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ABSTRACT. Generalizing the well known mean-value prop-
erty of harmonic functions, we prove that a p-harmonic func-
tion of two variables satisfies, in a viscosity sense, two asymp-
totic formulas involving its local statistics. Moreover, we show
that these asymptotic formulas characterize p-harmonic func-
tions when 1 < p < co. An example demonstrates that, in
general, these formulas do not hold in a non-asymptotic sense.

1. Introduction. A fundamental and fascinating fact about
harmonic functions is their characterization by the mean value property
[4]: the continuous function u is harmonic in the domain @ c RY if
and only if

(1) u(x) :][ u(s)ds :][ u(y)dy for each z € Q,
OB, (x) Br(x)

where B, (z) € Q is a ball with center z and radius r > 0, 9B, (z)
is its boundary, and pf denotes the average of f over the set E.
Ostensibly, identity (1) says nothing about derivatives and could be
studied entirely within the category of continuous functions. It is the
prototypical statistical characterization of solutions of a PDE, and it
is natural to wonder if this is peculiar to Laplace’s equation. In other
words, can one characterize solutions of other PDEs in a statistical way
that avoids any explicit mention of derivatives?

Recent work shows that such statistical characterizations exist, in a
certain sense, for p-harmonic functions, i.e., solutions of the quasilinear
PDE

(2) —Apu = —div (|DulP~?Du) =0, for 1< p < oo.
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More precisely, p-harmonic functions are usually defined to be weak
solutions of (2); thanks to work by Juutinen et al. [8], however, weak
solutions of (2) are the same as viscosity solutions of (2). Viscosity
techniques are particularly relevant to the present work, as Manfredi
et al. [10] used such methods to prove that the continuous function
u is p-harmonic in the domain Q C RY if and only if the functional
equation

(3) u(x):a{maxu—i—mmu}—i—ﬁ][ y)dy +o(s?) ase—0
($) B,

holds in the viscosity sense for all x € 2. The constants o and 3 are
determined by the exponent p and the dimension V:

p—2 2+ N
= and = .
p+N 8 p+N

This characterization also holds for co-harmonic functions, where the
oo-Laplacian A, has the formal definition

Nooou ou 9%u

(4) Agou := _|DU‘2 ”zzzl o, 3—% ;0

for smooth w.

To establish their results, the authors of [10] combine several inter-
esting facts. First, calculating formally yields

(5) Apu = |Dul’"? (Au+ (p — 2)Ascu),

an identity that plays a central role in both [8] and [10]. Using it,
Juutinen et al. proved that u is a viscosity solution of (2) if and only if

—Au— (p—2)Asu=0
in the viscosity sense, about which more will be said below. Manfredi

et al. then invoke the identities

52
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and

2

(1) ula) - 3{ max_ufy) + ye%u<y>} = - Au(@) +ofe?),

valid for smooth functions as ¢ — 0, to obtain their asymptotic
characterization (3). Here and in what follows, a function is called
smooth if it is C?.

The decomposition (5) can be written in various ways, a fact that
we exploit to obtain new statistical characterizations of p-harmonic
functions of two variables. Specifically, if we define the 1-Laplacian A;
on smooth functions by

D
(8) Aju := |Du|div <D—Z|>’
then the formal relationship
Al =A—-Ay

holds and immediately yields two alternatives to (5):

(9) Apu = [DulP72 ((p — 1)Au + (2 - p)Aqu),
and
(10) Ayu = |DulP72 (Aju+ (p— 1)Agu) .

Using these identities and the Taylor approximation

(11) w(@) — median {u(s)} = -5 Asu(z) + o(e?),

valid for smooth functions u of two variables as e — 0 when |Du(z)| #
0, we prove the following;:

Theorem 1. Suppose that 1 < p < co and Q C R? is open, and let
u be a continuous function on 2. The following are equivalent:

(1) u is p-harmonic in .
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(2) At each x € Q, the equation

u(z) = (3 - 1) median {u(s)}

p s€0B.(x)

2
+(2——>][ u(s)ds +o(e?) ase —0
PJ/JoB.(z)

holds in the viscosity sense.

(3) At each x € Q, the equation

(12)

1
= — d‘
u(z) , nedian {u(s)}

(13) + <p— 1) < max {u(y)}+ min {“(y)}>

2p yEB. (z) yEB. (a)

+o(e?) ase—0

holds in the viscosity sense.

The median operator occurring here is defined as expected: if u is
continuous on Q, z € Q and B:(z) C Q,

= di
m = median {u(s)}

if and only if
|{s € 0B.(x) : u(s) > m}|=|{s € 0B(x) : u(s) < m}|,

where |E| is the 1-dimensional Hausdorff measure of the set E. We
remark that if u is smooth and |Du(z)| # 0, then (12) and (13) hold
in the usual non-viscosity sense if and only if A u(xz) = 0. This follows
from Lemmas 1 and 2 below.

Considering (1), it is natural to ask if the formulas (12) and (13) hold
in a non-asymptotic sense. More precisely, if u is p-harmonic in €2, do
the equations

1w = (G gy o+ (=5, v
(15 E

u(z) = 1Inedian {u(s)} + <p;l> ( max {u(y)} + min {u(y)})

D sEIB: (x) 2p yEB. (2) yEB. (2)
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necessarily hold at all z € 2 for all € > 0 sufficiently small? The answer
to this question is no, and in subsection 2.2 we provide an example
demonstrating that these equations do not hold in general even for
smooth p-harmonic functions.

On the way to proving Theorem 1 in subsection 2.2, we provide a
simple analytic proof of identity (11). We should point out, however,
that the relationship between median values and the 1-Laplacian has
appeared before, either explicitly or implicitly. In [11], for example,
Oberman uses a discrete median scheme of forward Euler type to
approximate solutions of the parabolic mean curvature equation,

Ou
(16) e —Aju=0 fort>0, u(-0)=mup,
in two space dimensions. Unlike many other proposed algorithms for
this equation, Oberman’s median scheme is provably convergent, an
easy consequence of the main theorem in [1].

Kohn and Serfaty [9] discuss a different convergent approximation
scheme for the initial-value problem (16) that can be described geo-
metrically as follows. Let I'(0) be a simple closed curve in the plane,
let T'(¢) be the curve obtained from I'(0) by letting it evolve by mean
curvature for time ¢, and fix a small € > 0. The curve ['(t + (¢2/2)) is
approximately the locus of all centers of circles of radius € with antipo-
dal points on I'(t); one can approximate I'(t + (¢%/2)) by tracking the
center of a segment of length 2¢ as its endpoints traverse the curve I'(¢).
This is the basic idea behind our proof of (11), even though Kohn and
Serfaty never mention medians in [9]. Related papers that use similar
ideas without explicitly connecting the 1-Laplacian and median values
include, but are certainly not limited to, [3, 13].

The present work is actually closely related to the work of Jackson
and it is our pleasure to briefly discuss this connection. Over the past
thirty or so years, viscosity solutions have become a standard tool in
the study of nonlinear PDEs. However the contemporary viscosity
approach is similar in some ways to the earlier abstract Perron method
of Jackson and Jackson and Beckenbach as in [2, 6, 7]. In fact,
for a class of second-order elliptic PDEs, viscosity subsolutions and
the subfunctions of Beckenbach and Jackson are equivalent (see [5]).
Furthermore, Jackson applied this abstract Perron method to obtain
existence and uniqueness results for the minimal surface equation in two
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independent variables [7]; this work is closely related to ongoing work
on 1-harmonic functions [12], as the level sets of 1-harmonic functions
are minimal surfaces (cf. [14]).

2. New results.

2.1. Definitions. Before proving Theorem 1, we review the
necessary definitions and related results.

Definition 1. Suppose that 1 < p < 0o, and let  be a domain in
R2.

(1) The lower semicontinuous function u is p-superharmonic in € in
the viscosity sense if and only if the equivalent inequalities

(17) 1-p)Ap+(P—2)A19>0 and —Ajp+ (1—p)Asp >0

hold at z € Q for any smooth function ¢ such that |[Dy(z)| # 0 and
u — ¢ has a strict minimum at x.

(2) The upper semicontinuous function w is p-subharmonic in Q in
the viscosity sense if and only if the equivalent inequalities

(18) (1 -pAp+(—2)A1p<0 and —Ajp+(1-pAp <0

hold at z € Q for any smooth function ¢ such that |Dy(z)| # 0 and
u — ¢ has a strict maximum at z.

(3) u is p-harmonic in Q if it is both p-superharmonic and p-
subharmonic in €.

The legitimacy of this definition follows from [8] and the formal
identities (5), (9) and (10) above, as checking p-harmonicity in the
viscosity sense reduces to evaluating —Ap,p for smooth functions ¢
away from critical points. We refer to [8, 10] for more details.

Definition 2. Let 1 < p < oo, let  be a domain in R?, and consider
the equation

(19)
u(z) = <2 - 1) median {u(s)} + (2 - %) ]é IROLERCY

p s€0B.(z)
as € — 0.
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(1) u is a supersolution of (19) in the viscosity sense if and only if the
inequality
(20)
2

¢u)z(3—1)mmmm{wﬁ}+(2——)£&@f@ww+o@%

p SEOB.(z) p
ase — 0
holds at z € Q for any smooth function ¢ such that |[Dy(z)| # 0 and
u — ¢ has a strict minimum at x.

(2) u is a subsolution of (19) in the viscosity sense if and only if the
inequality

(21) plz) < (1% - 1> median {p(s)} + (2 - %)ﬁBE(z)so(S) ds

+o0(e?) ase—0

holds at = € Q for any smooth function ¢ such that |Dy(z)| # 0 and
u — ¢ has a strict maximum at x.

(3) u is a solution of (19) in the viscosity sense if and only if it is
both a subsolution and a supersolution.

2.2. Proof of Theorem 1. We begin with asymptotic formulas
valid for smooth functions that will be used to establish our main result.
The following lemma can be established using Taylor expansion; we
omit the routine proof.

Lemma 1. Let Q be a domain in R2, let x € Q, and let ¢ be a
smooth function on Q. Then

(22) o(x) 7]{93 ( )@(5) ds = f%A@(x) +o(e?) ase—0.

Lemma 2. Let Q be a domain in R?, let x = (x1,72) € Q, and let
@ be a smooth function on Q with |Dy(x)| #0. Then

2
(23)  o(z) — median {p(s)} = —=A1p(z) + o(e?) ase — 0.
SEOB.(z) 2

Proof. The Implicit Function Theorem guarantees that, for ¢ > 0
sufficiently small, the level sets of ¢ form a one-parameter family
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of smooth, non-intersecting curves that foliate the closed ball B.(z).
Consequently, the median of ¢ over 0B.(z),

M, := medi ,
median {e(s)}

is the value corresponding to the level set that intersects 0B (z) in
antipodal points; for each £ > 0, there is a unique angle 6. € [0, 27)

such that

(24) M, = p(z1+ecosb.,za+esinb,) = p(r1—ecosb.,zo —esinb,).

Let v denote the unit vector (cosfe,sin ), and define

DSOJ'(QU) = (—p2(z), p1(z)).

The derivatives of ¢ below are evaluated at x, which we omit for
simplicity. Taylor expanding about x yields

(25)
2
M. =p(z+ev.)=¢(z)+eDyp-v. + %ngznpvE + 0(52)
and
(26)

2
€
M. =p(z—eve)=¢(xz) —eDyp- v, + gngZgovs + o(g?).

Since these expressions both equal M.,
eDg - v. = o(z?),

we therefore have

1

Dy
27 Ve = + We,
27) Dy

where
eDp-w. = 0(52)7
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and we see (among other things) that the sequence {v.} of unit vectors

converges:

DgaJ‘

Dyl
Using the decomposition (27) in the right-hand side of either (25) or
(26) yields (cf. [9])

Ve — ase | 0.

i (DSOL)T DQQD DSDL 1o
2 |Dyl Dyl
proving the lemma. O

(28) p(z) - M. = -

2 __i 2
() =~ Arp+ole),

With these lemmas, Theorem 1 is easily established using the same
approach as in [10]: apply the asymptotic formulas for smooth func-
tions to the viscosity formulation.

Proof. Suppose that u is continuous in € and that ¢ is a smooth
function for which |Dy(z)| # 0 and u—¢ has a strict minimum at « € Q.
Using Lemmas 1 and 2 and observing that (2/p—1)+(2—2/p) =1, it
follows that the first inequality in (17) holds if and only if (20) holds.
Thus w is p-superharmonic in the viscosity sense if and only if it is
a viscosity supersolution of (12). The analogous argument establishes
the equivalence of p-subharmonicity and being a subsolution of (12).

The equivalence of the first and third statements of the theorem is
proved similarly, using identity (7) instead of Lemma 1. mi

2.3. Necessity of asymptotic nature of Theorem 1. In this
section, we present an example to show that (14) and (15) do not hold
for p-harmonic functions in general. In fact, these equations do not even
necessarily hold for all € > 0 sufficiently small, so that the asymptotic
results appearing in Theorem 1 are, in general, the best available.

For any 1 < p < 2, the function u,(z) = |z|®~2/(P~1) is smooth and
p-harmonic in R? \ {0} and is known as the fundamental solution of
the p-Laplacian (see for example [8]). Let © = (x1,0) where z; > 0
and let 0 < ¢ < z;. Because u,, is radial and radially decreasing, it is
not hard to see that
(29) 13?3?23? up = (x3 + 52)(10—2)/2(10—1)_

The mean of u, on 0B.(x) is

1 27
(30) o / (22 + 2216 cos O + £2)P=2/2(=1) gg,
T Jo
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Using (29) and (30), (14) at = with u = u, becomes

(31) |z |P~2/~D)

= <}2_7 - 1> (22 + £2)(P=2)/2(p—1)

) 1 27
+ <2— —)—/ (22 4 2x16 cos § + £2)P=D/2(p=1) gg.
p)2m Jo

If (31) holds for all e sufficiently small we can differentiate it with
respect to £ to obtain

(32) (2-p)(a} +)F-D/2D1e

2-2p (7
- / (1 + 2212 cos 6 + %) PPN (g cos 6+ €) df.
T 0

Now let ; =1 and p = 3/2. The last equation is then

-1 2m
(33) (1/2)(1+¢€2)~3/2%c = 2—/ (142 cos 6 +¢2)73/%(cos 0 +¢) db,
T Jo

which holds if and only if

1 (2™ (142 2\ ~3/2
_6:_/ <+L59+5> (cos0+ ) df
0

1+ e2
(3 . i
1/27r 1+M _/(cose—i—s)dﬁ
_ﬂ' 0 1+€2 '

Using the binomial formula:
(35)

l+2scos0 73/2_17§ 2e cos +§ 2e cos 27§ 2 cosf\*
1+¢e2 ST o2\ 142 8\ 1+¢2 16\ 14 2

plus higher order terms. Therefore the integrand in (34) is equal to

3e 15 2 cos® 6 35 &3 cos @
36 6 — 29+ = - =
(36) cos 14 g2 9% + 2 (1+e2)?2 2 (1+e2)3
3c2cosf 15 e3cos?d

(1) "2 (1+e2
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plus terms of order 4 and higher. Using (36) in the integral in (34),
noting that odd powers of cosf integrate to zero and recalling that
f027r cos? §df = m and f027r cost§df = (3/4)m, we obtain

1 (2™ (14 2ccosf+e2\ /2 3
(37) ;/0 <T> (cosf +¢e)df = —e — (21/8)¢”,

which is strictly less than —e if ¢ is sufficiently small so that (34) does
not hold. As a result, (31) cannot hold for all ¢ sufficiently small.

The same example can be used to show that (15) also fails in general,
even if ¢ is small. Again let p = 3/2 and « = (1,0), and let 0 < ¢ < 1.
The maximum value of u, on B.(z) is 1/(1 —¢), and the minimum on
the same ball is 1/(1 + ). Using (29), in this case (15) becomes

2 —1/2 1 1 1
38 1==(1+¢2 —
(38) 3(+5) +6<15+1+5>

which one can easily see does not hold, even if ¢ > 0 is restricted to
being smaller than some &.

3. Concluding remarks. The asymptotic characterizations of p-
harmonic functions in [10] are valid in N dimensions. It would be
interesting to extend the results presented here to higher dimensions.
The only part of the proof of Theorem 1 that requires two dimensions is
Lemma 2. If an /N-dimensional version of Lemma 2, perhaps involving
the median on an (N — 1)-dimensional sphere, were established, new
asymptotic statistical characterizations of p-harmonic functions would
follow.

We presented an example showing that, in general, only asymptotic
characterizations of this type are possible. However, this is not the case
for p = 2. A natural question is: do the equations (14) and (15) hold
either globally or locally for any other values of p? Concrete examples
in [12] show that the limiting cases of (14) and (15) can hold when
p = 1, but more work on this question needs to be done.

Finally, we did not consider the extreme cases p = 1 and p = oo,
although we remark that if p is formally allowed to be co in (13) the
resulting characterization is the same as that in [10].
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