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VALUE DISTRIBUTION OF
DIFFERENCES OF MEROMORPHIC FUNCTIONS

KAI LIU

ABSTRACT. In this paper, we investigate the value dis-
tribution of differences of meromorphic functions. Some re-
sults are proved concerning the existence of zeros of the
f¥A.f —a(z), k € Z, which can be viewed as discrete ana-
logues of the Hayman conjecture [10].

1. Introduction. A function f(z) is called meromorphic, if it
is analytic in the complex plane C except at possible isolated poles.
If no poles occur, then f reduces to an entire function. For f(z) a
meromorphic function, let o(f) be the order of growth, u(f) the lower
order of growth, A(f) the exponent of convergence of the zeros and
A(L/f) the exponent of convergence of the poles. In what follows,
we assume that the reader is familiar with the basic notation of
Nevanlinna’s value distribution theory [11, 13, 18].

Recently, there has been an increasing interest in studying difference
equations in the complex plane C. Many authors investigated the
growth of solutions of complex difference equations, such as [4, 15],
and value distribution of differences analogues of Nevanlinna’s theory,
such as [2, 3, 7, 8, 14, 16]. The forward differences are defined as

Acf:=f(z+c)—f(z) and Af:=Ar'A.f), n€N, n>2,

where f(z) is meromorphic and ¢ € C\ {0}. If ¢ = 1, we use the usual
difference notation A.f = Af.

Laine and Yang [14] first investigated the value distribution of differ-
ence products of entire functions, and obtained the following theorem.
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Theorem A. Let f(z) be a transcendental entire function of finite or-
der, and ¢ a non-zero complex constant. Then forn > 2, f(2)"f(z+c¢)
assumes every non-zero value a € C infinitely often.

In this paper, we improve Theorem A to meromorphic functions and
obtain the following results.

Theorem 1.1. Let f(z) be a transcendental meromorphic function
of finite order o(f), S(z) = R(2)eR®), where R(z) is a non-zero
rational function, Q(z) is a polynomial that satisfies deg Q(z) < o(f).
If X(1/f) < o(f) and 2?21 v; > 3, and at least one of v; > 2, then
15, f(z +¢j)" = S(2) has infinitely many zeros.

Remark 1. The restriction on the order in Theorem 1.1 cannot be
deleted. This can be seen by taking f(z) = 1/(ze® ), e¢ = —n (n > 2)
and R(z) is a rational function. Then f(z) is of infinite order and has
only one pole, while

1—-2z2"(z+c)R(2)
n - R _
FEP G+ o) - R(:) = R

has finitely many zeros.

Remark 2. Obviously, if n = 1, then vy > 3. Theorem 1.1 is not true,
if >°7_, vj = 2. This can be seen by taking f(z) = (1 +¢€*)/z, ¢ = mi.

Then
1 2z

f(Z)f(z+e) = z(z +¢) - z(;e—}— ¢)

has no zeros.

Remark 3. Theorem 1.1 is not true, if A(1/f) = o(f) = 1. This can
be seen by taking f(z) = (1 —e*)/(1 + €*), ¢ = mi. Then

f(2)*f(2 +¢)f (2 +3c) = R(2) = 1 = R(z)

has finitely many zeros, where R(z) is a rational function.

Theorem 1.2. Let f(z) be a transcendental meromorphic function of
finite order o(f), S(z) = R(2)e?®), where R(z) is a non-zero rational
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function, Q(2) is a polynomial that satisfies deg Q(z) < o(f). If f(z)
has finitely many poles and n > 4 is an integer, then

1
N

(’”’ ) f(z+¢) - S(z)

) > T(r, f) + 0714 1 S(r, f).

Remark 4. From the proof of Theorem 1.2, if ¢ = 0, then we can
assume n > 1. Using a similar proof as for Theorem 1.2, if there exists

a
n
Vj >n+ZV,-,

i#]

then we get

_ , ]. r T_O'*]:‘r& r
V([ pe s 2 T 00T 5 ),

where c; are distinct complex numbers.

Concerning the value distribution of derivatives of transcendental
functions, there is a classical result, which can be seen in [6, Theorem
1.5].

Theorem B. Let f(z) be a transcendental meromorphic function in
the plane with

T f) _,,

(1.1) lim inf

r— 00

Then f' has infinitely many zeros.

If f satisfies the conditions of Theorem B, it follows from Hurwitz’s
theorem that if zg is a zero of f’, then A.f has a zero near 2 for all
sufficiently small ¢ € C\{0}. This makes it is natural to ask whether
A.f must have infinitely many zeros. Bergweiler and Langley [2, 16]
investigated the existence of zeros of A™f and of (A"™f)/f, where f
is a transcendental meromorphic function of o(f) < 1, and obtained
many profound and significant results, which can be viewed as discrete
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analogues of Theorem B on the zeros of f’(z). They obtained the
following theorem.

Theorem C ([2, Theorem 1.4]). Let f(z) be a transcendental
meromorphic function of lower order p(f) < 1. Let ¢ € C\{0} be
such that at most finitely many poles z;, z, of f satisfy z; — 2z, = c.
Then A.f has infinitely many zeros.

Hayman [10] conjectured that if f is a non-constant transcendental
meromorphic function and n € N, then f™ f’ takes every finite non-zero
value infinitely often. In fact, earlier Hayman [9] had proved that if f
is a transcendental meromorphic function and n is an integer satisfying
n > 3, then f™f’ takes every non-zero complex value infinitely often.
Later, the case n = 2 was settled by Mues [17]. Bergweiler and
Eremenko [1] proved the last case n = 1, if f is a transcendental
meromorphic function of finite order, then ff’ takes every non-zero
complex value infinitely often. Similar as to the Hayman conjecture, it
is natural to ask the following question.

Question 1. If f is a transcendental meromorphic function, can we
get the counterpart results to f*f’ — a(z), when f’ is replaced with
A.f, where k is an integer?

In this paper, we investigate the zero distribution of f*A.f — a(z),
where £k = 0 or £ € N. We first consider the case when £ = 0 and
a(z)(# 0) is a constant. Obviously, if f is a transcendental entire
function of order o(f) < 1, then A.f — a has infinitely many zeros.
From the function f(z) = e* + az, we know that if o(f) =1, A(f) =1
and ¢ = 1, then Af —a = (e — 1)e* has no zeros. Then we give the
following two results to see what conditions f(z) should satisfy. Then
Af — a has infinitely many zeros.

Theorem 1.3. Let f(z) be a meromorphic function of order 1 <
o(f) < oo, and let f(z) have infinitely many zeros with A\(f) < 1,
A.f #0, a a non-zero constant. If f(z) has finitely many poles, then
A.f — a has infinitely many zeros.
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Corollary 1.4. Let f(z) be an entire function of order 1 < o(f) <
00, and let f(z) have infinitely many zeros with A\(f) < 1, A.f £0, a
a non-zero constant. Then A.f — a has infinitely many zeros.

Remark 5. Theorem 1.3 is not true, if f(z) has infinitely many poles
and A(f) = 1. This can be seen by f(z) = 1/(e* + 1)+ R(z), where ¢ =
2mi and R(z) is a rational function. Then A.f —a = R(z+¢)—R(z) —a
has finitely many zeros.

We next proceed to proving a result for the case when k£ = 0 and
a(z) = 0. In fact, Theorem C investigated this case. If f is a
transcendental entire function of order o(f) < 1, then each difference
A7 f obviously has infinitely many zeros. In this paper, we prove the
following theorem, when f is an entire function of order o(f) > 1,
which is an improvement of Theorem 3 in [3].

Theorem 1.5. Let f be an entire function of order 1 < o(f) < oo,
and let f have infinitely many zeros with the exponent of convergence
of zeros \(f) =X <1, ce C\ {0}, A.f £0. Then A.f has infinitely
many zeros and infinitely many fized points.

Remark 6. The restriction on infinitely many zeros cannot be deleted,
which can be seen by the function f(z) = ze*, and ¢ = 27i. Then
f(z 4 ¢) — f(2) = ce® has no zeros, while it has infinitely many fixed
points. The condition A(f) < 1 cannot be replaced by A(f) = 1,
which can be seen by f(z) = e* + (1/2)z?2 — (1/2)z + 1. Then
f(z+1)—f(2) = (e—1)e* +z has no fixed points, while it has infinitely
many Zzeros.

Finally, we will give two theorems to the case of k € N and a(z) is a
small function to f(z).

Theorem 1.6. Let f(z) be a transcendental meromorphic function of
finite order, A.f #Z0, ¢ a non-zero constant, n > 2 an integer, R(z) a
rational function. If f(z) has finitely many poles, then f(z)"A.f —R(z)
has infinitely many zeros.
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The method of proof Theorem 1.6 is similar as the proof of Theo-
rem 1.1.

Regarding to the meromorphic function of infinitely many poles,
we investigate the function of order o(f) < 1, and get the following
theorem.

Theorem 1.7. Let f(z) be a transcendental meromorphic function
of o(f) <1, ¢ a non-zero constant, and a set B = {b;} consists of all
poles of f(z) such that bj +kc ¢ B(k=1,...,n) at most finitely many
exceptions. Then f(z)"A.f — a has infinitely many zeros.

Remark 7. Some ideas of this paper are from [2, 3, 14].

2. Some lemmas. Recently, Halburd-Korhonen [7] and Chiang-
Feng [4] investigated the value distribution theory of difference expres-
sions and obtained two similar results which can be viewed the differ-
ence analogue of the logarithmic derivative lemma. In what follows, we
mostly refer to [4, Corollary 2.6]:

Lemma 2.1. Let f(z) be a meromorphic function of finite order o,
and let n1, N2 be two distinct complex constants. Then for any € > 0,
we have

f(Z + 171) _ ,r_trfl e
(2.1) m(T, —f(z+772)> =0O( *e).

As for the original formulation of the classical Clunie lemma, see [5].
The following version ([13, Theorem 2.4.2]), slightly more general than
the original one, has been reinvented several times in the literature:

Lemma 2.2. Let f(z) be a transcendental meromorphic solution of

an(Z,f) = B(z,f),

where A(z, f), B(z, f) are differential polynomials in f and its deriva-
tives with small meromorphic coefficients ay, A € I in the sense of
m(r,ax) = S(r, f) for all X € I. If the total degree of B(z, f) as a poly-
nomial in f and its derivatives is < n, then m(r, A(z, f)) = S(r, f).
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The following result is very important in the proof of Theorem 1.7,
and the first part proof which can be seen in [2, Lemma 2.1]. We give
the proof to complete the proof of Lemma 2.3.

Lemma 2.3. Let f be a transcendental meromorphic function
satisfying (1.1), then A.f is transcendental. Furthermore, if f satisfies
the condition of Theorem 1.7, then f(2)"A.f is transcendental.

Proof. Assume that A.f is a rational function. Then there exists a
rational function R;(z) such that

(2.2)  flz+0)=f(2) + Ru(2), [f(z—¢)=[(2) = Raz —¢).

If f has infinitely many poles, we take ro large enough that R;(z)
has neither zeros nor poles in |z| > ro. Suppose that zy is a pole
of f with |zo] > 7o, then (2.2) shows that either zy + kc or zp — ke
(k=0,1,...) are the poles of f, depending on the sign of Re zy, which
is a contradiction to (1.1).

If f has finitely many poles, then there exists a rational function Rs
such that h = f — R is transcendental entire, and it can be assumed
that R; is a polynomial by considering h in place of f. There exists a
polynomial P such that

P(z +c¢) — P(z) = Ri(2);

then we get R; = 0 by considering f — P in place of f. So we get
f(z+¢) = f(2). Then f is a periodic function, which means that
o(f) > 1 contradicting (1.1). Thus, we have proved that A.f is
transcendental.

From Theorem C, we know that A, f must have infinitely many zeros.
If f(2)™A.f is a rational function, assume that f(z)"A.f = R(z), so f
must have infinitely many poles. We take a pole z; of f with |2;] =7
large enough that R has no poles in |z1| > r1, so we know z; + ke
(k =0,1,...) must be the poles of f, which is a contradiction to the
condition.

Lemma 2.4 [2]. Let f be a transcendental meromorphic function of
lower order u(f) < 1. Then there exists an arbitrarily large R with the
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following properties. First,
T(32R, ') < R,

Second, there exists a set Jg C [(R/2),R] of linear measure (1 —
0(1))(R/2) such that, for r € Jg,

fz+1) = f(z)~f(z) on |z|=m

where if () and P¥(z) are two functions, then ¢(z) ~ 1(z) means that
#(2)/¥(z) tends to unity as |z| =r.

Following Hayman [12, pages 75-76], we define an ec-set E to be
a countable union of discs not containing the origin, and subtending
angles at the origin whose sum is finite. If E is an e-set, then the set
of » > 1 for which the circle S(0,7) meets E has finite logarithmic
measure.

Lemma 2.5 [2]. Let g(z) be a transcendental meromorphic function
of order o(f) <1, h > 0. Then there exists an e-set E such that

/
gi(z +¢) — 0 and g—(z +c)

—1 as z—00in C\E,
=40 o) '

uniformly in ¢ for |c| < h. Further, E may be chosen so that for large
z & E, the function g has no zeros or poles in | — z| < h.

Lemma 2.6 ([18, Theorem 1.51]). Let f;j(z) (j =1,...,n) (n > 2)
be meromorphic functions, g;(z) (j = 1,...,n) entire functions, and
satisfy

(1) 371 fi(2)esi®) =0,
(ii) it when 1 < j < k <, g;(2) — gr(2) is not constant,
(iii) when 1 <j<n, 1 <h<k<mn,

T(r, f;) = ofT(r,e?" %)}, 17— o0, ¢ E,

where E C (1,00) is of finite linear measure.
Then fj(z) =0 (j=1,...,n).
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3. Proof of Theorem 1.1. We first consider that all ¢; = 0,
> i—1vj =m. Since S(2) = R(2)eR® and degQ(z) < o(f), then we
get T(r,S(z)) = O(r° " 1*¢). Let G = f(2)™ — S(z). Applying the
proof of the second main theorem for three small target functions in
[11, Theorem 2.5] with slight modifications, we get

mT(r, f)+S(r, f) =T(r,G)

< N(r,G) + N(r, m> + N(r, é)
+ 0" + S(r,G)

< N(r, f)+ N(r, %) +N<r, é)
+ 0@ ) + S(r, f)

<2 )+ 8 (n ) + 0674+ 50,).

Since m > 3, we conclude that G must have infinitely many zeros.

Assume now that at least one c; # 0. Suppose on contrary to the
assertion that []_, f(z + ¢;)¥9 — S(z) has finitely many zeros and
A1/f) < o(f) < co. Then we get

(3.1) D(z) =: H flz4c¢;)"7 —S(2) = %ep(z),

where A(z) is the canonical product formed with the zeros of D(z),
a polynomial, B(z) is the canonical product formed with the poles of
D(z) with A(B) = o(B) = A1/f) < o(f) — ¢ and P(z) is a non-
constant polynomial. Differentiating (3.1) and eliminating e”(*), we
obtain

&2) [5G+ e e f) = e,

where

(3.3)

Fo, ) = AEBE) ARB () ARP(E) AR g, f(z+e)
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and

_ (A'(2)B(z) — A(2)B'(z) = A(2)P'(2)
wy 7 (H i ERLE
- 28 (R(2)+ R(2)Q'(2)).

We affirm that F(z, f) cannot vanish identically. Indeed, if F(z, f) =
0, then by (3.2) and (3.4) we get

A BE)_RE L o
A(z)  Bl) Rz LB -@R=0

So, we get

(3.5) % — Q) PG,

where a is a non-zero constant. Since A(z) is a polynomial and R(z) is
a rational function, B (z) must have finitely many zeros. Then we may
write B(z) = h*(2)e"®), where h*(z) is a polynomial. So we know that
P(z) — Q(z) — h(2) must be a constant. By (3.1), we have

(3.6) _H Flz+cj)" = M(2)e?®),

where M(z) is a rational function. Since A(1/f) < o(f), then we may
assume, without loss of generality, that A\[1/(f(z + ¢1))] < o(f) and
v1 > 2. From (3.6), we get that there exists an € > 0 such that

(3.7) Zl/] f(z+c1))

(z+c1) o(f)— .
<Z ( Z+Cl)>+0( ?) + O(log )

0( o(N=1tey L O(r*P=¢) + O(log 7).

So
T(r, f(z + 1)) < O(r"H=1%) + O(r*D=*) + O(log ),
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which contradicts the assumption that f(z) is transcendental of order
a(f); thus, we prove F(z, f) Z 0.

By the logarithmic derivative lemma and (3.3), we get
m(r, F(z, f)) = O(r"=14¢) L 0(r7B)+e) 1 O(logr).
By Lemma 2.2 and applying Lemma 2.1 to (3.2), we get
m(r, f(z + c1)F(z, f)) = O(r° D =1+¢) £ O(roB)+) 1 O(log 7).

From(3.2) and (3.3), we know that the poles of F(z, f) may only be
located at the zeros or the poles of f(z + ¢;), the zeros of B(z) or the
poles of rational functions. Assuming that vy > 2, we will show that
AMf(z+c1)) <o(f). If zo is a zero of f(z+ ;) and also a zero of B(z),
then we get A(f(z + c1)) < A(B) < o(f). If zp is a zero of f(z + ¢1)
but not a zero of B(z), from (3.3), we know that the pole of F(z, f)
must be simple; then, from comparing the exponent of convergence of
the zeros of two sides of (3.2), we get a contradiction.

Thus,
N(r, F(z, f)) = O D+e) £ 0/ DFey L 0o (B)Fe) L O(logr),
and

N(r,f(z+c1)F(zf))
= O(r’D*e) L O (P H+e) L O(roB)+e) 4 O(logr).

Hence
T(r, F(z, f)) = O(rAD*) 4 O(rN3)9) 1 0(r7B)+¢) 1 O(log 1),
and

T(r, f(z + c1)F(z, f))
= O(PD*e) 4 O/ DHe) 4 O(roB)H) 4 O(logr).

Therefore,

T(r, f(z + e1)) = O F) + OV D*) 1 07 1)*¢) + O(log ),
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which is a contradiction to f(z) being transcendental of order o(f),
Thus, we complete the proof of Theorem 1.1.

4. Proof of Theorem 1.2. Since f(z) is a transcendental mero-
morphic function of finite order o, from [4, Theorem 2.1], we know that
the following relation

(4.1) T(r, f(z+c¢)) =T(r, f) + O(r°~T¢) + O(logr)

holds. Let G(z) = f(2)"f(z +¢) — S(z). Obviously, from (4.1), we can
get
T(r,G(2) < (n+1)T(r, f) + 5(r, f)-
On the other hand, we can get
T(r,G(2)) 2 T(r, f(2)"f(z + ¢)) + S(r, f)
(42) > T(Ta f(z)n) - T(ra f(Z + C)) + S(ra f)
> (7’L o l)T(Ta f(Z)) + S(Ta f)
Applying again the second main theorem for three small target func-
tions ([11, Theorem 2.5]), see the proof of Theorem 1.1, and recalling

that f has finitely many poles, we get
(4.3)

T _t poite r
(- rsm) +or T+ 500)

gﬁ@J@»+N@J@+vD+WQQf5>+N(“ﬁ%>
_ 1
Nty

<2T(r, f(2)) —|—N(r, ﬁ) +O(r" 1) 1 8(r, ).

>+O&”“ﬂ+S&J)

From (4.2) and (4.3), we get

N(rg) 2 (=30 + 06"4) 4 5(0,).

We have completed the proof of Theorem 1.2.
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5. Proof of Theorem 1.5. Since f is an entire function of order
1 < o(f) < oo and has infinitely many zeros with the exponent of
convergence of zeros A(f) = A < 1, from the Hadamard factorization
theorem, we can write f(z) = h(z)e”(*), where h(z) is the product of
the zeros of f, is also an entire function, and A(f) = A(h) = o(h) < 1,
P(z) a polynomial. Denote P(z + ¢) — P(z) = R(z). Hence,

9(2) = f(z+¢) = f(2)
(5.1) = h(z + c)ePAITEE) _ p(2)eP)
= (h(z + c)e™) — h(2))e"®.

We will prove that g(z) has infinitely many zeros.

By Lemma 2.5, there exists an e-set E such that h(z + ¢) ~ h(z) as
z — o0 in C\ E. We affirm

h(z + c)e®® — h(2) £ 0.

Otherwise, for z € C\ E, we get f(z + ¢) = f(z), which contradicts
with A.f #Z 0.

Assume on the contrary to the assumption that g(z) has finitely many
zeros; then, there exists a non-zero polynomial Q(z) such that

h(z + c)ef® — h(z) = Q(2).
Writing this in the form
h(z+¢) g 1 Q(z)

Gz © T )

then the order of the right hand side of (5.2) is less than 1, and the order
of the left hand side of (5.2) is at least one unless R(z) is a constant.
Assume that R(z) = a. If a # 2nmi, then h(z) is a polynomial,
which is a contradiction to the assumption that h has infinitely many
zeros. Hence a = 2nwi, for some n. So h(z + ¢) = h(z), which is
a contradiction. Thus, we have proved that g(z) has infinitely many
7€eros.

(5.2)

Next, we will prove that g(z) has infinitely many fixed points. Oth-
erwise, from the Hadamard factorization theorem, we let

(5-3) 9" (2) = 9(2) =2 = h"(2)e"" ),
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where P*(z), h*(z) are non-zero polynomials.
From (5.1) and (5.3), we get

*

(5.4) h(z 4 ¢)eP GO — h(2)eP?) — 2 — h*(2)e?” ®) = 0.

In the following, we will prove equation (5.4) satisfies condition (ii)
of Lemma 2.6.

Case 1. Suppose that P(z +¢) — P(z) = A, A is a constant. Since
P(z) is a polynomial, it must have the form

(5.5) P(z)=az+d and ac=A,a#0.
Combining (5.4) and (5.5), we get
(5.6) [h(z + ¢)e®® — h(z)]e®*+? — h*(2)eP &) — 2z = 0.

If P*(2) —az —d = m, m is a given constant, then P*(z) must have
the form P*(z) = az + b. From (5.6), we get

(5.7) [R(z + ¢)e®® — h(z) — h*(2)e’~4]e?* e — 2 =0,

which is a contradiction.

If P*(2) —az —d # m, from (5.6), applying Lemma 2.6, we get
h*(z) = 0, which is a contradiction. So we get P(z + ¢) — P(z) # A.

Case 2. If P(z +¢) — P*(z) = B, B is a constant, then from (5.4),
we get
(5.8) [h(z + c)e® — h*(2)]e" ) — h(2)eP ) — 2z = 0.
If P*(z) — P(z) =n, n is a given constant, then from (5.8), we get

(5.9) [h(z + c)eP — h*(2) — h(2)]e” @) —z=0.

From Lemma 2.6, we get P*(z) must be a constant and P(z) be a
constant, so f(z) = Ch(z), which contradicts o(f) > 1.

If P*(z) — P(z) # n, applying Lemma 2.6 to (5.8), we get h(z) =0,
which is a contradiction. So we get P(z + ¢) — P*(z) # B.
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Case 3. If P(z) — P*(z) = C, C is a constant; then, using a
similar method to Case 2, we can get a contradiction to see that
P(z) — P*(2) £C.

From Cases 1, 2, 3, we know that equation (5.4) satisfies condition (ii)
of Lemma 2.6, so (5.4) satisfies condition (iii). Applying Lemma 2.6
to (5.4), we get h(z) = 0, which is a contradiction. Hence g(z) has
infinitely many fixed points.

6. Proof of Theorem 1.3. If f(z) has finitely many poles, then
there exists a non-constant polynomial S(z) such that g(z) = S(z)f(z)
is an entire function of o(g9) = o(f) > 1, and f(z) has infinitely many
zeros with A(f) = A(g) < 1. Then we can write

1) = g,

where Q(z) is a non-zero polynomial, h(z) is an entire function of
o(h) = X(g) < 1. Then

6.1)  fle+o)-f(x)—a= %e%m - %ew .

Since S(z) is a non-constant polynomial, so if
h(z + ¢)S(2)e?ET) — h(2)S(z + ¢)e?®) — aS(z + ¢)S(2)

has infinitely many zeros, then the left hand side of (6.1) also has in-
finitely many zeros. Using Lemma 2.6, we get h(z+c)S(z)e@(>+e)-Q(z) _
h(z)S(z+¢) #0.

If f(#+ ¢) — f(2) — a has finitely many zeros, we assume that
(6.2)
h(z+¢)S(2)eRF+) — h(2)S(z + ¢)e?®) — aS(z+¢)8(z) = P(z)el ),

where P*(z), P(z) are non-zero polynomials. A similar method to
the proof of Theorem 1.5, we get equation (6.2) which also satisfies
Lemma 2.6; so we can get a = 0 or S(z) =0, which is a contradiction.
Thus, we have completed the proof of Theorem 1.3.

7. Proof of Theorem 1.7. From Lemma 2.3, we know that
g9(z) = f™(2)A.f — a is a transcendental function. It is easy to get



1582 KAI LIU

o(Acf) < o(f). Assume that o(f) < o1 < 1, then o(g) < o(f) < o01.
In the following, we will use Cauchy’s argument principle to prove
Theorem 1.7.

From Lemma 2.5, let the e-set E contain all zeros and poles of ¢(z),
f(2), f(z+¢), f*f" — a; we define
Er={r:z€ E,|z| =r < R},
R € (1,00).
Ex ={r:z€E,|z| =r < o0},
Then by the property of the e-set and o(f) < o1 < 1, we see that E
has finite linear measure and Eg has linear measure o(1)(R/2).

By Lemma 2.4, we see that there exists a large R with
(7.1) T(32R, ') < R°*,

and there exists a set Jg C [(R/2), R|\Egr of linear measure (1 —
0(1))(R/2), such that for r € Jg,

(72 [+e) = f(E)~ 1) o |o] =
Let

(7.3) Fp— {re E,R] :n(r,f):n(r—l,f)};
then Fr has linear measure

(7.4) m(Fr) > (1—o(1)) L.

To see this, note that there are at most o(R) points px € [(R/3), R]
at which n(¢, f) is discontinuous by (7.1), and if r € [(R/2), R] is such
that n(r, f) > n(r — 1, f), then r € [pg, pr + 1] for some k.

From (7.2)—(7.4) and Jr(Er = @, we see that there exists an
r € Fr() Jr such that g(z), f(2), f(z+c¢), f*f — a have no zeros and
poles on |z| = r. But, from the condition of Theorem 1.7, there exists
an 7, independent of R and 7, such that if f has poles of multiplicities
m at zg and ro < |zo| < r —1, then f(29) = 00, f(20 % ¢) # co. Thus,
from the following,

9(2) = f"(2)(f(z +¢) = f(2)) —a
9(z =)= "z = 9)(f(2) = f(z = ¢)) —a,
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we know that g(z) must have poles at zg with multiplicities (n 4+ 1)m
and poles at zp — ¢ with multiplicities m.

Hence
(7.5)  n(r,g) > (n+2)n(r, )+ O(1) = (n+ 2)n(r — 1, f) + O(1).

By (7.2) and g(z), f™f' — a have no zeros and poles on |z| = r €
Fgr () Jgr; applying Cauchy’s argument principle, we obtain

(s o) = S = a)
+(n+2)n(r—1,f)+0(1)

(
n<7‘, f"f;—> —n(r, ff)
(

v

(7.6)

v

+ (n+2)n(r, f) + O(1)

1

So, we only need to show that f™f’ — a has infinitely many zeros. To
see this, note that o(f) < o1 <1,

v

(7.7) tim g LS (@A D2) e (DTS

™00 T ™00 T

=0.

From Theorem B, we know that f™f’ — a must have infinitely many
zeros, so g(z) must have infinitely many zeros. Theorem 1.7 is thus
proved.

Acknowledgments. The author thanks I. Laine for his hospitality
during the study period in Department of Mathematics, University of
Joensuu, and for valuable suggestions to the present paper. The author
also thanks J. Heittokangas for useful discussions for the paper.

REFERENCES

1. W. Bergweiler and A. Eremenko, On the singularities of the inverse to a
meromorphic function of finite order, Rev. Matem. Ibero. 11 (1995), 355-373.



1584 KAI LIU

2. W. Bergweiler and J.K. Langley, Zeros of difference of meromorphic functions,
Math. Proc. Camb. Phil. Soc. 142 (2007), 133-147.

3. Z.X. Chen and K.H. Shon, On zeros and fized points of difference of mero-
morphic functions, J. Math. Anal. Appl. 344 (2008), 373-383.

4. Y.M. Chiang and S.J. Feng, On the Nevanlinna characteristic f(z + n) and
difference equations in the complez plane, The Ramanujan J. 16 (2008), 105-129.

5. J. Clunie, On integral and meromorphic functions, J. London Math. Soc. 37
(1962), 17-27.

6. A. Eremenko, J.K. Langley and J. Rossi, On the zeros of meromorphic
functions of the form Z:ozl Z“—’;k, J. d’Analyse Math. 62 (1994), 271-286.

7. R.G. Halburd and R.J. Korhonen, Difference analogue of lemma on the
logarithmic derivative with applications to difference equations, J. Math. Anal.
Appl. 314 (2006), 477-487.

8. , Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn.
Math. 31 (2006), 463-478.

9. W.K. Hayman, Picard values of meromorphic functions and their derivatives,

Ann. Math. 70 (1959), 9-42.

10. , Research problems in function theory, The Athlone Press, London,
1967.

11. ———, Meromorphic functions, Clarendon Press, Oxford, 1964.

12. , Slowly growing integral and subharmonic functions, Comment. Math.

Helv. 34 (1960), 75-84.

13. I. Laine, Nevanlinna theory and complex differential equation, Walter de
Gruyter, Berlin, 1993.

14. I. Laine and C.C. Yang, Value distribution of difference polynomials, Proc.
Japan Acad. 83 (2007), 148-151.

15. , Clunie theorem for difference and q difference polynomials, J. Lond.
Math. Soc. 76 (2007), 556-566.

16. J. K. Langley, Value distribution of differences of meromorphic functions,
Rocky Mountain J. Math. 41 (2011), 275-292.

17. E. Mues, Uber ein Problem von Hayman, Math. Z. 164 (1979), 239-259.

18. C.C. Yang and H.X. Yi, Uniqueness theory of meromorphic functions, in
Mathematics and its application, Kluwer Academic Publishers, Dordrecht, 2003.

DEPARTMENT OF MATHEMATICS, NANCHANG UNIVERSITY, NANCHANG, JIANGXI,
330031, P.R. CHINA AND DEPARTMENT OF MATHEMATICS, UNIVERSITY OF EAST-
ERN FINLAND, P.O. Box 111, 80101 JOENSuUU, FINLAND

Email address: liukai418@126.com




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


