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ON LIFTING OF IDEMPOTENTS
IN TOPOLOGICAL ALGEBRAS

RODIA 1. HADJIGEORGIOU

ABSTRACT. We extend the classical “Lifting of Idempo-
tents Theorem” for unital commutative Banach algebras in
the general framework of topological algebras. For this one
has to give, within the same general context, new versions of
the well-known “Quasi-square Root Lemma”, as well as of the
“Fized Point Theorem”, which are also presented.

0. Introduction. The “Lifting of Idempotents Theorem” provides
an idempotent element for a given algebra E from a similar element
of the quotient algebra E/rad E, where rad E denotes the topological
Jacobson radical of E. This has been proved for unital commutative
Banach algebras by Rickart [19], for non-unital non-commutative Ba-
nach algebras by Bonsall and Duncan [3] and for commutative complete
l.m.c. algebras by Mallios [16]. We extend the previous results to the
general case of a topological algebra E, taking the Gel’fand radical of
E, ker(Gg) (the terminology is due to Mallios) in place of rad E. So,
we are led to examine, within the previous setting, the analogue of
“Square Root Lemma” of Ford [5] for Banach algebras that in 1980
Stérbovd [21] generalized for complete Lm.c. algebras, as well as the
Fized Point Theorem of Banach [4] (see also [20] and/or [13]). We
consider an algebra E topologized by the topology of its spectral ra-
dius rg, replacing in all the preceding results the completeness of the
underlying topological vector space E by the advertible completeness
of the topological algebra E (Corollaries 2.7, 2.8, Theorems 3.4 and
4.1). So one has to cope with two problems: namely, in the case of an
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advertibly complete algebra, a Cauchy net converges, if it is advertibly
null, while advertible completeness is inherited to closed subalgebras.
Specifically, the first situation appears in the “Fized Point Theorem,”
where one classically proves that any contraction 7" has a fixed point;
this reduces to the convergence of a Cauchy sequence of iterates, that
actually amounts to finding an element in F making the previous net
advertibly null. For this, one can take, for any n € N, T"(0) to be
a spectrally zero element, i.e., rg(7™(0)) = 0, n € N (Theorem 2.6,
Corollaries 2.7, 2.8). We note that this is actually the case in the con-
text of the “Lifting of Idempotents Theorem,” classically or not (cf.
Theorem 4.1, (4.5)). Finally, we have to deal with the inheritance of
advertible completeness on B, that can be arranged by remarking that
B possesses already a sort of algebraic structure (cf. (3.7)).

1. Preliminaries. In all that follows by a topological algebra E
we mean a topological C-vector space which is also an algebra with
separately continuous ring multiplication, having a non-empty spectrum
M(E) endowed with the Gel’fand topology. The respective Gel’fand
map of E is given by

G:E—COME)):z—Gx)=z:ME) — C
= Z(f) = f(2).
The image of G, denoted by E”, is called the Gel’fand transform algebra
of E and is topologized as a locally m-convex algebra by the inclusion

EM CC.(M(E)),
where the algebra C(9(E)) carries the topology “c” of compact con-
vergence in M(F) [15, page 19, Example 3.1].

Given an algebra E, an element x € E is called quasi-invertible, if
there exists y € E such that

rxoy=0=yox, where xoy=z+y — zy.

The last relation above defines the so-called “circle operation” or else
“g-operation.” Then y is called the quasi-inverse of x and is unique,
while the group of all quasi-invertible elements of E is denoted by E°.
A subalgebra F of E is called quasi-plane if

FNE°=F°,
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while the respective relation in the unital case defines a plane subalgebra
of E. We denote by Spg(z) and rg(x), the spectrum and spectral radius
of x € E, respectively, i.e.,

Spr(z) = {\ € C\{0} : A1z ¢ E°)

and

re(z) =sup{|A| : A € Spgr(z)}.

If E, F are two algebras and ¢ : E — F an algebra morphism, the
spectra of their elements are connected by the relation

(1.1) Spr(é(z)) C Spe(z),

for every = € E [15, page 49, Proposition 1.1]. An element z € F is
called spectrally zero, if rg(x) = 0.

For a topological algebra E, one has
(1.2) Z(M(E)) € Spe(=),

for every x € E [15, page 74, Corollary 7.4, (7.19)]. In this concern, by
a topologically spectral algebra, we mean a topological algebra F, whose
spectrum IM(E) is a spectral set, in the sense that

(1.3) Spe(x) =Z(M(E)),

for every z € E [8, page 13, Definition 2.1]. The previous algebra is
called a topological algebra with functional spectrum by Abel [1, page 18,
(2)], while the term, topological algebra with functional point-spectrum
is also in use (Mallios). In this case one has

(1.4) re(z) = sup [2(f)],
fem(E)

for every = € E. We say that E is a quasi-inverse closed algebra, if its
spectrum OM(E) is a quasi-inverting set, in the sense that

(1.5) z € E°if1 ¢ Z(M(E)),

[8, page 13, Definition 2.2]. The converse statement is always valid,
in fact, quite algebraically [15, page 74, Lemma 7.4], while (1.3) and
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(1.5) are indeed equivalent; namely, a topological algebra is topologically
spectral if and only if it is quasi-inverse closed (see [10, page 52, The-
orem 2.5]). On the other hand, the relations (1.3) and (1.5) referred
to the set M(E) of all characters of F, determine the notions of an
algebraically spectral algebra and algebraically quasi inverse closed al-
gebra, respectively, being also equivalent. It is clear that a topologically
spectral algebra is algebraically spectral, as well.

Now, a topological algebra F is called a Q-algebra if E° is open, while
E is called an advertibly complete algebra, whenever every advertibly
null Cauchy net (x5)sca in E, that is, such that,

(1.6) zsox — 0 <— zouxs, for some z € F,

converges in F; its limit is obviously the quasi-inverse of = [15, page 45,
Definition 6.4]. The above more convenient terminology is still due to
Mallios. In any advertibly complete locally m-convez algebra (E, p,,),
the spectral radius is expressed by the formula (cf. Mallios [15, page
99, Theorem 6.1])

(1.7) re(z) =sup lim (pa(z™))*/™,

« n—o0

so, an element = € F with rg(z) = 0 is called topologically nilpotent.
In the latter case the terms spectrally zero elements and topologically
nilpotent elements coincide. Finally, E is called t-acceptable, if every
closed maximal regular ideal is 2-sided (cf. Najmi [18]).

2. Fixed point theorem in topological algebras. In this section,
we give a new version of the “Fized Point Theorem,” within the general
context of topological algebras, being a very useful device for the proof
of a generalized “Quasi-square Root Theorem.” In this respect, a fized
point of a “self-map” T on a set X is an element xy € X, with
T(zg) = wg. Furthermore, an endomorphism T on a (pseudo-)metric
space (X, d) is called a contraction, if there exists a positive real number
a < 1, such that

(2.1) d(T(z), T(y)) < ad(z, y),

for all (z, y) € X xX. Obviously, such a map is (uniformly) continuous.
Based on the preceding, the “Fized Point Theorem,” due to Banach
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(cf. Dugundji [4, page 305, Theorem 7.2] and Simmons [20, page
338, Lemma], see also Heuser [13, page 15, Section 2 and page 372,
Section 106]), says that:

any contraction on a complete metric space (X, d)
(2.2) ) )
has a unique fized point.

The crucial point of the proof is to have a convergent sequence of
“iterates” in X. This is guaranteed by securing the sequence at issue
to be Cauchy, hence, its convergence by the completeness of X. In this
regard, one can actually conclude that:

23) any contraction T on a metric space (X, d) has a
2-3 —_— N
unique fized point in its completion (X, d).

Now, since any Fréchet topological algebra is a topological algebra
with the underlying topological vector space Fréchet (: metrizable and
complete, [15, page 9, Definition 1.5]), one immediately concludes by
(2.3) the next theorem.

Theorem 2.1 (Mallios Fixed Point Theorem). Any contraction
on a metrizable topological algebra E has a unique fized point in its
completion E, hence, in E itself if, moreover, E is complete, in other
words, Fréchet.

In the case of an algebra E, whose spectral radius rg is a semi-norm,
one can view the former as a (pseudo-)metric d, defining thus an rg-
contraction, as an endomorphism 7" of F, for which there exists a real
number « € (0, 1), such that

(2.4) re(T(z) - T(y)) < arp(z —y),

for all (z,y) € E x E. Now, in the particular case that rg is also
submultiplicative, one has the following generalized version of the “Fized
Point Theorem.”

Theorem 2.2 (Fixed Point Theorem). Let E be an algebra whose
spectral radius rg is a submultiplicative semi-norm and let B be a vector
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subspace of E. Then, any rg-contraction T on B has a unique fized
point in the rg-completion of B, (B, rg) = BrE.

Proof. Considering an element 0 # z¢ € B, and an rg-contraction 7’
over B, we take the following sequence of iterates in B:

z1 =T(zg), wz2=T(x1)= Tz(xo), ooy Ty = T™ (),
such that for m < n one has

rE(Tm — zn) = 15 (T™(z0) — T™(20))
=rg (Tm(azo) - Tm(T"_m(:co))
<a™rg (:L‘O — T"*m(mg))
=a"rg(zo — Tnom)
(2.5) <a™[re(zo—x1)+re(® —z2) + - -
+ TE(xnfmfl - :L'n,m)]
<a™rg(zo—z1)(l+a+a®+---+am ™)

m TE(To — 1)

<
@ 1+«

Since @ < 1, one gets, by the preceding, that (z,)nen is an rg-

Cauchy sequence in B, hence it converges in its rg-completion (B, 7g)
to an element z, such that T'(z) = T(lim,— 0 &p) = lim,—,0 (T(2,,)) =
lim,,_, 0o Zp+1 = 2z, due to the continuity of T relative to rg (cf. (2.4)).

Hence, z is a fixed point, and in fact a unique one: If y € (B, rg
is another fixed point, i.e., T(y) = y, then one gets rg(z — y) =
rg(T(z) = T(y)) < arg(z —y) < rg(z —y), a contradiction. O

Scholium 2.3. A class of algebras E that have the spectral radius
a submultiplicative semi-norm is, for instance that one considered by
Arizmendi and Valov in [2], satisfying, what we may call, (A-V)
condition:

(A-V) re(z) = sup [Z(f)| = sup [2|(M(E)), =€ E;
feM(E)

thus, let alone the class of algebraically spectral algebras. Besides, in
the case that B is a subalgebra of E, the rg-completeness of B can be
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replaced by the rg-advertible completeness of B, in the sense that B,
endowed with the topology induced by rg, is advertibly complete. In
this respect, we note that (cf. Mallios [15, page 3, Proposition 1.4 and
page 4, Proposition 1.5])
in any algebra E, the spectral radius rg is a submultiplica-
tive semi-norm iff rg = qu, with qu the gauge function of
(2.6)  an a-barrel U (:absolutely convex, absorbing and multipli-
cative subset of F), while if, in addition, E is topological,

rg = qu 1s continuous iff U is a neighborhood of zero.

In that context, one can take now into account the characterization
of a Q-algebra, given by Tsertos [22, page 550, Theorem 4.1]; namely,
that

a topological algebra E is Q iff rg < qu, with qu the gauge

function of a neighborhood U of zero in E.
Thus in conjunction with (2.6), one concludes that

any topological algebra E, whose spectral radius rg is a
(2.8) ) L : )
continuous submultiplicative semi-norm, is a Q-algebra.

More generally,

any algebra E with rg a submultiplicative semi-norm is
a Q-algebra, relative to the topology induced on it by rg.
That is, (E, rg) is a semi-normed Q-algebra, hence, ad-
(2.9) vertibly complete, relative to rg; yet, in other words, E
is rg-advertibly complete. Thus, based on the comments
following (1.7), the spectrally zero elements of (E, rg)

are exactly the topologically nilpotent elements.

Remark 2.4. (A-V) condition implies that rg is a submultiplicative
semi-norm possibly extended-valued, but we actually work with ele-
ments x € E such that rg(z) < +00, which they form then a subalge-
bra of E. Concerning the statements (2.8), (2.9) and (2.10) we remark
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that an algebra E with rg a submultiplicative semi-norm becomes ei-
ther a topological Q-algebra endowed with topology induced from rg, or
if E is a topological one the continuity of rg renders it into a Q-algebra
under its own topology.

Specifically, one obtains the following result.

Theorem 2.5. In any algebra E consider the following assertions:
1) E is algebraically spectral.

2) E is algebraically quasi-inverse closed.

4

5) E is quasi plane in its rg-completion.

)
)
3) (E, rg) is a semi-normed Q-algebra.
) (E, rg) is advertibly complete.

)

6) (E, rg) is a Mallios algebra.

Then, one has the following relations:

1) < 2) = 3) = 4) < 5),
U
6)

If, moreover, (E, rg) is t-acceptable, then 6) = 2), while 4) = 2) in

—_~—

the case (E, 1) = E™® is a t-acceptable Mallios algebra.

Proof. 1)<=2) and 4)<=5) follows from [10, page 52, Theorem 2.5],
while for 3)==-4) and 3)=-6) see Mallios [15, page 45, Theorem 6.4
and page 67, Theorem 6.1].

2)=3): By 2)<=>1) one has that Spg(z) = Z(M (E)), which implies
that rg is a submultiplicative semi-norm, along with the continuity of
any character of E, relative to rg. Besides, by (2.9), one gets that
(E, rg) is a Q-algebra.

6)=—2): Assume that 1 ¢ Z(9(E)) and z ¢ E°. Then, z belongs to
a maximal regular ideal M of E, being also closed in view of 6), so,
by hypothesis, M is 2-sided. Thus, there exists f € 9M(FE) such that
M = Ker f. Being z an identity of £ modulo M, one has yz —y € M,
for every y € E, hence f(z) = 1, a contradiction.
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4)=2): Assuming 4), let 1 ¢ Z(9M(F)), with « ¢ E°. Then, since
4)<=>5), one has that = ¢ (E7=)°; thus, [15, page 65, (6.2)] z belongs
to a maximal regular ideal M of ETE, being also an identity of ETE
modulo M. Since E" is a Mallios algebra, M is closed, hence 2-sided,
in view of the hypothesis that E"Z is t-acceptable. Besides, the semi-
normed algebra E"F is Gelfand-Mazur, so there exists ¢ € IM(E"E),

with M = Ker ¢, and since yx —y € M, for every y € E"E, one
has ¢(z) = 1. Thus, there exists f € MM(E), such that f(z) =1, a
contradiction, therefore z € E°, implying 2). o

In toto, one concludes, by the preceding, that:

an algebraically spectral algebra E is made into a topo-
logical algebra, in the topology induced from the spectral
(2.10) radius rg, the latter becoming then automatically a sub-
multiplicative semi-norm. Moreover, any character of
(E, rg) is continuous, while the same algebra also has

the Q-property.

As a consequence of the previous discussion, one obtains the following
results.

Theorem 2.6. Let E be an algebra having the spectral radius g a
submultiplicative semi-norm. Then, any rg-contraction T on (E, rg),
with

(2.11) rg(T"(0)) =0, neN,

(that is, T™(0), n € N, is a spectrally zero element), has a unique fized
point.

Proof. As in the proof of Theorem 2.2, taking 0 # xo € (F, rg), the
rg-Cauchy sequence (z,)nen of iterates in (E, rg) is rg-advertibly
null, for y = 7™(0), with rg(7"(0)) = 0, in the following sense

yox, —0<+—z,0y.
TE TE
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Indeed, for € > 0, one has

(2.12) _ re(T"(z0)) = re(T"(z0) — T"(0) + T"(0))

< rp(T"(zo) — T7(0)) + re(IT7(0))

and similarly z,, oy — 0, where a € (0, 1). Since, in view of (2.9),
TE
FE is rg-advertibly complete, there exists z € E, with z,, — z and

rE
yoz=zoy = 0. The element z is the desired unique fixed point of T,
according to the proof in Theorem 2.2. ]

An immediate consequence of the preceding is the next.

Corollary 2.7. Let E be an algebra with spectral radius rg a
submultiplicative semi-norm and F an advertibly complete subalgebra
of E. Then, any rg-contraction T on F, such that (2.11) holds true,
has a unique fized point.

Based on Theorems 2.5, 2.6 and the fact that a closed subalgebra of
an advertibly complete algebra is of the same type (cf. Warner [23,
page 3, Proposition 2] and/or Hadjigeorgiou [10, page 54, Corollary
2.9]), one concludes the next result. In this context, given an element
x € E, we denote by

E(z)"" = (E(z), rp) C (E, ),

the least closed subalgebra of (E, rg) containing z.
Corollary 2.8. Let E be an algebra with spectral radius rg a sub-

multiz;licative semi-norm and x € E. Then, any rg-contraction on
E(x) °, satisfying (2.11), has a unique fized point.

Remark 2.9. Referring to the fixed point in all the previous theorems,
we note that it is attained by the convergence of some sequence of
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iterates plus the inequality of the contraction 7. Thus, it lies in the
completion of a vector subspace of the algebra involved (cf. Theorem
2.2), or, avoiding the completion, in an advertibly complete subalgebra
of it (cf. Corollaries 2.7, 2.8). In fact, in the second situation we
actually need a subset of the algebra having some kind of algebraic
structure; precisely, it is closed for the ring multiplication and for a
scalar multiple of the addition, multiplication and the g-operation (see
(3.7) in Theorem 3.4).

3. Quasi-square root lemma in topological algebras. The well-
known “Square Root Lemma” of Ford (cf. [5] and Bonsall-Duncan [3,
page 44, Proposition 13|, referred to Banach algebras, was generalized
by Sterbovd [21, Theorem 3.9] in 1980 for complete locally m-convex
algebras, by employing the classical result of Ford to the Banach factors
of an L.m.c. algebra. After a careful look at the proof, we remark that
we can avoid completeness and local m-convexity, by working with the
spectral radius, as a submultiplicative semi-norm, in the completion of
an appropriate subspace of the given algebra. For the previous extension
of Square Root Lemma, we shall make use of a generalized form of
“Fized Point Theorem,” cf. Remark 2.9. In this regard, by a quasi
square root of an element a € F, we mean an element x € F, such that
rox =a.

Theorem 3.1 (Quasi-square Root Lemma). Let E be a metriz-
able topological Q-algebra and x € E, withrg(x) < 1. Then there exists
a unique quasi-square root y € E(z) (completion of E(z) C E) of z,
such that rg(y) < L.

Proof. Assuming that d is the metric defining the topology of the
algebra E, then, by the Q-property and (2.7), we have rg < ¢g_, with
S ={x € E:d(z, 0) = |z| < £}. So, we may suppose that |z| < a < 1,
and consider in the completion of the subalgebra E(z) of E the closed
subset:

——

(3.1) B={z€ E(z):d(z 0)=|z| < a}.

Now, setting

(3.2) T:B—)B:z»—)T(z)::%(x—i—zz),
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—_—~

since the elements of F(z) commute with each other, one obtains

d(T(2), T(w)) = |T(z) = T(w)| = % (2" +z—2—w’)

IN

Lt wllz—w| < 2 2alz—wl
22 wI|z w_2azw

= ad(z, w),

for any z, w € B, that is, T is a contraction on the complete metrizable
space B. By the “Fized Point Theorem” (cf. (2.3)), there exists a

——

unique y € B C E(z), such that T(y) = y, hence (z +y?)/2 =y &
2y—y? =z & yoy =z, with rg(y) < |y| < 1, proving the assertion. O

Corollary 3.2. In a topological Fréchet Q-algebra E, any z € E,
with rg(x) < 1, has a unique quasi-square root y € E(z), such that
re(y) < 1.

Since a semi-normed space is a pseudo-metric space, a direct conse-
quence of the preceding, along with (2.9), is the next.

Corollary 3.3. Let E be an algebra having the spectral radius
rg a complete submultiplicative semi-norm (: the topological algebra
(E, rg) is complete) and x € E, with rg(z) < 1. Then, there exists a

unique quasi-square root y of x in E(x) TE, such that rg(y) < 1.

On the other hand, based on Corollary 2.7, the previous result holds
true, without the “completeness of rg.” Thus, one gets

Theorem 3.4 (Quasi-Square Root Lemma). Let E be an algebra
having the spectral radius rg a submultiplicative semi-norm and x € E,
with rg(x) < 1. Then, there exists a unique quasi-square root y of © in
mm, with rg(y) < 1, where y is the fized point of a contraction T,
provided the latter map satisfies the relation rg(T™(0)) =0, n € N.

Proof. We may suppose that rg(z) < a < 1, and consider the closed
subset of E(z) "
— g

(3.4) B ={z€ E(x) rg(z) < a}.
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Now, setting

(3.5) T:B-—B:zr—T(z):= %(x—}—zZ),

since the elements of F(z) " commute with each other, one obtains

re(T(z) — T(w)) =1 <%(z2 +x—x— w2)>
(3.6) < %TE(z—i—w)rE(sz)
< %QarE(z —w)
=arg(z —w),

that is, T is an rg-contraction on the set B. However, the set B has
the following “algebraic structure”; namely,

it contains zero and is closed for the following operations:
i) the ring multiplication,
(3.7) ii) the multiplication by a scalar k, with || < 1,
iii) any sum multiplied by A, with |\| <1/2, and
iv) the g-operation multiplied by p, such that |u| < 1/3.

Indeed, rg(0) = 0 < «, while for z, w € B, one has rg(zw)
re(z)re(w) < o < a, rg(kz) < |&lre(z) < o, re(A(z + w))
Al (re(2) + re(w)) < 20/2 = o, and rE(p(z 0 w)) < |pu|(re(z) +
re(w) + re(zw)) < (2a+ a?)/3 < 3a/3 = a. Therefore, B appears to
be a, so to say, “advertibly complete” subset of E(x) TE, a reminder
of the situation one has in [10, page 54, Corollary 2.9]. So one
can further apply the “Fized Point Theorem” (cf. Corollary 2.7 and
Remark 2.9) to get a unique y € B, such that T'(y) = y; hence,
(r+y?)/2 =y < 2y—y? = x <= yoy = x, proving the assertion. O

ININ

4. Lifting of idempotents in topological algebras. The “Lifting
of Idempotents Theorem” provides an idempotent element for a given
algebra F from a similar element of the quotient algebra E/rad E,
where rad E' denotes the topological Jacobson radical of E. This is
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known for E a unital commutative Banach algebra (cf. Rickart [19,
page 58, Theorem 2.3.9], Zelazko [24, page 97, Lemma 20.3]), for a
non-unital non-commutative Banach algebra (see Bonsall-J. Duncan [3,
page 44, Theorem 14]) and for a commutative complete L.m.c. algebra
by Mallios [16, page 306]. For the proof one applies the “Quasi-square
Root Lemma,” along with two basic properties, that characterize rad E:
the first one in terms of the so-called “topologically nilpotent” elements,
the second by means of the quasi-invertible elements; in other words,
one has

radE ={z € E:rg(z) =0}
= ker(rg)
={zeFE:yvcE°VYyeckE}
={zxcE:Ex CE°}

(4.1)

(cf. Zelazko |24, page 54, (12.8.1), Definition 12.8 and Theorem 12.9]
as well as Bonsall-J. Duncan [3, page 125, Proposition 16 and page
126, Proposition 1], Larsen [14, page 83, Theorem 3.5.1]).

Here we extend the previous results in the framework of a topological
algebra, in general, by considering in place of the topological Jacobson
radical rad E of E the “Gel’fand radical” of E, ker(Gg) = ker(MM(E)) =
nfeim(E) ker f. (The latter terminology has been coined by Mallios.)
Obviously, the two radicals coincide in every commutative Banach
algebra and, more generally, in any commutative advertibly complete
l.m.c. algebra (cf. Fragoulopoulou [6, page 51, Lemma 9.6, (i)], along
with Mallios [15, page 104, Corollary 6.5, and page 201, Definition
3.1]). As already mentioned,

(A-V) condition renders the spectral radius rg, of
an algebra E, a submultiplicative semi-norm and
the algebra E a semi-normed Q-algebra under the
(4.2) topology induced by rg (see (2.9)). It also charac-
terizes the kernel of the Gel’fand map Gg
(:“Gel’fand radical’ of E), as the set of the
topological nilpotent elements; that is, one has

(4.2.1)
ker(Gg) = {x € E : rg(z) = 0} = ker(rg).
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If, moreover, E is algebraically (equivalently topologically, under the
topology of rg) spectral, then, apart from the (A-V) condition and
relation (4.2.1), E shares also the following two properties:

(4.3) zeE° if 1¢Z(OM(E)),

being in fact equivalent with the topological spectrality of E (cf. Hadji-
georgiou [10, page 52, Theorem 2.5]), and also

ad ker(Gg) ={x € E:yz € E°Vyec E}
(4.4) ={z€eE:ExC E°}=B.

Indeed, if = € ker(Gg), then, for every f € OMM(E) and y € E we
have f(yz) = f(z)f(y) = 0 # 1; hence, by (4.3), yz € E°, that is
ker(Gg) C B. Conversely, if z ¢ ker(Gg), then, there exists g € M(E),
such that g(z) # 0, that is, « ¢ ker g, where g is now considered as a
continuous irreducible representation of E in C = E(C). Thus, there
exists A € C, with A = g(z)A # 0, hence (cf. Bonsall-Duncan [3, page
120, Proposition 4, (iii)], X is a cyclic vector. Therefore, there exists
y € E, such that yzA = A < g¢(yz) = 1, so, according to (4.3),
yx ¢ E°, i.e., z ¢ Bproving (4.4).

Theorem 4.1 (Lifting of Idempotents theorem). Let E be an
algebraically spectral algebra and x € E an idempotent, modulo the
Gel’fand radical, ker(Gg). Then, there exists a unique idempotent in
E, which is equal to x, modulo ker(Gg). In other words, if x € E, with
2z = 0, then, there exists a unique y € mm Nker(Gg) C E,
such that (x +y)? =z +y.

Proof. We consider the closed subalgebra of E(z) "

F=E() * Nker(Gg) = E(x) © Nker(rg)

45 -
(4.5) ={z€ E(z) " :rg(z) =0},

—

being also a closed 2-sided ideal. Since z2 —x = 0, one also gets that
4(z2 — z) = 0; hence, by (4.2.1), rg(4(z? — x)) = 0 < 1, therefore,
1 ¢ u(M(E)), where u = 4(z? — z), hence u € E° (cf. [10, page 52,
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Theorem 2.5]). In fact, one has that « € F°: The semi-normed algebra
(E, rg) is Q, due to the continuity of rg (cf. (2.9)), hence advertibly
compete, along with its closed subalgebra F'. But, F', as a semi-normed
advertibly complete algebra, is still a Q algebra (see e.g., Warner [23,
page 8, Theorem 7]), hence, by (2.6) and (2.7), one gets that rp < rg,
which, along with the basic relation rg < rp, implies the coincidence
of the spectral radii, that is,

T =TF.

So, rr(u) = rg(u) = 0 < 1, yielding that 1 ¢ wW(M(F)); therefore
u € F°, since F, as a commutative semi-normed algebra, is equivalently
topologically spectral (cf. [10, page 52, Lemma 2.2 and Theorem 2.5]).
Hence, there exists w € F, with rp(w) = rg(w) = 0 < 1, such that

(4.6) 4(z% —z)ow =wod(x? —x) =0,

and by applying the “Quasi-square Root Lemma” for F, there exists a
unique z € F, with z 0 z = w. Since x and z are commuting elements,

one has (cf. also (4.6))

(4.7) [(22) 0 2)] o [(27) 0 2] = (29620( z) o (ZOZ)

where (2z) 0 z = 2(x + y), with
1
(4.8) y:§z—xzeF,

a unique element of F', due to the uniqueness of z. By (4.7), one obtains
0=2(z+y)o2(z+y)=4(z+y— (z+y)?), thus, (z+y)* =z +y,
that is the assertion. O

Scholium 4.2. An application of the “Lifting of Idempotents The-
orem” appears in the “Silov’s Idempotent Theorem”, see [11], [12,
Section 10], where an idempotent element is obtained in E™. There-
fore (see also [11, page 175, (3.5)]), the same goes to the quotient
algebra FE/ker(Gg), in the case of a topological algebra E, with
M(E) . ~ IM(E") (take, for instance, Gg continuous [9, page 136,

omeo



IDEMPOTENT LIFTING IN TOPOLOGICAL ALGEBRAS 1237

Theorem 3.1]) and E" complete (take, for instance, E local with lo-
cally equicontinuous spectrum [17]). On the other hand, by Theorem
4.1, one gets already an idempotent in E itself, if moreover E is alge-
braically spectral. In the latter case one really economizes the condition
M(E) = 9M(EN), since then F is a Q-algebra, having thus MM(E)

homeo
equicontinuous, so Gg continuous, therefore, the previous identification

(cf. [9, page 136, Theorem 3.1] along with [15, page 75, Proposition
7.1 and page 184, Theorem 1.2]).

Scholium 4.3. The proof of the “Lifting of Idempotents Theorem”
is based on the “Fized Point Theorem”, following its classical version
for Banach algebras (cf. [3, page 44, Proposition 13, Theorem 14]).
Now this is based on the notion of “contraction”, defined in terms of a
(pseudo-)metric, rendering also, by the very definitions, the aforesaid
map continuous, with respect to the topology of the same pseudo-metric
at issue. Therefore, the motive to consider such a topology too on the
algebra we work, which thus was for us the topology of the spectral
radius, the latter being also suitably restricted, concerning the algebra
structure. So the chosen in this manner framework, immediately
suggests now the question (Mallios), whether the same context works
with an arbitrary “algebra semi-norm?”, or even, more generally, for
an lL.m.c. (topological) algebra: Indeed, in the case of a semi-normed
(topological) algebra one gets the “Lifting of Idempotents Theorem”
when, in particular, the said algebra is also topologically spectral and
advertibly complete. As a corollary (see also [15, page 104, Corollary
6.4] and/or [10, page 52, Lemma 2.2]), one gets the same theorem
for a commutative advertibly complete semi-normed algebra. In the
more general case of an l.m.c. algebra, one has to suitably adjust the
definition of a “contraction in terms of a family of semi-norms”, as
well as, that one of relation (2.11). So one defines an endomorphism 7'
of an L.m.c. algebra (E, {patacr) to be a contraction uniformly w.r.t.
T, if there exists a real number A € (0, 1), such that

Pa(T'(z) = T'(y)) < Apalz —y), for any z,y € Eand a € T,
while (2.11) takes the form,

po(T"(0)) =0, a€T, neN.
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Thus, one obtains the “Lifting of Idempotents Theorem” for a topolog-
ically spectral advertibly complete l.m.c. algebra; hence, a fortiori, for
a commutative advertibly complete l.m.c. algebra, extending thus a rel-
evant previous result of Mallios for such complete algebras [16, page
306].

In this context, we still remark that for the analogous adjustment of
Theorem 3.4 ( “Square Root Lemma”) that intervenes in both the above
two cases, concerning, in particular, the boundedness of the square root,
through that one spectral radius, one can apply [15, page 99, Theorem
6.1] and [7, page 64, Lemma 5.3 and remarks after it].
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