ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 41, Number 5, 2011

CHEN INEQUALITIES FOR SUBMANIFOLDS
OF COMPLEX SPACE FORMS AND
SASAKIAN SPACE FORMS ENDOWED WITH
SEMI-SYMMETRIC METRIC CONNECTIONS

ADELA MIHAI AND CIHAN OZGUR

ABSTRACT. In this paper we prove Chen inequalities
for submanifolds of complex space forms and, respectively,
Sasakian space forms, endowed with semi-symmetric metric
connections, i.e., relations between the mean curvature asso-
ciated with the semi-symmetric metric connection, scalar and
sectional curvatures, Ricci curvatures and the sectional curva-
ture of the ambient space. The equality cases are considered.

1. Introduction. In [10], Hayden introduced the notion of a semi-
symmetric metric connection on a Riemannian manifold. Yano studied
in [18] some properties of a Riemannian manifold endowed with a semi-
symmetric metric connection. In [11, 12], Imai found some properties
of a Riemannian manifold and a hypersurface of a Riemannian manifold
with a semi-symmetric metric connection. Nakao [16] studied subman-
ifolds of a Riemannian manifold with semi-symmetric connections.

On the other hand, one of the basic problems in submanifold theory
is to find simple relationships between the extrinsic and intrinsic in-
variants of a submanifold. Chen [5-9] established inequalities in this
respect, well-known as Chen inequalities.

Afterwards, many geometers studied similar problems for different
submanifolds in various ambient spaces, for example, see [2-4, 13, 14,
17].

Recently, in [15] the present authors proved Chen inequalities for
submanifolds of real space forms with a semi-symmetric metric connec-
tion.
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1654 ADELA MIHAI AND CIHAN OZGUR

As a natural prolongation of our research, in this paper we will study
Chen inequalities for submanifolds in complex, respectively Sasakian
space forms, endowed with semi-symmetric metric connections.

2. Preliminaries. Semi-symmetric metric connection. Let
N"™P be an (n + p)-dimensional Riemannian manifold and V a linear
connection on N™*P, If the torsion tensor T' of V, defined by

T(X,Y)=VzY - VoX - [X,Y],

for any vector fields X and Y on N"+P , satisfies

T(X,Y) =w()X — w(X)Y

for a 1-form w, then the connection V is called a semi-symmetric
connection.

Let g be a Riemannian metric on N**P_ If %g =0, then V is called
a semi-symmetric metric connection on N™*P,

Following [18], a semi-symmetric metric connection V on N™*P is
given by o o o
VY = V;?Y +w()X —g(X,Y)U,
for any vector fields X and Y on NP , where V denotes the Levi-
Civita connection with respect to the Riemannian metric g and U is a

vector field defined by g(U, X’) = w()?), for any vector field X.

We will consider a Riemannian manifold N n+P endowed with a semi-
symmetric metric connection V and the Levi-Civita connection denoted
o

by V.
Let M™ be an n-dimensional submanifold of an (n + p)-dimensional

Riemannian manifold N"*?. On the submanifold M"™ we consider
the induced semi-symmetric metric connection denoted by V and the

o
induced Levi-Civita connection denoted by V.

o

Let R be the curvature tensor of NP with respect to V and R the

curvature tensor of NP with respect to V. We also denote by R and

R the curvature tensors of V and V, respectively, on M™.
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The Gauss formulas with respect to V, respectively V can be written
as:
ny:vXY+h(X,Y), X,YEX(M),

VxY =VxY +h(X,Y), X,Y ex(M),

where h is the second fundamental form of M™ in N™*P and h is a
(0,2)-tensor on M™. According to the formula (7) from [16], h is
also symmetric. The Gauss equation for the submanifold M"™ into an
(n + p)-dimensional Riemannian manifold N"*? is

(2.1) axsz)
= R(X,Y, Z,W) + g(h(X, Z), (Y, W)) — g(h(X, W), h(Y, Z)).

One denotes by H the mean curvature vector of M™ in N™'P.
The curvature tensor R with respect to the semi-symmetric metric
connection V on N™*? can be written as (see [12])

(2.2) R(X,Y,Z,W)
— (XY, 2,W) = a(Y, 2)g(X, W) + a(X, Z)g(¥, W)
~ (X, W)g(¥,2) + (Y, W)g(X, Z),

for any vector fields X,Y,Z,W € x(M™), where « is a (0, 2)-tensor
field defined by

2 1
a(X,Y) = (VXw)wa(X)w(Y)+§w(P)g(X, Y), for all X,Y € x(M).

Denote by A the trace of a.

Let 7 C T,M™, x € M", be a 2-plane section. Denote by K (m) the
sectional curvature of M™ with respect to the induced semi-symmetric
metric connection V. For any orthonormal basis {ej,...,e,} of the
tangent space T, M™, the scalar curvature 7 at z is defined by

T(z) = Z K(e; Nej).

1<i<j<n
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Recall that the Chen first invariant is given by
om(z) =7(x) —inf{K(m) |7 C T,M", z € M", dim7 = 2},

(see for example [9]), where M™ is a Riemannian manifold, K () is the
sectional curvature of M™ associated with a 2-plane section, 7 C T, M™,
x € M™ and 7 is the scalar curvature at z.

The following algebraic lemma is well-known.

Lemma [5]. Let ai,az,...,an,b be (n+ 1) (n > 2) real numbers
such that . ) .
<Zai> :(n—1)<2a?+b>.
i=1 i=1

Then 2ai1ay > b, with equality holding if and only if a1 + az = az =

e = Qg

Let M™ be an n-dimensional Riemannian manifold, L a k-plane
section of T,M™, x € M", and X a unit vector in L.

We choose an orthonormal basis {es, ... ,ex} of L such that e; = X.
One defines [7] the Ricci curvature (or k-Ricci curvature) of L at X
by
RICL(X) = K12 —|— K13 —|— e +K1k,
where K;; denotes, as usual, the sectional curvature of the 2-plane

section spanned by e;,e;. For each integer k, 2 < k < n, the
Riemannian invariant ©; on M™ is defined by:

1
inf Ricp(X), xzeM",

On(z) = k—1L,x

where L runs over all k-plane sections in 7, M™ and X runs over all
unit vectors in L.

We will recall the definitions of a complex manifold and of a Sasakian
manifold, in particular, of a complex space form and a Sasakian space
form and fix the notations at the beginning of the corresponding sec-
tions. We consider as an ambient space a complex space form endowed
with a semi-symmetric metric connection, respectively a Sasakian space
form endowed with a semi-symmetric metric connection.
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3. Chen first inequality for submanifolds of complex space
forms. Let N?™ be a Kaehler manifold and J the canonical almost
complex structure. The sectional curvature of N2™ in the direction of
an invariant 2-plane section by J is called the holomorphic sectional
curvature.

If the holomorphic sectional curvature is constant 4c for all plane
sections 7 of T, N?™ invariant by J for any z € N?™, then N?™ is
called a complex space form and is denoted by N?™(4c). The curvature

tensor R with respect to the Levi-Civita connection V on N2™ (4c) is
given by

o]

(C.2.3) R(X,Y,Z,W)
= c[g(X,W)g(Y, Z) — 9(X, Z)g(Y, W) — g(JX, Z)g(JY, W)
+9(JX, W)g(JY,Z) —29(X,JY)g(Z, JW)].

If N?™(4c) is a complex space form of constant holomorphic sectional

curvature 4c with a semi-symmetric metric connection V, then from
(2.2) and (C.2.3), the curvature tensor R of N?™(4c) can be expressed
as

(C.24) R(X,Y,Z,W)
=clg(X,W)g(Y, Z) — 9(X, 2)g(Y, W) — g(JX, Z)g(JY, W)
+9(JX,W)g(JY, Z) — 29(X, JY)g(Z, IW)| — (Y, Z)g(X, W)
+a(X,2)g(Y, W) —a(X,W)g(Y,Z) + a(Y,W)g(X, Z).

Let M™, n > 3, be an n-dimensional submanifold of a 2m-dimensional
complex space form N?™(4c) of constant holomorphic sectional curva-
ture 4c. For any tangent vector field X to M"™, we put

JX = PX + FX,

where PX and F X are the tangential and normal components of JX,
respectively. We define

1P =Y g*(Jei,e5)-

i,j=1
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Following [1], we denote by ©2(7) = g?(Pey, e2) = g*(Jei, e2), where
{e1, €2} is an orthonormal basis of a 2-plane section 7. ©%(7) is a real
number in [0, 1], independent of the choice of ey, es.

We prove the following

Theorem 3.1. Let M™, n > 3, be an n-dimensional submanifold
of a 2m-dimensional complex space form N2™(4c) of constant holo-
morphic sectional curvature 4c, endowed with a semi-symmetric metric
connection V. We have:

n—2[ n?
2 n—1

— [66%(m) — 3|[PIP?) — trace (al-),

T(z) — K(m) <

|HJ||? + (n 4 1)c — 2X

where w is a 2-plane section of T,M™, v € M™ and )\ = trace «.

Proof. Let x € M™ and {e1,e2,...,e,} and {ent1,...,€ntp} be
orthonormal bases of T, M™ and T;- M", respectively. For X = W = e;,
Y =Z =ej, i # j, from equation (C.2.4) it follows that:

(31) é(eia €j>€j, ei) = C[]. + 392(‘]61" ej)] - a(ei’ ei) - a(eja ej)'
From (3.1) and the Gauss equation with respect to the semi-symmetric
metric connection, we get

c[1+3g%(Jei, ef)] — alei, &) — ale;, e;)

= R(ei,ej, €5, €) + g(h(es €5), h(ei, €5)) — g(h(es, €), h(ej, €5))-

By summation after 1 <4, j < n, it follows from the previous relation
that

(3:2) 27+ |Ih]]> —n?| H|?* = c[n2—n+3 2 g2(Je,.,ej)] ~2(n—1)A,
ij=1
where

n

IR* = g(h(eie;), hleise;)),

1,j=1

1
H = —traceh.
n
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We take
(3.3) e=27— %HHH2 +2(n—1)A = (n? —n+3||P|Pe.
Then, from (3.2) and (3.3) we get
n?[H|* = (n = 1)(|[R]* + ).

Let x € M", = C T,M"™, dimm = 2, 7 = sp{e1,es}. We define
ént1 = H/||H| and from relation (3.3) we obtain:

(S) =e-0[ 2 3w

i,j=1r=n+1
or equivalently,
n n+p
(L) =0 [ Ly 3 o
i=1 i#£j i,j=1lr=n+2

By using the algebraic Lemma (see Section 2), we have from the
previous relation

n n+p

+1 +1 +1
LD D UAN D DI DR
i#j i,j=1r=n+2

The Gauss equation for X = Z =e€1, Y = W = ey gives

K(ﬂ-) = R(ela €2, €2, 61)
=c[1+3¢*(Je1,e2)] — aler, e1) — afes, ez)
p
+ )[Ry ks, — (B,)?]
r=n-+1
c[1+3g*(Jer, e2)] — 01(61, e1) — afes, e2)

CRES NI

1£] i,j=1r=n+2
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2m 2m

T T r \2

+ E hirhas — E (h12)
r=n-+42 r=n-+1

= c[1 +3g°%(Je1, e2)] — afer, e1) — aley, ez)

N D S SN

z;é] i,j=1r=n+2
1 2m 2m
+ 9° + Z hyyhyy — Z (hi2)?
r=n+2 r=n-+1

= C[]. + 392(‘]61762)] - a(ela 61) - 01(62, 62)

+1 Zh"“ %Z S

z;é] r=2mi,j>2
1 1
+§ Z( 71'1 Z hn+1 hn+1) ]+§8
r=2m i>2

e[l + 3g2(J61,62)] —aler,er) — ales, e2) + %,
which implies
K(m) >c[l1+ 392(J61, e2)] — aler,e1) — ales, e3) + %

It follows that

K(m) 2 ——

+ [60%(7) — 3||P||] + trace (o),

+(n+1)c—2X

which represents the inequality to prove.
Recall the following important result (Proposition 1.2) from [11].

Proposition 3.2. The mean curvature H of M™ with respect to the
semi-symmetric metric connection coincides with the mean curvature

[e]
H of M™ with respect to the Levi-Civita connection if and only if the
vector field U is tangent to M™.

Remark. According to formula (7) from [16] (see also Proposition

3.2), it follows that h = h if U is tangent to M"™. In this case the
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inequality proved in Theorem 3.1 becomes

2
+ (n+1)ec—2X

[e]

H

T(z) — K(m) <

n—2[ n?
2
— [607(r) — 8| P|]?]5 — trace (al- ),

n—1

Theorem 3.3. Under the same assumptions as in Theorem 3.1, if
the vector field U is tangent to M™, then the equality case of inequality
from Theorem 3.1 holds at a point x € M™ if and only if there exist an
orthonormal basis {e1,ea,...en}t of ToM™ and an orthonormal basis
{ent1,--- ,€am} of T M™ such that the shape operators of M™ in
N2™(4c) at x have the following forms:

a 0 0 --- 0
06 0 --- 0
Aen+1: 0 0 ,LL 0 ’ a+b:p’7
00 0 - 4
hi;y hiy 0 --- 0O
h{z _hil 0 R 0
A, =1 0 0 0 -+ 0|, nt+2<i<2m,
0 0 o --- 0

where hi; = g(h(ei,ej),er), 1 <i, j <mnandn+2 <7 <2m.

Proof. The equality case holds at a point x € M™ if and only if
it achieves the equality in all the previous inequalities and we have
equality in the Lemma.

1 . Lo
h?]?L =0, foralli#ji,j>2,
hi; =0, foralli#j,i,j>2, r=n+1,...,2m,
hi; +hj, =0, forallr=n+2,...,2m,
h?fl = hgj’l =0, forallj>2,

1 1 1 1

Wit + by = hagt == AEL
We may choose {e;,e;} such that A5 = 0, and we denote by a = h7,,
b= hjy, p=hit =-.. = hrL It follows that the shape operators

take the desired forms.
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4. Ricci curvature for submanifolds of complex space forms.
In this section we prove relationships between the Ricci curvature of a
submanifold M" of a complex space form N2"(4c) of constant holo-
morphic sectional curvature, endowed with a semi-symmetric metric
connection, and the squared mean curvature |H||2. We suppose that
the vector field U is tangent to M™.

Theorem 4.1. Let M™, n > 3, be an n-dimensional submanifold
of a 2m-dimensional complex space form N2™(4c) of constant holo-
morphic sectional curvature 4dc endowed with a semi-symmetric metric
connection V such that the vector field U 1is tangent to M™. Then we
have

2T 2 3c
4.1 H|?> ——+ZX—c— ——||P|].
@y EPz s e
Proof. Let x € M™ and {ej,es,...,e,} an orthonormal basis of

T, M™. The relation (3.2) is equivalent with

(4.2) n?||H|]? = 27 + ||h]|* + 2(n — D)X — ¢[n* — n + 3||P||?].

We choose an orthonormal basis {e1,... ,en,€nt1,...,€2,} at & such
that e, is parallel to the mean curvature vector H(z) and ey, ... e,
diagonalize the shape operator A.,, ,. Then the shape operators take
the forms

ag 0 -+ 0

0 a9 0

Aepn = | . . ) I
0 0 - a,

A, = (hij), 4j=1,...,n; r=n+2,...,2m, trace A, =0.

From (4.2), we get
(4.3) n?||H|?

n 2m n
=2r 3 a2+ Y ST ()P 200 DA cln® —n+ 3P|,
i=1

r=n+21,j=1
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On the other hand, since

0< Z(ai —aj)*=(n- l)iaz2 - 22“1’“]"
i=1

i<j 1<j
we obtain

ﬂmW-(

n n

2
ai) :ia?—l—?ZaiaanZa?,
1 i=1

i=1 i= i<j i=1

which implies

(44) S a? > il =P,
i=1

We have from (4.3)
n?||H|* > 27 + n||H||? + 2(n — 1)\ — ¢[n? — n + 3||P||*],

ie., (4.1).
Using Theorem 4.1, we obtain the following

Theorem 4.2. Let M™, n > 3, be an n-dimenstonal submanifold
of a 2m-dimensional complex space form N2™(4c) of constant holo-
morphic sectional curvature 4c endowed with a semi-symmetric metric
connection V, such that the vector field U is tangent to M™. Then, for
any integer k, 2 < k < n, and any point x € M™, we have

1P|

(4.5) |H|?(z) > @k(P)‘l‘%)‘_C_%

n(n —1)

Proof. Let {e1,...e,} be an orthonormal basis of T, M. Denote by

L;, ..;, the k-plane section spanned by e;,, ... ,e;, . By the definitions,
one has
1 .
(4.6) T(Liy..i) = 5 Z Rchil...ik (e:),
i€{i1,... ik}
1
(47) T(CU) = “kE—2 T(Lil---ik)'
C

n—2 1<y < <ip<n
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From (4.1), (4.6) and (4.7), one derives
(4.8) T(x) > —F—=

which implies (4.5).

5. Chen first inequality for submanifolds of Sasakian space
forms. A (2m + 1)-dimensional Riemannian manifold (N?™*1, g) has
an almost contact metric structure if it admits a (1, 1)-tensor field ¢, a
vector field ¢ and a 1-form 7 satisfying:

X = -X +n(X)E, n(E) =1
9(pX,pY) = g(X,Y) = n(X)n(Y),
9(X, &) = n(X),

for any vector fields X,Y on T'N. Let ® denote the fundamental 2-
form in N?™*1 given by ®(X,Y) = g(X, pY), for all X,Y on T'N. If
® = dn, then N2+ is called a contact metric manifold. The structure
of N?™*1 ig called normal if

[o, 0] +2dn ® & =0,

where [p, ¢] is the Nijenhuis torsion of ¢. A Sasakian manifold is a
normal contact metric manifold.

A plane section 7 in T, N>™*1 is called a p-section if it is spanned
by X and ¢ X, where X is a unit tangent vector field orthogonal to £.
The sectional curvature of a p-section is called a ¢-sectional curvature.
A Sasakian manifold with constant ¢-sectional curvature c is said to
be a Sasakian space form and is denoted by N?™+1(¢). The curvature

o [e]

tensor R with respect to the Levi-Civita connection V on N2mH(e) is
expressed by
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o]

(S.2.5) R(X,Y,Z,W)
_c+3
T4
+ L mXOn(2)g(¥, W) ~ n(¥Y)n(Z)g(X, W)
+n(Y)n(W)g(X, Z) — n(X)n(W)g(Y, Z)
+9(X,0Z)g(pY, W) — g(Y,pZ)g(p X, W)
+29(X,9Y)g(0Z,W)],

[g(X, W)g(Y, Z) - g(X, Z)g(Y, W)]

for vector fields X,Y, Z, W on N2™+1(c).

If N>™*1(c) is a (2m+1)-dimensional Sasakian space form of constant
p-sectional curvature c endowed with a semi-symmetric metric connec-
tion V, from (2.2) and (S.2.5) it follows that the curvature tensor V of
N2m+1(c) can be expressed as

(S.2.6) R(X,Y,Z,W)
c+3

= — (X, W)g(Y, 2) — g(X, Z)g(Y, W)

+ L X)n(2)gY, W) — 0¥ )n(2)g(X, W)
+n(Y)n(W)g(X, Z) —n(X)n(W)g(Y, Z)
+9(X,02)g(pY, W)g(Y, 0Z)g(p X, W)
+29(X, 9Y)g(pZ,W)] — (Y, Z)g(X, W)

+a(X, 2)g(Y, W) — a(X,W)g(Y, Z)

+ oY, W)g(X, 2).

Let M™, n > 3, be an n-dimensional submanifold of a (2m + 1)-
dimensional Sasakian space form of constant @-sectional curvature
N"™"P(c) of constant sectional curvature c. For any tangent vector
field X to M™, we put

¢X = PX + FX,

where PX and FX are tangential and normal components of X,
respectively, and we decompose
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E=¢"+¢t,
where ¢ and ¢+ denotes the tangential and normal parts of €.

Recall that ©%(7) = g%(Pey,e2) = g%(pe1,e2), where {e1, ez} is an
orthonormal basis of a 2-plane section , is a real number in [0, 1],
independent of the choice of ey, es.

For submanifolds of Sasakian space forms endowed with a semi-
symmetric metric connection we establish the following optimal in-
equality.

Theorem 5.1. Let M™, n > 3, be an n-dimensional submanifold of
a (2m + 1)-dimensional Sasakian space form N*™*1(c) of constant -
sectional curvature endowed with a semi-symmetric metric connection
V. We have:

n? c+3
— _||H||? 1
sty 11+ (1)

BIPI* = 660%(m) — 2(n — DIIE"II* + 2/ &)

<(n-2) -

c—1

8
— trace (a1 ),

+

where 7 is a 2-plane section of T,M"™, v € M".

Proof. From [16], the Gauss equation with respect to the semi-
symmetric metric connection is

(5.2) R(X,Y, Z, W)
= R(X7KZ7 W) —l—g(h(X, Z)ah(}fa W)) - g(h(Y, Z)’h(Xa W))

Let ¢ € M™ and {ej,ea,...,e,} and {e,t1,-.. ,€2m41} be orthonor-
mal bases of T,M"™ and T;-M™, respectively. For X = W = e;,
Y =Z =¢;, i # j, from equation (S.2.6) it follows that:

(5.3)

~ c+3 c¢c—1
R(ei,ej,ej,e;) = T T2 [—n(ei)? — nle;)? + 3g°(Pej, e;)]

—afes e) — afej, ej).
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From (5.2) and (5.3) we get

c+3 c—1
T T [—n(e:)? — n(e;)” + 39° (Pej, )]
—a(ei, e;) — alej, e;5)
= R(ei, ej,¢j,¢;) + g(h(ei, e5), hlei, ej))

- g(h(eiv ei)v h(ej) ej))'

By summation after 1 < ¢, j < n, it follows from the previous relation
that

3
27 + [|h]2 — n2|[H|? = 2(n — DA+ (n? — n) ST

4
-1
——[2n = DETI2 + 3P

+

We take

c+3

€=27 — 1
(5.5) n=

2 -2n - DI + 3PP

Then, from (5.4) and (5.5), we get

(5.6) n?||H|I* = (n = D)(|[6]* +e).

Let x € M", m# C T,M", dimm = 2, 7 = sp{ej,e2}. We define
ent1 = H/||H||, and from the relation (5.6) we obtain:

(3p) -0 X v +).

or equivalently,

n 2Xm+1 :|

<Zh"+1> = nl)[g (A B N W ()

i#£j i,j=1 r=n+2
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By using the algebraic Lemma we have from the previous relation,

n 2m+1
2RI Mt 2 Y (P >0 Y (A
i#j i,j=1r=n+42

If we denote by &, = pr.& we can write
—n(e1)? = n(ez2)* = — ||
The Gauss equation for X =7 =e€;, Y = W = ey gives
K(m) = R(ey, e2,€2,€1)

c+3 c—1
= t72 [l ]I” + 39 (Pex, e2)] — afer, 1) — alez, )
p
Z [hi1h5s — (hi2)?]
r=n+1
c+3 c—1
2t [—[1&x]1? + 3¢%(Per, e2)] — a(er, e1) — ales, ea)
1 n 2m+1
n+1
S35 Y (e
i#£] i,j=1r=n+2
2m+1 2m+1
+ Z hi1hae — Z (hi2)?
r=n+2 r=n+1
c+3 c—-1
=~ &l 4 30%(Pes, e2)] — afer, e1) — aler, e2)
n  2m—+1
TN D DU ST
z;é] i,j=1r=n+2
2m—+1 2m:1
+ 5+ N7 RhE = Y (hyy)?
r=n+2 r=n+1
c+3 c—1
=— t T[*HEWHZ +3g%(Per, e2)] — a(er, e1) — ales, e3)
2m+1 1 2m+1
Fe S Y Sy S ()
175] r=n+21i,j>2 r=n-+2

1
£ YU + (g + e
i>2
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c+3 c¢c—1
—[|&x |1 + 3g%(Pe1, e2)] — a(e1, e1)

S
S

K(r) > 2 4 e + 36%(Per, )]
—aler,e1) — ales, e2) + %
From (5.5) it follows
n? c+3

K(r)>71—(n—-2) 1H]” + (n+1)—5—= = A

2(n—1)
c—1

8
+ trace (o, 1),

BIPI* = 60(m) — 2(n — DI ||* + 2[|&x ]

which represents the inequality to prove.

Corollary. Under the same assumptions as in Theorem 5.1, if £ is
tangent to M™, we have

o)~ K(7) < (0= 2) 5.7 3

ﬁnmﬁ +(n+ 1) -

8
= Li3|P| - 602(m) — 2(n — 1) + 2/jé )

8

— trace (|,1).

+

If € is normal to M™, we have

(o)~ K(r) < (0= 2) 5. 3

n
— || H|]? 1)—— =X

— trace (a|,1).

Remark. According to formula (7) from [16] (see also Proposition

3.2), it follows that h = h if U is tangent to M™. In this case inequality
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(5.1) becomes

2 2

]

I c+3

+ e+ ) -

7(z) — K(r) < (n —2) [ﬁ
c—1

8
— trace (a1 ).

+ BIPI* = 60%(m) — 2(n — DI 1* + 2/l ]

Theorem 5.2. If the vector field U is tangent to M™, then the
equality case of inequality (5.1) holds at a point © € M™ if and
only if there exists an orthonormal basis {e1,e2,... ,en} of Ty M™ and
an orthonormal basis {eni1,... enip} of T-M™ such that the shape
operators of M™ in N*™+1(c) at x have the following forms:

a 00 -+ 0
0 b 0 0
A€n+1: 00 p .- 0 ) a+b=up,

00 0 - pu

RY, Rhi, O -+ 0

Ry, —hj, O - 0

A, =1 0 0 0 -+ 0], n+2<i<2m+1,

0 0 0 -~ 0

where we denote by hi; = g(h(ei,ej),e:), 1 <i, j<nandn+2<r<
2m + 1.

Proof. The equality case holds at a point x € M™ if and only if it
achieves equality in all the previous inequalities and we have equality
in the Lemma.

hitt =0, foralli+j,i,j>2,
hi; =0, foralli#j,i,j>2r=n+1,...,2m+1,
hii1 +hiy =0, forallr=n+2,...,2m+1,
Ryt =hyft =0, forallj>2,

n+1 n+l _ 1n+l _ _ 1n+1
hit 4 hyy " = hgg" = =ho
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We may choose {ey, ez} such that A5 = 0, and we denote by a = hy,,
b= hy, p=hit =... = hL It follows that the shape operators

take the desired forms.

6. Ricci curvature for submanifolds of Sasakian space forms.
We first state a relationship between the sectional curvature of a
submanifold M"™ of a Sasakian space form N2m*!(c) of constant ¢-
sectional curvature c endowed with a semi-symmetric metric connection
V and the squared mean curvature |H||?. Using this inequality, we
prove a relationship between the k-Ricci curvature of M™ (intrinsic
invariant) and the squared mean curvature |H||? (extrinsic invariant),
as another answer of the basic problem in submanifold theory which
we have mentioned in the introduction.

In this section we suppose that the vector field U is tangent to M™.

Theorem 6.1. Let M™, n > 3, be an n-dimensional submanifold of a
(2m+1)-dimensional real space form N*™F1(c) of constant p-sectional

curvature ¢ endowed with a semi-symmetric metric connection V such
that the vector field U is tangent to M™. Then we have

2T 2 c+3 c—1
6.1) ||H|*> F—A— -
(6.1) IEl “nn-1) n 4  4dn(n-1)

F2(n=1)[I€ T |IP+IP|].

Proof. Let x € M™ and {ej,ez,...,e,} be orthonormal bases of
T,M™. Relation (5.4) is equivalent to
(6.2) n?|H]|?
c+3 c—-1

= 27+ +2(n—D)A=(n* —n) ———— [=2(n=1)[1€"*+3] P|I”].
We choose an orthonormal basis {e1,... ,€n,€n4+1,.-+ ,€ntp} at & such
that e, 11 is parallel to the mean curvature vector H(z) and ey, ... e,
diagonalize the shape operator A.,,,. Then the shape operators take
the forms

ag 0 -~ 0

0 ay --- 0

Ae,ia : . N
0 0 - ayp

A, = (h{;),i,5=1,... ,m;r=n+2,...,2m+ 1, trace A., = 0.
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From (6.2), we get

(6.3)
n+p n
2||H||2—2T+Za + 2 2 ()2t - DA
r=n+2i,j=1
c+3 c—-1
= (n* =)= = == [=2(n = ¢TI + 3P,
which implies
n?|H|* = 27 +n|H[* +2(n — DX — (n® ~ ”)013
c—1
- = P20 = DIETI + 121,

because Y., a? > n||H||* (see (4.4)).
The last inequality represents (6.1).
Using Theorem 6.1, we obtain the following

Theorem 6.2. Let M™, n > 3, be an n-dimensional submanifold of
a (2m + 1)-dimensional Sasakian space form N*™*1(c) of constant -
sectional curvature c endowed with a semi-symmetric metric connection
V, such that the vector field U is tangent to M™. Then, for any integer
k, 2 <k <n, and any point x € M"™, we have

9 2. c+3 c—1 9 9
(6.4) 1H|(2) 2 O(a) o A= =g =21 €T I+

Proof. It follows immediately from (6.1) and (4.8). u]
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