 41, 42]. Next, we recall some concepts and properties
regarding second-order abstract Cauchy problems. We denote by S(-)
the sine function associated with the cosine function C(-), which is
defined by S(t)z = fo s)zds, for x € X and t € R. Moreover, we
denote by N and N some posmve constants so that ||C(¢)|| < N and
1S(t)]| < N, for every t € I.

In what follows, [D(A)] represents the domain of A endowed with the
graph norm given by ||z|| 4 = ||z|| + ||Az]|, for £ € D(A), and E stands
for the space consisting of the vectors € X for which C(-)z is of class
C' on R. We know from Kisifsky [27] that E endowed with the norm

lzlle = llz|| + sup [|[AS(t)z||, z€E
0<t<1

c(e) S
AS(t) © <t)} is

a strongly continuous group of bounded linear operators on the space
A 0} defined on D(A) x E.

It follows that AS(¢) : E — X is a bounded linear operator and that
AS(t)x — 0, as t — 0, for each z € E. Furthermore ifz:[0,00) = X
is locally integrable, then y(t fo (t — s)x(s) ds defines an E-valued
continuous function. This is a consequence of the fact that

t t
t— d
/H(t—s)[ 0 }ds:[f(;s( s)x(s) s]
0 z(s) Iy C(t = s)x(s)ds
defines an E x X-valued continuous function. Moreover, it follows from
the definition of the norm in E that a function u : I — F is continuous
if, and only if, u is continuous with respect to the norm in X and the

set of functions {AS(t)u(-) : 0 < ¢t < 1} is an equicontinuous subset of
C(1, X).

The existence of solutions of the second-order abstract Cauchy prob-
lem

is a Banach space. The operator valued function H(t) = [

E x X generated by the operator A = [

(1.6) z"(t) = Az(t) + h(t), tel,
(1.7) z(0) =w, 2'(0)=
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where h : I — X is an integrable function, is studied in [42]. Similarly,
the existence of solutions of semi-linear, second-order abstract Cauchy
problems has been discussed in [41]. We only mention here that the
function z(-) given by

(1.8) z(t) = Ct)w+ S(t)z + /Ot S(t—s)h(s)ds, tel,

is called a mild solution of Problem (1.6)—(1.7) and that, when w € E,
the function x(-) is of class C! on I and

(1.9) ' = AS(t)w+ C(t)z + /t C(t— s)h(s)ds, tel.
0

In this work, B will be a linear space of functions mapping (—oo, 0]
into X endowed with a seminorm || - ||z and satisfying the following
axioms:

(A)Ifz: (—o0,0+b) — X, for b > 0, is continuous on [0, o + b) and
z, € B, then for every t € [0,0 + b), the following conditions hold:
(i) ¢ is in B,
(i) [le(@®)Il < Hllze|ls,
(iii) [Jzells < K(t — o) sup{|lz(s)]| : 0 < s <t} + M(t — o)z, 5
where H > 0 is a constant; K, M : [0,00) — [0,00), K(-) is continuous,
M(-) is locally bounded, and H, K, M are independent of z(-).

(A-1) For the function z(-) in (A), the map ¢t — =z; is a B-valued
continuous function on [0, + b).

(B) The space B is complete.

Example 1.1. The phase space C, x LP(p,X). Let r > 0,
1 <p< oo, andlet p: (—o0o,—r] = R be a nonnegative measurable
function which satisfies the conditions (g-5), (g-6) in the terminology
of [26]. In other words, this means that p is locally integrable and
that there exists a non-negative, locally bounded function 7 on (—o0, 0]
such that p(& 4+ 0) < v(§)p(8), for all £ < 0 and 0 € (—oo,—r) \ Ng,
where Ng C (—o0, —r) is a set with Lebesgue measure zero. The space
C, x LP(p, X) consists of the classes of functions ¢ : (—00,0] — X
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such that ¢ is continuous on [—r,0], Lebesgue-measurable, and pl¢||P
is Lebesgue integrable on (—oo, —r). The seminorm in C, x LP(p, X)
is defined by

-Tr

1/p
lells =sun(le(@)] - -r 0 <0+ ([ p@)lp@Iras)

The space B = C, x LP(p; X) satisfies axioms (A), (A-1) and (B).
Moreover, when r = 0 and p = 2, we can take H = 1, M(t) = y(—t)/2

1/2
and K(t) =1+ (fi)tp(ﬂ) dG) , for t > 0. (See [26, Theorem 1.3.8]
for details).

Additional terminology and notations used in this work are standard.
In particular, if (Z, ||-||z) and (Y, ||-||y) are Banach spaces, we indicate
by £(Z,Y) the Banach space of bounded linear operators from Z into
Y endowed with the operator norm, and we abbreviate this notation
to L(Z) whenever Z = Y. Moreover, C(I,Z) denotes the space of
continuous functions from I into Z endowed with the norm of uniform
convergence and B, (z, Z) denotes the closed ball with center at x and
radius r in Z.

This paper has three sections. In the next section we discuss the
existence of mild solutions of the abstract second-order neutral system
(1.1)-(1.3) and, in Section 3 we consider some applications of our
results.

2. Existence results. In order to study the problem (1.1)—(1.3),
we introduce the following assumption.

(H1) There exists a Banach space (Y, || - ||y) continuously included in
X such that AS(t) € L(Y,X), for all t € I, and the function AS(:) :
I — L(Y, X) is strongly continuous. Let Ny, Nl be positive constants
such that ||y| < Ny|lylly, for all y € Y, and ||AS(t)|| (v.x) < N1, for
allt e 1.

Remark 2.1. It is clear that if (H1) holds, then Y is continuously
included in E. In fact, if we take y € Y, then

C(t)y—y:A/O S(s)yd&:/0 AS(s)yds
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which implies that the function C(+)y is continuously differentiable, and
therefore Y C E. Moreover, for a > 1, it follows from the definition of
the norm in F that

lylle = llyll + sup [[AS(t)y[| < (Ny + Ni)lylly
0<t<1

which shows that the inclusion ¢ : Y — FE is continuous. Using the
properties of cosine functions, we can show easily that this property
also holds for 0 < a < 1.

We also observe that the spaces Y = [D(A)] and Y = FE satisfy
assumption (H1).

To establish the concept of a mild solution, we assume that f and
g satisfy appropriate conditions. In what follows, for a function x(-)
defined on (—o0, a] we will consider 2'(0) as the right derivative of z(-)
at zero.

(H2) The function f : IxBxX — X satisfies the following conditions:

(i) The function f(¢,-,-) : B x X — X is continuous almost

everywhere ¢t € I and f(,¢,z) : I — X is strongly measurable for
every (¥,z) € B x X.

(ii) There exist an integrable function my; : I — [0,00) and a
continuous nondecreasing function Wy : [0,00) — (0, c0) such that

(&4, 2) | <mp@Wy (¢l + [l2ll),  (69,2) € I x B x X.

(H3) The function g : IxB — Y, and for every function z : (—o0, a] —
X such that z¢g = ¢, z is continuously differentiable on I and z’(0) = z,
then the function I — Y, ¢t — g(t, z), is continuously differentiable and
4 g(t,¢)|t—0 = 1, independent of z(-).

In connection with these conditions it is worth pointing out the
following comments.

Remark 2.2. Let « : (—o00,a] — X be a function involved in (H3). If
assumptions (H1) and (H3) hold, then the functiont € I — g(t,z;) € Y
is continuous and Bochner’s criterion [7, Theorem 1.1.4, Proposition
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1.3.4] implies that the function s € [0,¢] — AS(t — s)g(s,zs) € X is
integrable. Moreover, the function t € I — fot AS(t—s)g(s,z5)ds €Y
is continuously differentiable, and we have
d t
7 AS(tf s)g(s, zs)ds
d t
T dt

= AS(t)g(0,¢) + /0 AS(t — s)%g(s,xs) ds.

Similarly, if (H2) holds, then the function s € [0,t] — f(s,zs,2'(s)) €
X is integrable and
1f (s, 25" ()| < myp ()W (llzs]l5 + [|2"(s)]])
<my(s)Wy(K(s) sup [lz(£)]]
0<{<s

M(s)llells + =" (s)I])-

AS( Yg(t — s,z 5)ds

Remark 2.3. Assumption (H3) is easy to satisfy. For instance, without
specifying the phase space and neglecting for the moment technical
details, we mention that assumption (H3) is satisfied by functions
g of type g(t,v) f Q(—s)¥(s)ds, where Q(-) € L(X,Y) is an
appropriate operator valued map.

Motivated by equation (1.8), we consider the following concept of
mild solutions of Problem (1.1)—(1.3). Here we assume that conditions
(H1), (H2) and (H3) hold.

Definition 2.1. A function z : (—o0,b] — X, with 0 < b < a, is
a mild solution of Problem (1.1)—(1.3) on [0,8] if x(-) is a function of
class C' on [0,b] that satisfies conditions (1.2) and (1.3), and verifies
the integral equation

z(t) = C(t)(¢(0) — 9(0,9)) + S(t)(z — n) + g(t, 1)
/ASt—s (s,xzs)ds

+/ S(t—s)f(s,zs,2'(5))ds, 0 <t <b.
0
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We now establish our first existence result. In what follows, we
will denote by y the function y : (—o00,a] — X such that yo = ¢
and y(t) = C(t)p(0) + S(t)z, for 0 < t < a. We set F(a) for the
space consisting of functions u : (—o0,a] — X such that ug = 0,
u is continuously differentiable on [0, a] and »'(0) = 0. We consider
the space F(a) endowed with the norm |ju|l; = supg<;<, ||t/ (t)]]. We
denote P : F(a) — C(I,Y) the function given by P(u)(t) = Lg(t,u; +
y¢). Moreover, since K (+) is a continuous function, by substituting K ()
by maxo<s<: K(s) we may assume that K (-) is nondecreasing.

Theorem 2.1. Suppose that assumptions (H1), (H2) and (H3) are
fulfilled, ©(0) € E and that the following conditions hold:

(a) For each r > 0, the set {f(t,us +ys,u'(t) +y'(t)) : t € I, u €
F(a), |lullx < r} is relatively compact in X.

(b) There ezists a continuous function Lp : I x [0,00) — [0,00) such
that, for each t > 0, the function Lp(t,-) is nondecreasing, and for all
u,v € F(a), with ||ull1, ||v]l1 <r, we have

sup [[P()(t) = P0)(E) v < Le(b,r)u v

Then the following properties are verified

(i) If liminfe oo (W(§))/€ < o0 and Lp(t,r) = 0 ast — 0, for
each r > 0, then there exists b > 0 and a mild solution of Problem
(1.1)-(1.3) on [0, b].

(ii) If im, oo Lp(b,r) = Lp(b), for some 0 < b < a, and if
b
(2.1) (1+bNy)Lp(b) + N(bK(b) + 1)li§minf WfT(g)/ my(s)ds < 1,
— o0 0

then there exists a mild solution of Problem (1.1)—(1.3) on [0, b].

Proof. We define the operator I" on the space F(a) by
L(u)(t) = ~C()g(0, ) — S(E)n + (¢, ue + )

(2.2) + /0 AS(t — s)g(s,us +ys) ds

+/tS(t—s)f(s,us+ys,u'(s)+y'(s))ds, tel
0
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It is clear from Remark 2.2 that T'u(t) is well defined and that the
function T'u(-) is continuously differentiable, with

%p(u) (t) = —C(t) + P(u)(t)

(2.3) 4 /0 AS(t — 5)P(u)(s) ds
+f Ot = 5)1(5, s + 1o, 1(5) + ¥/ (s)) s

so that 4T (u)|;—o = 0. This shows that ' maps F(a) into F(a). More-
over, condition (H2), the continuity of P and a standard application of
Lebesgue’s dominated convergence theorem allow us to conclude that
I': F(a) — F(a) is continuous.

We next show that there exists an r > 0 such that T'(B,.(0, F(b))) C
B,.(0, F(b)), for some 0 < b < a. To prove this assertion, we estimate
|4Tu(t)||]. In the expressions that follow we denote by c a generic
constant, independent of u. It follows from (2.3) that

(2.4)
H%F(u)(t)H <c+ | Pu) @)

n H /0 t AS(t — s)[Pu(s) — P(0)(s)] ds

+ H /0 t AS(t — )P(0)(s) ds

+ N/O my ()W (llus + yslls + lu'(s) + /' (s)]]) ds

< et Lp(tm)uly + NatLp(t )l
t
N [Cmslow; (K<s> max [u(€)]] + I (s)] +c) ds
0 0<€<s

< c+ (L4 bNy)Lp(b,r)r

b
+ NWy ((bK(b) + 1)r + c)/0 my(s)ds,

forall 0 <t <band ||ul; <.
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In case (i), we can select r > 0 large enough, and b > 0 sufficiently
small so that

(25) =+ (1+bN)Lp(b,r)

N NWf((bK(ler r+c) /*’ my(s)ds < 1.

Similarly, in case (ii), we can choose r > 0 sufficiently large such that
(2.5) holds. Therefore, in both cases, it follows from (2.4) and (2.5)
that || £T'(u)(t)|| < r, which establishes our assertion.

On the other hand, we decompose I' = I'y +T'y, where I';, for i = 1,2,
are defined by

Ti(u)(t) = —C(t)g(0, ) — S(t)n + g(t, ue + ye)
+ /0 AS(t —s)g(s,us +ys) ds,

P (u)(t) = / S(t — 5) (5, s + o1t () + y/(s)) ds.

In addition, for 7 > 0 and b > 0 selected as was previously estab-
lished, we consider I' defined on B,(0,F(b)). For u,v € F(b), with
llw|l1, ||v]|1 < r, we find that

H_ Tyu(t) m(t))H < [|P(u)(t) - P)(®)]
+ ‘ /0 t AS(t — s)[P(u)(s) — P(v)(s)] ds

<(1+ bﬁl)Lp(b, )||lu =],

and condition (2.5) implies that I'y is a contraction mapping. Moreover,
applying the Ascoli-Arzeld theorem, we obtain that the set {£T's(u) :
u € B.(0,F(b))} is relatively compact in C([0,b]). Since I'z(u)(0) = 0,
for all u € B,.(0, F(b)), we have that the set {T'2(u) : u € B,.(0,F(b))}
is relatively compact in F(b). Consequently, T' is a condensing map
which allows us to establish the existence of a fixed point u for ' (see
[35, Theorem IV.3.2]). Clearly, z = u+y is a mild solution of Problem
(1.1)—(1.3) on the interval [0, b], which completes the proof. O
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Remark 2.4. The values x(t) for 0 < ¢t < b of the mild solution
constructed in Theorem 2.1 belong to the space F. In fact, it follows
from the properties of cosine functions that y(t) € E. Since z(t) =
u(t) + y(t), it only remains to prove that u(t) € E. In view of the
fact that u(t) = I'(u)(¢) we shall establish that I'(u)(t) € E. Since the
values g(t,u;+y;) € E for all t € I, and applying again the properties of
cosine functions, it is clear that —C(t)g(0,¢) —S(t)n+g(t,us+y:) € E.
Moreover, directly using the properties of the group H mentioned in
the Introduction, we obtain that

/0 S(t—s)f(s,us +ys,u'(s) +4'(s))ds € E.

Similarly, since the function t — g(t,u; + y:) € Y is continuously
differentiable, it follows from Pazy ([38, Corollary 4.2.5]) that

/Otﬂ(t— s) [585)] ds = /Ot [féft__ss)%(z)} ds € D(A) = D(A) x E

where g(s) = g(s,us +ys). Hence, fot AS(t—s)g(s)ds € E. Combining
these properties with (2.2) the assertion follows.

A particular situation is obtained when the function g is continuously
differentiable. To establish this result we introduce the following
assumption.

(H4) The function g : IxB — Y is of class C', and there are a positive
constant L and a continuous function L? : I x [0,00) — [0,00) such
that

||Dlg(t7 ¢1) - Dlg(taw2)“Y < L;”wl - ¢2||B,
|D2g(t, 1) — Dag(t, ¥2)|lc8,y) < Lg(h")”% — 2|,
for every t € I, r > 0, and ¢; € B,(0, B).

Lemma 2.1. Assume g satisfies condition (H4), p(0) € E, the
function s — ys is differentiable at zero with %|t=0 =1 € B and
¥(0) = z. Then, for every u € F(a) the function t — g(t,us + yi) is
continuously differentiable,

(2.6) n= %g(t, ut + Yi)lt=0 = D19(0, ) + D2g(0, ) (v)
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is independent of u, and the map P given by P(u)(t) = Lg(t, us + )
satisfies the condition

1P (u)(t) = P(v)(#)lly < Lp(br)|lu— vl

where Lp : I x [0,00) is continuous and Lp(t,-) is nondecreasing for
each t > 0. Moreover, if D2g(0, ) = 0, then Lp(b,r) — 0, b — 0, for
each r > 0.

Proof. We define w : (—o0,a] = X by wo = ¢ and w(t) = y'(¢),
for 0 < t < a. From the axioms of phase space we have that w; € B,
for ¢ > 0, and that the function I — B, t — w;, is continuous. We
shall show that ¢t — y; is differentiable and %yt = w;. To establish our
assertion, for h > 0 we define £ : R — X by £(s) = y(s + h). Turning
to use of the axioms of phase space we obtain

Yerh =y N |8y
h Il 5 h ‘U5
y(s +h) —y(s)
< g G I 7
= B g |7 v
+ M| L=y .
h B

Since the right hand side of the above inequality converges to zero as
h — 0T, we infer that the function y; has a continuous right derivative
and, therefore y; is continuously differentiable. Similarly, for each
u € F(a) the function u; is continuously differentiable and £u; = .

On the other hand, it follows from the chain rule that the function
I—-Y,t— g(t,us + y¢) is continuously differentiable and

d
%g(t, ut + yi) = D1g(t, us + yi) + Dag(t, us + ye) (uy + we).

Hence we obtain (2.6). Moreover, we can estimate ||P(u)(t) —
P(v)(¢)|ly. Previously, we point out that

< < !
luells < K (t) gmax, lu(s)| < K (t) max 1w/ ()],
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for all v € F(a). Therefore, ||u; + yillz < c(r) = bK(b)r +
maxo<i<p ||Y¢||8, for all u € F(a) with |luljy < r and 0 < ¢ < b. Simi-
larly, ||u; + we||g < d(r) = K (b)r + maxo<i<p ||we|| 5, for all u € F(a)
with ||lul|s < r, and 0 < ¢ < b. Now, we can estimate
[ D2g(t, v + y)ll < [|D2g(t, vt + yi) — D2g(t, o)l c(5,v)
+ [[D2g(t, @)l 2(5,v)
< Ly(t,e(r))(lvells + llye = olls)
+ [[D29(t, )|l c(5,v)-
Consequently, it follows from (H4) that
1P (u)(t) — P(v)(£)lly
< ||D1g(t,us + yi) — Dig(t,ve +ye)lly
+ [1D2g(t, we + yo) (w + we) — Dag(t, v+ 4e) (v + wi)lly
< Lgllus — vells + [|[Da2g(t, ue + e)
— Dag(t,vr + ye)(ug + wi) ||y
+ [1D2g(t, vt + ye) (up — vp) ||y
< tLGK(t) Jax [[u'(s) =o' (s)l|
+ Ly (t,e(r))llue — vellsl|ut + we| s
+ Lg(t, o(r))(lvells + llye — ¢lls) K () max [|u'(s) = v'(s)]
D20t 0) s K (2) uas, I1(5) — /()]
< K(ORL + [Dag(t, ) eqsn) max 1 (5) = /()]
+ K(t)LZ(t, e(r))[td(r) + rtK(¢)
+ llye — ¢lls] max [lu(s) — o' (s)]-

0<s<t

Hence, by defining

Lr(t.r) = K(0) (04 + g |Dagt, o)ece) )

+ <012% L(t,c(r))[bd(r) + rbK (b) + [lys — <P||B]> :

we complete the proof that P fulfills the stated conditions. O
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We can establish the following consequence.

Corollary 2.1. Assume that assumptions (H1), (H2) and (H4),
with D2(0,¢) = 0, are fulfilled. Suppose, further, that ©(0) € E, the
function s — ys s differentiable at zero, with %|t=0 =1y € B and
¥(0) = z, and that condition (a) of Theorem 2.1 holds. Then there
exists a mild solution of Problem (1.1)—(1.3) on [0, ], for some b > 0.

Proof. Tt follows from Lemma 2.1 that assumption (H3) is fulfilled,
with 7 given by (2.6), and that P has the properties considered in
case (i) of Theorem 2.1. o

The conditions considered in this result are not necessary to obtain
existence of mild solutions.

Example 2.2. Let B = Cy x LP(p, X) be the phase space defined
in Example 1.1, with p =1 and p = 1. Let Q@ : X — FE be a bounded
linear operator. Let g : I X B — E be given by g(t,v) = Q fi)t ¥ (6) de.
It is easy to see that g fulfills the conditions considered in Theorem 2.1,
for every ¢ € B. However, we can select ¢ so that the function ¢ — y;
is not differentiable.

We complete this section with an existence result when f satisfies a
Lipschitz condition.

Theorem 2.2. Assume that assumptions (H1) and (H3) are fulfilled,
©(0) € E and the following conditions hold:

(a) The function f(-,v,x) is integrable on I, for each v € B and
z e X.

(b) There exist a constant Ly > 0 and a continuous function Lp :
I x [0,00) — [0,00), with Lp(t,-) nondecreasing, for each t > 0, such
that

£t Y1 21) — f(t 2, z2)|| < Ly(l[vh1 — %2l + llz1 — 22]),
sup [|P(u)(t) — P(v)(t)lly < Lp(byr)|lu—vl,

0<t<b
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for ally; € B, z; € X, fori=1,2, and u,v € F(a), with |[ull1, ||v|l1 <
T

Then the following properties are verified:

(i) If Lp(t,r) — 0, as t — 0, for each r > 0, then there ezists a
b >0 and a unique mild solution of Problem (1.1)—(1.3) on [0, b].

(ii) If lim, oo Lp(b,r) = Lp(b), for some 0 < b < a, and
(2.7) (1+bNy)Lp(b) + bNLf(bK(b) + 1) < 1,
then there exists a unique mild solution of Problem (1.1)—(1.3) on [0, b].

Proof. We proceed as in the proof of Theorem 2.1. We define
T by (2.2). Initially we only mention that I' : F(a) — F(a) is
a continuous map. We claim that there exist b,7 > 0 such that
I'(B,.(0,F(b))) € B,(0,F(b)). To prove this assertion we estimate
H%I‘u(t)”. Since

< |P(u)(t) — PO)(®)]
H/A‘“‘S (u)(s) = P(0)(s)] ds

" H /o C(t—s)[f(s,us +ys,u'(s) +9'(s)) — f(s, 95,y (5))] ds
+IT0) (@)

< Lp(b,r)r + bﬁ1LP(b,7“)7“
UL (5Ky + 1)r + [TO)0)]

for all 0 < ¢ < b and |lul]|s <. It is clear that in case (i) we can choose
r > 0 large enough and b > 0 sufficiently small such that

(2.9) (1+bN)Lp(b,7) + bNL;(bKy, + 1) + [INOIO]gey

r

Similarly, in case (ii), it follows from (2.7) that we can choose r > 0
sufficiently large such that (2.9) holds. Thus, in both cases, our
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assertion is consequence of the estimate (2.8). Moreover, the same
type of estimate shows that I' is a contraction mapping on B,.(0, F (b)),
which completes the proof. ]

3. Applications. The literature for neutral differential equations
with z(t) € R" is extensive (see [8, 9, 18, 21, 28, 29, 31, 43, 44]
for a list of applications). In this case, our results are easily applicable.
In fact, the operator A is a matrix of order n x n which generates the
uniformly continuous cosine function C(t) = cosh (tA'/?). We take
Y = X = R" and condition (H1) is satisfied automatically. Moreover,
we can estimate || S(t)|| < ||A|~'/2sinh (t]|A]|*/?). Our next result is
an immediate consequence of Theorem 2.1.

Proposition 3.1. Suppose that assumptions (H2), with my €
L*>(I), (H3) and condition (b) of Theorem 2.1 are fulfilled. Then the
following properties hold:

(i) If liminfe oo (W(§))/€ < 00 and Lp(t,r) = 0 ast — 0, for
each r > 0, then there exists b > 0 and a mild solution of Problem
(1.1)—(1.3) on [0, b].

(ii) If lim, oo Lp(b,7) = Lp(b), for some 0 < b < a, and

(1 + || A[|*/? sinh (b]| A[|/*)) L (b)

. 1/2 W f(g) ’
+ sinh (b]|A]|* =) (bK (b) + 1) hsmmf ¢ my(s)ds <1,
—00 0
then there exists a mild solution of Problem (1.1)—(1.3) on [0, b].

On the other hand, the class of equations under consideration also
has important applications. Abstract second order neutral functional
differential equations arise, for instance, in the theory of heat conduc-
tion in materials with fading memory developed by Gurtin and Pipkin
in [19]. For other applications of systems modeled by neutral hyper-
bolic partial differential equations with delay we refer to [9, 28], and
for applications to control theory we mention [10, 37].

We next consider an example of a partial neutral differential equation
with infinite delay. Initially we introduce the required technical frame-
work. Let X = L%([0,7]), and let A : D(A) C X — X be the linear
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map defined by Af = f”, where D(A) = {f € X : f" € X, f(0) =
f(m) = 0}. Tt is well known that A is the infinitesimal generator of
a strongly continuous cosine family (C(t))ier on X. Furthermore, A
has a discrete spectrum, the eigenvalues are —n?, n € N, with corre-
sponding eigenvectors z,(£) = (2/7)'/? sin(n€), and the following three
properties hold.

(a) The set {z, : n € N} is an orthonormal basis of X and
Ap = =3  n*(p, zn)2n, for ¢ € D(A).

(b) For ¢ € X, we have C(t)p = Y., cos (nt){p, zn)zn. It follows
from this expression that S(t)¢ = > 7 (sin(nt)/n){p, z,)zn, which
implies that the operator S(t) is compact for all ¢ € R and that
IC@®)] = 1|S#)|| =1, for all t € R.

(c) If @ is the group of translations on X defined by ®(t)z(§) =
(€ + t), where Z(-) is the extension of z(-) with period 27, then
C(t) = (®(t) + ®(—t))/2 and A = B?, where B is the infinitesimal
generator of ® and E = {z € H'(0,7) : (0) = z(w) = 0} (see [17]
for details). In particular, we observe that the inclusion ¢ : E — X is
compact.

To model our system, we shall use the phase space B = C,. x L?(p, X),
with » = 0, defined in the Example 1.1.

We consider the partial neutral differential equation

2

(3.1) g;[u(t,r)/; /0w b(t — 5,7, 7)u(s, ) dnds] = %u(t,r)

t ™
[ ate s nass [Car(nn gutn)d
0

— 00

fort € I =[0,a], 7 € J = [0, w], with boundary conditions

(3.2) u(t,0) =u(t,7) =0, tel,
and initial conditions
(3.3)
u(s, 1) = ¢(s, 1), %U(O,T) =z(1), s€(—0,0], 7€][0,n],

where we assume that ¢ € B, with the identification ¢(s)(7) = ¢(s, 7),
©(0,+) € HY([0,7]) and z € X.
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We define the functions f: Bx X —+ X and g : B — X by

/ / —5,1,7)Y(s,n) dnds,
£, €)(r) = / )il r)ds / " as(rym, () dn.

We assume that the functions a;(-), as(-) and b(-) satisfy the following
five conditions:

(i) The functions b(6,1,¢), (8/9¢)b(8,n, ), (02/9¢?) b(6, 7, () are
continuous on (—o0, 0] x I x J; for every (8,n) € (—o0,0]x I, b(f,n,7) =
b(0,7n, 0) =0 and

L, —max{[// / s( (51, )> dndsdrlm:

1 =20,1, 2} < o0
(i) The function (9/90)b(8,n, () exists and

W P

(iii) The functions (8%/9¢00)b(0,n, ) and (8/9¢)b(0,7,¢) exist, and

we have
2
/ / / <87'8 b(s,n, T )) dndsdr < oo,
2
// ( b(0,m, T >d17d7'<oo.
(iv) The function a4 (-) is continuous and Ly = f_ 0(6)) db)'/?
< 00.

(v) The function a2 : J x J x R — R satisfies the Carathéodory
conditions, az(+,+,0) € L?(J x J), and there exists a positive function
v € L*(J x J) such that

|(12(T, 77,04) - a2(T7777/8)| < 7(7—7 77)|a - B|
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As a consequence of conditions (iv) and (v), the function f(¢,%,x) is
independent of ¢t and uniformly Lipschitz continuous at the variable
(¥, ). Moreover, g is a bounded linear operator and, using condi-
tion (i), we can show that g(-) is D(A)-valued and that Ag: B — X is
a bounded linear operator with [|g(-)||z((p(a)),x) < Lg- Since ¢(0) € E,
we take Y = E. It follows from the introduction that if ¢ : ¥ — X is
the inclusion, then ||¢(z)|| < ||z||g as well as the function ¢ — AS(t) is
uniformly continuous into £(Y, X) and [|AS(t)||z(v,x) < 1.

On the other hand, the function g also satisfies (H3). In fact, for
every function z : (—o0,a] — X given by z(¢)(7) = w(t, 7) such that z
is continuous on [0, a], we have that the derivative

o) = [ [ PSR sy andst [ b0, mu0.n)dr
0

exists. In particular,

ob(s,m,
fUt \t 0—/ / 8 77 3a77)d77d3

/ b(0, 1, 7)(0, m) dn

0
= A,

exists and it is independent of x. In addition, using the notations
introduced in Section 2, the map P given by

Pl m)(0) = glun(m) 430 = Tolwel,7)) + o)

for w € F(a), is an affine mapping. Employing condition (iii) we see
that P(w)(¢t) € E, the function P(w)(:) € C(I,E), and P : F(a) —
C(I, E) verifies a uniform Lipschitz condition

sup [|[P(v)(t) — P(w)(t)||g < Lp(d)|lv — wl,
0<t<b

for v,w € F(a), where Lp(b) — 0 as b — 0.

As consequence of these remarks, the neutral system (3.1)—(3.3) can
be written in the abstract form (1.1)—(1.33) and the following result is
obtained directly from Theorem 2.2.
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Proposition 3.2. If conditions (i)—(v) hold, then there exists a
unique mild solution of system (3.1)—(3.3) on an interval [0, b], for some
b> 0.
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