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WHEN RADICAL OF PRIMARY SUBMODULES
ARE PRIME SUBMODULES

A. AZI71

ABSTRACT. If R is a commutative ring with identity, then
the radical of a primary ideal of R is a prime ideal of R. We
will try to study and generalize this property to modules. It is
proved that if one of the following holds, then for any primary
submodule @ of an R-module M, we have rad @ = M or rad @
is a prime submodule of M.

(1) R is a ZPI-ring, an almost multiplication ring, an
arithmetical ring with locally ACC on principal ideals, or a
ring with DCC on principal ideals.

(2) M is a special module, a secondary representable mod-
ule, a module with DCC on cyclic submodules, or a module
with DCC on the submodules of the form {r™M | n € N}, for
each r € R.

1. Introduction. Throughout this note, all rings are commutative
with identity and all modules are unitary. Also we consider R to be a
commutative ring with identity and M a unitary R-module.

For a submodule N of M, the set {r € R | rM C N} is denoted by
(N : M). If N is a proper submodule of M such that (N : M) = P and
rm € N, r € R, m € M implies either m € N or r € P, then the ideal
P will be a prime ideal of R, and we say N is a P-prime submodule of

M. Prime submodules are generalizations of prime ideals (see [2, 3, 6,
8-13]).

Recall that a proper submodule IV of M is called a primary submodule
if for each r € R and m € M, the condition 7m € N implies either
meNorr e /(N:M), where /(N: M)={t€ R|IneN, t"
(N: M)}

If N is primary submodule, then P = /(N : M) is a prime ideal of R:
for st € P with t ¢ P, there is an integer k > 1 such that (st)*M C N,
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but for each n > 1 there is an m € M such that t"m ¢ N. Thus for
some b € M, t*b ¢ N which implies s* € P. Hence s € P.

For a submodule B of M, the intersection of all prime submodules of
M containing B is called the radical of B and it is denoted by rad B (or
radys B). If no prime submodule of M contains B, then rad B = M.

In this paper, we will try to establish the conditions by which the
radical of a primary submodule @ is a prime submodule, if rad Q # M.
This subject has been studied in [9, 12].

In Section 2, we will study the rings R such that for every R-module
M and every primary submodule Q) of M, rad () is a prime submodule
whenever rad Q # M.

In Section 3, we put the conditions on modules to get the same result.

2. When the radical of every primary R-module is prime. In
[9, Theorem 1.3], it is proved that if R is an integral domain of Krull
dimension one, then the radical of any primary submodule @ of M
is a prime submodule of M or rad Q = M; particularly this property
holds for every Dedekind domain. In this section we will show this
property for some generalizations of Dedekind domains such as ZPI-
rings, almost multiplication rings and arithmetical rings with ACC on
principal ideals.

Lemma 2.1. Let M be an R-module and N a proper submodule of
M. Then

(i) If (N : M) is a mazimal ideal of R, then N is a prime submodule
of M.

(ii) If there exists a prime ideal P of R such that (T : M) = P,
for all prime submodules T of M containing N, then rad N is a prime
submodule of M orrad N = M.

(iii) Let M be a finitely generated R-module. If (N : M) C P, where
P is a prime ideal of R, then there exists a P-prime submodule of M
containing N .

(iv) /(N : M) C (rad N : M).
Proof. The proofs of parts (i) and (ii) are clear.
(iii) See [3, Lemma 4], or [8, Theorem 3.3].
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(iv) Let t € /(N : M). Then for some positive integer n, t" € (N :
M). If no prime submodule of M contains B, then rad B = M, and
therefore /(N : M) C R= (rad N : M).

Otherwise t"M C N C T, for every prime submodule T of M
containing N. Then t" € (T : M), and since (T : M) is a prime ideal,
te(T:M). SotM C T, for every prime submodule T containing N.
Thus tM Crad N, that is, t € (rad N : M). o

Note. Let M be an R-module.

(a) According to Lemma 2.1 (iii), if M is finitely generated, then for
any primary submodule Q of M, rad Q # M.

(b) If we consider M = Q, the set of rational numbers as a Z-module,
then it is easy to see that the only prime submodule of M is the zero
submodule (see [6, Theorem 1]). So for any non-zero submodule B of
M, we have rad B = M.

(c) There exists an R-module M such that the zero submodule is a
primary submodule, but rad0 = M (see [12, Example 1.6]).

(d) Let R be the polynomial ring Z[X] and consider M = R & R,
Q@ = R(2,X) + R(X,0). Then by [12, Example 1.11], @ is a primary
submodule of M and rad Q = (R&RX)N((R2+RX)®(R2+RX)). It is
easy to see that 2(1, X) € rad @, but (1,X) ¢ (R2+RX)® (R2+ RX),
and 2(1,1) ¢ R @ RX, which implies that rad@ is not a prime
submodule of M.

Proposition 2.2. Let Q be a submodule of an R-module M. If
one of the following holds, then rad Q is a prime submodule of M or
rad@Q = M.

(1) V(Q : M) is a mazimal ideal of R.
(ii) Q is a primary submodule of M, and \/(Q : M) =0 or +/(Q : M)

is a mazximal ideal of R.

Proof. (i) Let rad @ # M. By Lemma 2.1 (iv), 1/(Q : M) C (rad Q :
M) C (N : M), for each prime submodule N of M containing Q. So
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(Q: M) = (N : M). Therefore, rad Q is a prime submodule of M,
by Lemma 2.1 (ii).

(ii) Suppose that rad Q # M. If \/(Q : M) is a maximal ideal of R,
then by part (i), rad @ is a prime submodule of M.

Now let /(Q: M) = 0. In this case we show that @ is a prime
submodule of M, and then rad ) = @ is a prime submodule. Consider
re € , where r € R and ©z € M \ Q. Note that @ is a primary

submodule, then r € \/(Q : M) =0. Sor=0€ (Q: M). u]

Lemma 2.3. Let M be an R-module and S a multiplicatively closed
subset of R.

(i) If W is a Q-prime submodule of Ms as an Rg-module, then
We={xeM|z/1e W} isaQ°-prime submodule of M, (W€)s =W
and Q°NS =@.

(ii) If N is a P-prime submodule of M such that PN S = &, then
Ns is a Ps-prime submodule of Ms as an Rs-module and (Ng)¢ = N.

Proof. See [6, Proposition 1]. O

Lemma 2.4. Let M be an R-module, QQ a primary submodule of M,
and suppose that rr € rad ), where r € R and x € M\ Q. If P is

a prime ideal of R containing (Q : M) and r.1 € \/(Qp : /1), then
r € (rad@ : M).

Proof. Suppose that (r"/1)(z/1) € Qp, where n is a positive integer.
We have (r"z/1) = (q/s), where ¢ € @ and s € R\ P. Then for
some s € R\ P, ¢'sr"z = s'¢ € Q. Note that s's ¢ /(Q: M),
since 1/(Q : M) C P. Since @ is primary and z € M \ Q, r"z € Q
and consequently, r € /(@ : M). Thus r € (rad@ : M), by Lemma
2.1 (iv). ]

Theorem 2.5. Let R be a ring such that for each non-minimal
prime ideal P of R, the ring Rp is a domain of Krull dimension one,
and let M be an R-module. Then for every primary submodule Q of
M, rad@ = M orrad @ is a prime submodule of M.
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Proof. Assume that rad Q # M and rz € rad @), where » € R and
x € M\ rad Q. Since z ¢ rad @, there exists a prime submodule N of
M containing @ such that z ¢ N. So rz € rad@ C N implies that
re€ (N :M). Put (N: M) = P. If Pis a minimal prime ideal of
R, then (@ : M) C P implies that P = 1/(Q : M). Then by Lemma
21 (iv),re P=+/(Q: M) C (rad@ : M).

Now suppose that P is a non-minimal prime ideal of R. Since
(Q: M) C P, Qp is a primary submodule of Mp.

We have (r/1)(z/1) € (rad Q)p C Np and by Lemma 2.3 (ii), Np is
a prime submodule; then /1 € Np or r/1 € (Np : Mp).

If /1 € Np, then z € (Np)° = N, by Lemma 2.3 (ii), which is
impossible. Thus r/1 € (Np : Mp).

According to our assumption Rp is an integral domain of dimension
one, so /(Qp: Mp) = 0 or /(Qp: Mp) is a maximal ideal of Rp.

If \/(Qp:Mp) = 0, then Qp is a prime submodule of Mp. Hence
(Qp)° is a prime submodule of M, by Lemma 2.3 (ii). Also since Q is

a primary submodule of M with (Q : M) C P, we have Q = (Qp)°.
Then rad Q = @ is a prime submodule of M. So r € (rad Q : M).

If \/(Qp : Mp) is a maximal ideal of Rp, then since 1/(Qp : Mp) C

(Np:Mp),wehaver/le(Np:Mp): (QP:MP)-

Now from r/1 € /(Qp: Mp) C 1/(Qp : z/1) and Lemma 2.4, we
get r € (rad @ : M), which completes the proof. ]

In [5, Chapters VI and IX], some generalizations of Dedekind domains
such as ZPI-rings and almost multiplication rings are studied. Recall
that a ring R is said to be a ZPI-ring, if every proper ideal of R can
be written as a product of prime ideals of R.

Corollary 2.6. If R is one of the following rings, then for every
primary submodule Q of M, rad Q = M orrad Q is a prime submodule
of M.

(a) R is a ZPI-ring.

(b) R is an almost multiplication ring.



1050 A. AZ171

Proof. (a) According to the proof of [1, Theorem 3.7(ii)], for each
prime ideal P of R, Rp is a field or every non-zero prime ideal of Rp
is maximal.

Let P be a non-minimal prime ideal of R. Then dim Rp =ht P > 1,
and so Rp is not a field; consequently, every non-zero prime ideal of Rp
is maximal. Therefore if Rp is not an integral domain, then every prime
ideal of Rp is maximal, that is dim Rp = 0, which is a contradiction.
This shows that for any non-minimal prime ideal P of R, the ring Rp
is an integral domain of dimension one. Thus the proof is given by
Theorem 2.5.

(b) By [5, Theorem 9.23], for every prime ideal P of R, the ring Rp
is a ZPI-ring. So by the above argument, for any non-minimal prime
ideal P of R, the ring Rp is an integral domain of dimension one. Now
the proof is given by Theorem 2.5. o

Recall that a ring R is said to be an arithmetical ring, if for all ideals
I,J and K of R, we have I + (JNK) = (I +J)N (I + K) (see [4]).
Obviously Priifer domains, valuation rings, and Dedekind domains are
arithmetical.

Lemma 2.7. A ring R is arithmetical if and only if for each prime
ideal P of R, every two ideals of the ring Rp are comparable.

Proof. See [4, Theorem 1]. O

Lemma 2.8. Let R be a valuation domain with a height one prime
ideal P = v/ Rr, where r € R. If M is an R-module and © € M, then
the following are equivalent.

(i) r ¢ VAnnz.
(ii) Annraz = 0.

Proof. (i) = (ii). Consider s € Annrz. If for some k € N, Rr* C Rs;
then r*+1z = 0, which is impossible. Hence Rs C I = N,cnRr™.

According to [2, Lemma 2.3 (ii)], I is a prime ideal or r is a nilpotent
element of R. Note that R is an integral domain; then I is a prime
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ideal contained in vV Rr = P, and since ht P = 1, we have I = 0.
Consequently Rs = 0. o

In the following, we will say that R is a ring with locally ACC on
principal ideals, if for each maximal ideal m of R, the ring R,, has
ACC on principal ideals.

Theorem 2.9. Let Q be a primary submodule of an R-module M,
where R is an arithmetical ring with locally ACC on principal ideals.
Then rad Q@ = M orrad Q is a prime submodule of M.

Proof. One can easily prove the following.
(1) Q/Q is a primary submodule of the R-module M/Q).

(2) rady/q Q/Q = (rady Q)/Q.

(3) radps Q is a prime submodule of the R-module M if and only if
(radps Q)/Q is a prime submodule of the R-module M/Q.

Hence by passing from the module M to the module M/Q, we may
suppose that @ = 0 is a primary submodule of M. Then let rz € rad 0,
where r € R and x € M \ rad0. Let P be a maximal ideal of R
containing (0 : M).

Put I = NpenRp(r™/1). First we show that I = 0.

According to our assumption Rp has ACC on principal ideals. We
will show that Rp is a Noetherian ring.

Let I; C I C I3 C --- be a chain of ideals of Rp. For each j > 2,
consider z; € I; \ I;_;.

By Lemma 2.7, every two ideals of Rp are comparable, and if
Rpzji1 € Rpxj, then z;.1 € I;, which is impossible, so Rpz; C
Rpxj1. Since the chain Rpzy C Rprs C Rpxs C --- stops, the chain
I, C I C I3 C -+ must stop.

Now since Rp is a local Noetherian ring, by Krull intersection
theorem, I = 0.

Consider the Rp-module Mp. Obviously the zero submodule Op is a
primary submodule of Mp and (rz)/1 € radp, Op. If r/1is a nilpotent
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element of Rp, then obviously r/1 € 4/(0p: /1), and the proof is
given by Lemma 2.4. Now suppose that r/1 is a non-nilpotent element
of Rp. We show that Rp is a valuation domain with ht \/Rp(r/1) = L.

Every two ideals of Rp are comparable; then the radical of each
proper ideal of Rp is a prime ideal. Particularly the nilradical ideal
of Rp, N(Rp) = /0 is a prime ideal. Note that r/1 ¢ N(Rp),
then N(Rp) C NpenRpr™/1 = 0, that is, Rp is an integral domain.
Also y/Rpr/1 is a prime ideal. Let P” be a prime ideal of Rp
with P” C \/Rp(r/1). Then for each n € N, r"/1 ¢ P”, and so
P’ C NpenRp(r™/1) = 0. This shows that ht /Rp(r/1) = 1.

Now if /1 € /(0p : /1) = y/Ann (z/1), then the proof is given
by Lemma 2.4. Otherwise from Lemma 2.8, we get Ann (rz/1) = 0.
Consequently (0p : Mp) = 0, and since Op is a primary submodule
of Mp, Op is a prime submodule of Mp. Hence 0 = (0p)° is a prime
submodule of M, and so in this case rad0 = 0 is a prime submodule
of M. ]

3. Modules for which radical of primary submodules are
prime. According to [10], an R-module M is called special if for any
maximal ideal m of R and any r € m, x € M, there exist a positive
integer n and an element ¢ € R \ m such that cr”z = 0.

Proposition 3.1. Let M be a special R-module and @Q a primary
submodule of M. Then

(i) V/(Q : M) is a mazimal ideal of R.
(ii) rad @ is a prime submodule of M orrad@Q = M.

(i) If R is a local ring, then for every submodule B of M, rad B is
a prime submodule of M orrad B = M.

Proof. (i) Let m be a maximal ideal of R containing 1/(Q : M) and
x € M\ Q. Since M is a special module, for any arbitrary element
r € m there exist a positive integer n and an element ¢ € R \ m such
that cr"x = 0. Now c¢r"z = 0 € Q and @ is a primary submodule of

M,sore/(Q: M), that is, m = /(Q : M).

(ii) The proof is given by part (i) and Proposition 2.2 (i).
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(iii) Let m be the only maximal ideal of R. If rad B # M, then there
exists at least one prime submodule of M containing B. According to
part (i), for every prime submodule N of M containing B, we have
(N : M) =m. Thus by Lemma 2.1 (ii), rad B is a prime submodule of
M. o

Definition. An R-module M will be called strongly special if for any
maximal ideal m of R and any r € m, there exist a positive integer n
and an element ¢ € R\ m such that er”M = 0.

Obviously every strongly special module is a special module.

Proposition 3.2. Let M be a non-zero R-module.

(i) If R/(Ann M) is a zero dimensional ring, then M is a strongly
spectal R-module.

(ii) Let M be a finitely generated R-module. Then the following are
equivalent.

(1) R/(Ann M) is a zero dimensional ring.
(2) M is a strongly special R-module.
(3) M is a special R-module.

Proof. (i) Let m be a maximal ideal of R and r € m. First let
Ann M = 0. Consider the localization ring Ry,. Since dim R = 0, the
ideal (m)y, is the only prime ideal of the ring Ry,, and so N (Ry,) =
(m)m, where N (Ru) is the set of nilpotent elements of the ring Ry,.
Note that 7/1 € (m)m = N (Rm). Then there exists a positive integer
n such that /1 = 0. Thus there exists an element ¢ € R\ m such
that c¢r™ = 0, and hence cr™"M = 0.

Now consider the general case. If Ann M ¢ m, then for each
¢ € AnnM \ m and any r € m, we have crM = 0. Otherwise
m/(Ann M) is a maximal ideal of the ring R/(Ann M) and r+Ann M €
[m/(Ann M)]. Consider M as an R/(Ann M)-module. By the first
case, there exists an element c+Ann M € [R/(Ann M)]\ [m/(Ann M)]
such that (¢ + Ann M)(r + Ann M)"M = 0. Consequently ¢ € R\ m,
and cr™M = 0.
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(ii) (3) = (1). Let P be the prime ideal of R containing Ann M, and
consider m to be a maximal ideal of R containing P. We show that
m = P.

Suppose that M is generated by x1,x2,z3,...,Tx. Since M is
a special module, for any arbitrary element r € m there exist a
positive integer n; and an element ¢; € R\ m such that ¢;r™z; = 0,
for each 1 < i < k. Therefore cicocs---cpr™x; = 0, where n =
max{ny,ng,ns,... ,nk}, for each 1 <1i < k. Then cycacg - cpr"M =
0, that is, cicacz---cxr™ € Ann M C P. Now since P is a prime ideal
and for each i, ¢; ¢ P, r € P. That is, m = P. o

Corollary 3.3. Let M be a finitely generated special R-module and
Q@ a submodule of M such that (Q : M) is a primary ideal of R. Then

(i) V/(Q : M) is a mazimal ideal of R.
(ii) rad Q is a prime submodule of M.

(i) If R is a local ring, then for every proper submodule B of M,
rad B is a prime submodule of M.

Proof. (i) By Proposition 3.2 (ii), R/(Ann M) is a zero dimensional
ring and since 1/(Q : M) is a prime ideal of R containing Ann M,
(Q : M) is a maximal ideal of R.

(ii) Note that (Q : M) C \/(Q : M), where 1/(Q : M) is a maximal
ideal of R. Then by Lemma 2.1 (iii), there exists a prime submodule
of M containing @, that is, rad @ # M. Since 1/(Q : M) is a maximal
ideal of R, @ is a primary submodule of M. Now the proof is completed
by Proposition 3.1 (ii).

(iii) Let P be a prime ideal of R containing (B : M). By Lemma
2.1 (iii), there exists a P-prime submodule of M containing B. Then,
rad B # M. Now the proof is completed by Proposition 3.1 (iii). i

Recall that an R-module 0 # S is said to be a P-secondary module,
if for eachr € R, 7S =S orr e P=,/(0:5). A minimal secondary
representation of an R-module M is an expression of M as a finite sum
of P;-secondary submodules S;, that is, M = S; + So + S3+---+ S,
such that P, Ps, Ps,---, P, are all distinct. If M has a secondary
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representation, then it is said that M is a secondary representable
module (see [7, Section 6]).

Lemma 3.4. Let Q be a primary submodule of M such that
M = Ele S; + Q, where S; is a submodule of M, for each i. If
Sy is a Py-secondary module with S1 € Q, then P = 1/(Q : M).

Proof. Let t € P, = 1/(0:S1). Then, for some positive integer m,
tmS; =0 C Q. We know that S; Z Q, so t € \/(Q : M).

Now assume that r € \/(Q : M). Then, for some positive integer n,
r"(Zle Si +Q) = r"M C @Q, and this implies that r™S; C Q; and
note that S; € @ and S is a secondary module, then ™57 # S;. Thus
r™ € 4/(0:S1) = Py, and evidently r € P;. o

Theorem 3.5. Let M be a secondary representable R-module. Then,
for every primary submodule @ of M, rad Q = M orrad @ is a prime
submodule of M.

Proof. Assume that rad Q # M and rz € rad @), where » € R and
€ M.

Let M = Zle Si + > i1 Si, where for each i, 1 < i < n, S; is
P;-secondary, and for 1 < ¢ < k, rS; = S; and for k+1 < ¢ < n,
r € 4/(0:S5;) and assume that Py, P,..., P, are all distinct. Then
for each £ + 1 < i < n, there exists a positive integer n; such that

r™iS; =0 € @, and since @ is a primary submodule, r € 1/(Q : M) or
S CQ.

If, for some i, k+1 <i<n,S; £ Q, then r € 1/(Q: M), and in
this case Lemma 2.1 (iii) applies to show that r € 1/(rad @ : M), which
completes the proof. Therefore, we may suppose that S; C @, for each
E+1<i<n.

Hence, M = Zle S; + Q. Suppose that k' < k is a positive integer
such that for each i, 1 <i < k', S; € Q, and for each ¢, k' +1 < i <k,
S; € Q. Then M = Zle S; + @, and Lemma 3.4, shows that
P1 = (Q . M)
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Applying Lemma 3.4, will also show that for each i, 1 < i < &/,
P, =+/(Q: M) and since Pi, P, ..., Py are distinct, ¥’ = 1. Hence,
M=5+Q.

Now let N be an arbitrary prime submodule of M containing Q). We
will show that (N : M) = P;.

If Sy C N, then M = S; +Q C N, which is impossible, so S; € N.
Also M =54+ @Q C Sy + N, that is, M = S; + N. Putting Q = N, in
Lemma 3.4, implies that P, = /(N : M) = (N : M).

Now according to Lemma 2.1 (ii), rad @ is a prime submodule of
M. o

Theorem 3.6. Let M be an R-module and @ a primary submodule
of M. Thenrad Q = M orrad @ is a prime submodule of M, if one of
the following holds.

(i) M has DCC on cyclic submodules.
(ii) For any r € R, the chain {r"M | n € N} stops.
(iii) For any r € R, the chain {Rr™ | n € N} stops.

Proof. (i) Suppose that rad @ # M and rz € rad Q, where r € R
and z € M \rad@. Then there exists a prime submodule N of M
containing @) such that « ¢ N. Put P = (IV : M) and consider the
Rp-module M,.

Evidently (r/1)(z/1) € (radQ)p C Np. If (r/1) ¢ Pp, then r/1
is a unit in the ring Rp, and so z/1 € Np. Then z € (Np)°¢, and
(Np)¢ = N, by Lemma 2.3 (ii). So z € N, which is a contradiction.

Therefore r/1 € Pp. It is easy to see that the Rp-module Mp also
has DCC on cyclic submodules (see [2, Lemma 2.6]). Now consider the
following chain of cyclic submodules of Mp,

7‘31' 7'233‘ rr

TQRP C Rp—.

... C i
< Rp 1 1

Then there exists a positive integer n such that

rix e Pty
— € Rp— =R .
1 ST P
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So there exist t € R and s’ € R\ P, with

re g

1 s

r" rt\ x
—(1—-——=)==0.
1( s’)l 0

Note that (rt)/s’ € Pp; then 1 — (rt)/s’ is a unit in Rp, and so
(r*/1)(z/1) = 0 € Qp, that is, /1 € +/(Qp:x/1). Hence, by
Lemma 2.4, r € /(rad Q : M).
(ii) and (iii) For the proofs of parts (ii) and (iii), let NV be an arbitrary
prime submodule of M containing . Obviously /(rad@ : M) C
(N:M)=(N:M). By Lemma 2.1 (ii), it is enough to show that
(N:M)C +/(rad@ : M).

On the contrary, suppose that r € (N : M) \ \/(rad @ : M), and let
m € M\ N.

If the chain {r"M | n € N} stops, then there exists a positive integer
k with r*m € r*M = r**1M. So there exists an m’ € M such that
r*(m —rm'’) =0 € Q. Then m —rm’ € Q C N and rm’ € Nj; thus,
m € N, which is a contradiction.

and hence

If the chain {Rr™ | n € N} stops, then there exist a positive

integer ¥’ and an element ¢ € R such that rh = kL Thus,
r*(m —rtm) =0€ Q. Som —rtm € Q C N and, since rtm € N, we
have m € N, which is impossible. o

Acknowledgments. [ would like to thank the referee for many
helpful suggestions and especially for his comments on Corollary 2.6,
Lemma 2.8 and Theorem 2.9.
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