ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 41, Number 2, 2011

GPU-BASED METHODS FOR EXPLORING
PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

DAVID EBERLY AND JERROLD BEBERNES

ABSTRACT. The mathematical investigation of solutions
to a parabolic partial differential equation (PDE) can be com-
plemented by numerically computing the solutions in order to
obtain insight about their qualitative structure. The numer-
ical methods are relatively slow on central processing units
(CPUs), making it difficult to obtain rapid feedback about
the solution over time. Graphics processing units (GPUs)
are efficient hardware for massively parallel computations and
provide rapid feedback. The numerical methods for parabolic
PDEs map naturally onto the GPU but differ from the same
methods implemented on a CPU. We describe the ideas for
GPU-based solvers and illustrate them using parabolic PDEs
that arise in combustion models.

1. Introduction. The concept of using numerical solutions to PDEs
in order to gain insight about the qualitative structure of the theoreti-
cal solutions is not new, of course. In fact, several of the results men-
tioned in [2] were motivated by numerical experiments; in particular,
they motivated the study of solution profiles and the relationship of
their shape to bifurcation diagrams [3] and for developing generalized
maximum principles [1, 7].

At that time (25 years ago), the experiments were performed on
hardware that included an Intel 80486 CPU with an 80487 floating-
point coprocessor and an Enhanced Graphics Adapter card. By today’s
standards, such hardware might as well be displayed in a museum about
ancient computing devices. Back then it was enough to give some idea
about solutions to the PDEs but was not suitable for visualization in
interactive time let alone real-time.

Current generation hardware is much different from that of 25 years
ago. CPUs now have multiple units of execution called cores. GPUs
were invented to support the demands of consumers wanting more
realistic graphics in computer video games. Although the evolution
of CPUs and GPUs has been driven by consumer entertainment,

Received by the editors on August 21, 2010.
DOI:10.1216/RMJ-2011-41-2-457 Copyright (©2011 Rocky Mountain Mathematics Consortium

457

458 DAVID EBERLY AND JERROLD BEBERNES

an important consequence is that the processors provide significant
power for scientific computation. The GPUs support massively parallel
computations and are naturally suited for the numerical solution of
parabolic PDEs. This paper shows how to map the mathematical
algorithms onto the GPU and mentions the main differences between
how you solve the PDEs on a GPU compared to on a CPU.

The ideas are illustrated using a nonlinear parabolic PDE that arises
in combustion models and has solutions that blow up in finite time,

-p
ut:Au—i—)\e“(/e“d:c) , (z,t) € Qx(0,00),
Q

u(z,0)=1I(z), z€Q,
u(z,t) =0, (z,t) € 92 x (0,00)

(1)

where (2 is a compact set and I(xz) € L>(Q) N C(Q). The scalar A
is positive and chosen to be 1 for the numerical experiments. The
problem is local when p = 0 and nonlocal when p > 0. The numerical
experiments involved p-values of 0, 0.5, 0.99 and 1.

2. CPU-based method for dimension 1. The domain is chosen
to be Q = [—1,1], and initially we look at the local problem (p = 0).
The Crank-Nicholson method is used for the numerical solver, where
a forward finite difference is used to estimate u;. A central finite
difference is used to estimate u;, but involves the to-be computed time
rather than the previous time. This leads to an implicit equation that
has good numerical stability. Choose n spatial samples on [—1, 1]; that
is, A, =2/(n—1) and z; = =14 2i/(n—1) for 0 < i < n — 1. The
time step is A; with t; = jA;. The estimates are u! = u(z;,t;) and
the numerical method to compute them is

(2) w = au? 4 by (ufill + uffll) + cexp (uf)

for0<i<n-—1,5>0,7r=A;/A%2 a=1/(1+2r),b=ar, c=aly,
and with specified initial values uY. The boundary values are always

J_ .
Uy = Uy_q = 0.

GPU-BASED METHODS 459

frame O (initial time) frame 40

frame 41 frame 42 (at blow up)

FIGURE 1. Solution profiles for local equation (1) in dimension 1.

For each time frame j, equation (2) must be iterated a specified
number of times until convergence criteria are met. This is referred
to as Gauss-Seidel iteration and is the method of choice for real-time
physics simulations in modern video games. Flip-flop buffers are used
to avoid expensive memory allocations and deallocations. Pseudocode
for the numerical solver is listed next. The termination condition is
that at least one solution value is infinite relative to the floating-point
system.

void SolveLocalBlowupl ()

{

int n = 1024, numGaussSeidel = §;

float dx = 1, dt = 0.01, r = dt/(dx*dx), a = 1/(142%r), b = a*r, ¢ = a*dt;

Buffer1(float) u0(n), ul(n);

460 DAVID EBERLY AND JERROLD BEBERNES

SetInitialBoundary Values(u0, ul);

do_forever {

for (int j = 0; j < numGaussSeidel; ++j) {

for (int i = 1;1 < n—1; ++i) {

ul(i) = a*u0(i) + b*(ul(i+1) + ul(i—1)) + c*exp(u0(i)));
}

}

if (some value of ul() is not finite) { return; }
SwapBuffers(u0,ul);

}

The initial function in the experiments was u(z,0) = 1 — 2%, The
loop executed for 43 frames before exiting. The solution profiles for
several frames are shown in Figure 1. The horizontal axis corresponds
to x € [—1,1] and the vertical axis corresponds to u € [0, 100].

The numerical implementation for the local problem is straightfor-
ward with no surprises. On the other hand, the implementation for the
nonlocal problem requires some attention, whether implemented on a
CPU or GPU. The finite difference equation in the pseudocode may be
replaced by

ul(i) = a*u0(i) + b*(ul(i+1) + ul(i-1)) + c*exp(u0(i))/Integral(p,u0);

where Integral(p,u0) computes a numerical approximation to the
pth power of the integral in equation (1). Because of the Gauss-
Seidel iterations, the evaluation of Integral should be moved outside
the Gauss-Seidel loop to avoid redundant calculations. The classical
approach is to use the trapezoidal rule for integration, which involves
a summation of terms exp(u;). There are two problems, one obvious
and one not so obvious.

The obvious problem is that, near the blow-up time, the values u;
become large and the exponentials of these even larger. Floating-point
overflow is a certainty when summing the terms, potentially making
it appear that there is blow up when theoretically there is not. It is
better to transform the problem slightly by searching for the maximum
m of all u; and estimating the integral of exp(u(z,-)—m). The terms in
the summation of the trapezoidal rule are now exp(u; —m), which are
guaranteed to be no larger than 1. In worst case, u; is small compared
to m so that exp(u; — m) exhibits gradual underflow or is flushed to
zero, depending on how the floating-point unit is configured; this is

GPU-BASED METHODS 461

preferable to the overflow. The function Integral returns the pth
power of the estimate of the modified integral and returns the value m.
The latter value is used in the finite difference equation.

float uOmax; // computed by Integral

float integral = Integral(p,u0,u0max);

float dO = c/integral, d1 = p*uOmax;

for (int j = 0; j < numGaussSeidel; ++j) {

for (int i = 1;1 < n-1; ++i) {

ul(i) = a*u0(i) + b*(ul(i+1) + ul(i-1)) + d0*exp(u0(i)—d1);

}

}

The nonobvious problem might occur when the number of spatial
samples is large. In worst case, the summation of a large number of
large floating-point numbers can overflow. More frequent is that the
partial sums are floating-point numbers in a sparsely populated region
of the floating-point system, in which case numerical round-off errors
accumulate significantly. Although usually not of consequence for the
one-dimensional problem, it is an issue for higher dimensions when
dense spatial sampling is used. An implementation of the trapezoidal
rule may formulate the result in terms of the average value of the
function. For the problem at hand, the trapezoidal rule to estimate
I= fjl exp (u(z,-) —m)dz is

[2 <l§exp(ui—m)>— 2lexp(—m)

n—1\n n—

(3)) ,
n

—n_lAfn_lexp(fm)

where A, =2/(n —1) and A is an average of the n function samples.

The average A may be computed in a manner related to mipmap-
ping that is used in computer graphics for producing a multiresolution
pyramid of texture images [15]. Assuming n is a power of two, pairs of
consecutive terms in the summation are averaged, leading to an array
of numbers half the length of the original array. The process is repeated
on this array. The repetition ends when the final array has one element
that must be A. Assuming the original terms are finite floating-point
numbers, the average of pairs are guaranteed to be finite floating-point
numbers, albeit with potential round-off errors. The final result, A,

462 DAVID EBERLY AND JERROLD BEBERNES

N AN

p=05 p =0.99

1

| |

I

l N
,77—7)"'j (\ —_—

frame 118 frame 418

|
N AN

- frame 119 B - 428 (at blow up)

FIGURE 2. Solution profiles for nonlocal equation (1) in dimension 1.

is guaranteed to be a finite floating-point number. Moreover, given
that the terms are consecutive samples from a continuous function,
the numbers in each pair are relatively close, which avoids the typical
floating-point problem of summation of a large and a small number
whereby the small number is effectively treated as zero due to bit-
shifting to match exponents.

With the modifications for robustly computing the integral and

Gauss-Seidel iterates, and with the same initial function u(z,0) =
1 — 22, the nonlocal problem was run with values p = 1, p = 0.99

GPU-BASED METHODS 463

and p = 0.5. For p = 1, the solution gradually increased through
large values at = 0, but blow up did not occur. For p = 0.99, the
loop executed for 470 frames to reach blow up. For p = 0.5, the loop
executed for 121 frames to reach blow up. The solution profiles for
several frames are shown in Figure 2.

3. Methods for Dimension 2. Numerical experiments were
performed for dimension 2. The domain was Q = [—1,1]? and the initial
values were I(z,y) = (1—2%)(1—y?). The same approach to computing
the integral in the nonlocal problem was used, the integrals estimated
by the following where n4 is the number of samples in dimension d:
I = kyA — ky exp(—m) where ko = 4ngny /6 and ky = 4(ng+nqy —1)/6
with § = (ng—1)(n1—1) The number A is the average of the exponential
values computed using the mipmapping approach for robustness. The
Gauss-Seidel iterates are

// 2D local problem, per Gauss-Seidel iterate

for (il = 1; il < nl—1; 4++il)

{

for (i0 = 1; i0 < n0—1; +-+il)

{

ul(i0,i1) = a*u0(i0,i1) + b0*(ul(i0+1,i1) + ul(i0—1,i1)) +

b1*(ul(i0,il1+1) + ul(i0,i1—1)) + c*exp(u0(i0,i1)));

}

}

// 2D nonlocal problem, per Gauss-Seidel iterate

for (il = 1; il < nl—1; 4++il)

{

for (i0 = 1; i0 < n0—1; ++il)

{

ul(i0,i1) = a*u0(i0,il) + b0*(ul(i0+1,il) + ul(i0—1,i1)) +
b1*(ul(i0,il+1) + ul(i0,il—1)) + d0*exp(u0(i0,il)—d1));
}

}

for appropriately chosen constants a, by, b1, b, ¢, dy and d;.

3.1. CPU method for dimension 2. The loops may be imple-
mented as-is on the CPU, so the code is very similar to what was shown

464 DAVID EBERLY AND JERROLD BEBERNES

for dimension 1. The solution profiles are qualitatively similar to those
shown in Figures 1 and 2. Observe that the array values u;(-,-) are
both read from memory (on the right-hand side of the equation) and
written to memory (on the left-hand side of the equation). Read-write
access of this form is common in programs written for a CPU.

3.2. GPU method for dimension 2. On the GPU, each
calculation per (ip,41) is performed by a pizel shader, which is a
program written in a shading language similar to the C language (we
used OpenGL and it associated GLSL language). The arrays on the
right-hand side are accessed as textures provided to the pixel shader.
The left-hand side is the return value of the pixel shader and is written
to a texture managed by a framebuffer object that is associated with
the pixel shader. Within a shader, the textures are read-only and
the framebuffer texture is write-only, so the finite difference equation
inside the double loop cannot be realized in a pixel shader. Therefore,
the algorithm must be modified to allow GPU computations. The
new approach requires three buffers but the numerical solution is
nearly indistinguishable from that computed on the CPU, because the
Gauss-Seidel iterations converge theoretically to the same values. For
example, the local problem on the GPU is effectively

Texture u[3]; // all n0-by—nl buffers

SetInitialBoundary Values(u[0],u[1],u[2]);

TextureReference T[3];

int input0 = 0;

T[0] = u[input0];

for (j = 0; j < numGaussSeidel; ++j)

{

// Toggle inputs between (T[0],T[1]) and (T[1],T[0]).

int inputl = 1 — input0;

T[1] = u[inputl];

int output = 2;

T[2] = uf2];

for (il = 1; il < nl—1; ++il)
{

for (i0 = 1; i0 < n0—1; ++il)
{

T2(i0,i1) = a*T0(i0,i1) 4+ b0*(T1(i0+1,i1) + T1(i0—1,i1)) +

GPU-BASED METHODS 465

b1*(T1(i0,i1+1) + ul(TL,il—1)) + c*exp(T0(i0,i1)));

}

}

// Toggle outputs between (T[1],T[2]) and (T[2],T[1]) or between
// (T[0,T[2]) and (T[2],T[0]).

int save = inputl; inputl = output; output = save;

}

In this pseudocode, the inner loops compute values on the interior of
the domain. In the real application, the pixel shader is executed for all
values, interior and boundary. The shader can use branching to test
if the current (ig,%;) values are on the boundary, setting the output
to zero in this case. However, branching is expensive and not even
supported on early generation GPUs. The branching can be avoided by
having an additional mask texture whose values are 1 at interior points
and 0 at boundary points. The output values are computed whether
the incoming (4o,¢1) is interior or boundary, but then the values are
multiplied by the mask-texture values, thus causing all boundary values
to be zero.

The details of setting up the graphics system are important but are
more about software engineering than mathematics. They are not
presented here. The source code is available online [6] and works on
Microsoft Windows (XP/Vista/7), Macintosh OS X, and Linux as long
as the graphics card supports OpenGL 2 or later. The distribution
includes installation and release notes.

To compare execution times, we chose ng = n; = 1024 and measured
the execution time for the Gauss-Seidel iteration; that is, we excluded
the time for initializing and terminating the graphics objects. The
local problem required 16.911 seconds on a 3 GHz CPU but only 0.656
seconds on an NVIDIA 9800 GT GPU. The nonlocal problem required
56.862 seconds on the CPU but only 7.925 seconds on the GPU.

The implementation for the nonlocal problem reads back the frame-
buffer texture and estimates the integral using computations on the
CPU. The read-back is a transfer from video memory to system mem-
ory, a process that is a known bottleneck on GPUs. With more shader
programming effort, the read-back can be avoided. The maximum of
the current u-values can be computed on the GPU using a pyramidal
approach, just as shown here for the average of the exponential of the

466 DAVID EBERLY AND JERROLD BEBERNES

samples (minus the maximum). Once the maximum is known, the av-
erage may also be computed on the GPU using a pyramidal approach.

Similarly, the implementations for both the local and nonlocal prob-
lems read back the framebuffer texture in order to locate any buffer
values that are infinite. When an infinite value is found, the numerical
method terminates. The read-back here can also be avoided by search-
ing for an infinite value using shader programming and a pyramidal
approach.

Finally, the implementations used the read-back so that an z-slice
of the solution could be used to generate bitmap images that show
the graph of the solution for the chosen value of x. As an alternate
visualization, the framebuffer texture does not have to be read back.
Instead, it can be used as a displacement map for a vertex shader to
generate a triangle mesh that approximates the graph of the solution
and that can be displayed using a 3D graphics rendering system. Thus,
all read-backs can be avoided for optimum performance and the results
can be visualized and allow interaction such as display of the mesh as
if it were embedded in a virtual trackball. The source code distribution
[6] has implementations that do this.

4. Methods for dimension 3. Numerical experiments were also
performed for dimension 3. The domain was Q = [—1,1]3, and the
initial values were I(x,y,z) = (1 — 22)(1 — y?)(1 — 22). The integral
estimate for the nonlocal problem is I = koA — ki exp(—m) where
ko = 8n0n1n2/5 and k1 = 8(n0(n1 — 1) +n1(n2 —].) +TL2(TLO — 1) +].)/6
with § = (ngp — 1)(n; — 1)(ng — 1). The number A is the average of
the exponential values computed using the mipmapping approach for
robustness. Each Gauss-Seidel iterate encapsulates a triple loop whose
inner-most expression is the finite difference equation.

The CPU implementation for dimension 3 is very similar to that for
dimension 2. Both the local and nonlocal solutions have profiles similar
to those of Figures 1 and 2.

The GPU implementation for dimension 3 requires more effort than
for dimension 2. The GPU is designed so that the pixel shaders write to
a two-dimensional framebuffer object that manages a two-dimensional
texture. There is no concept of a three-dimensional framebuffer ob-
ject. On the CPU, the triple loop is implemented to access a three-

GPU-BASED METHODS 467

dimensional array u(z,y, z) for which memory is stored in lexicograph-
ical order. If ¢ is the 1-dimensional index into the contiguous block
of memory that stores the array, and if the array has dimensions ny,
ni, and ns, then the mapping between three-dimensional array and
one-dimensional memory is

(4) i =+ no(y+ ni2),

where the x, y and z values are integers with 0 < z < ng, 0 <y < nq,
and 0 < z < mo. You may think of this visually as a stack of nq tiles,
each tile of size ng X ny. Within a tile, it is easy to compute the six
immediate neighbors of (z,y, z), namely, (x £ 1,y, z), (z,y £ 1, 2), and
(z,y,z £ 1). These index neighbors are used in the finite difference
equation to look up the corresponding u-values.

On the GPU, the three-dimensional output must be stored as a two-
dimensional block of memory. This is accomplished by storing the
xy-tiles as a two-dimensional array of tiles. They may be stored in
row-major order so that the z = 0 tile is in the first row and first
column, the z = 1 tile is in the first row and second column, and so
on. Only some of the tiles fit on the first row, so the remaining tiles
are stored in the second row, the third row, and so on.

If (z,y, 2) is an interior point of a tile, its zy-neighbors are the obvious
ones: (z£1,y+1,z). The z-neighbors live in two other tiles in the
array of tiles. This information is needed by the pixel shader to look up
the neighboring u-texture values. The easiest way to handle the look
up is to have a two-dimensional offset terture that is made available
to the shader. Given an (z,y) index into the two-dimensional texture
that represents the array of tiles, the (z, y) values of the z-neighbors are
looked up in the offset texture. The u-texture values are then looked
up using these offsets.

As in the two-dimensional GPU solver, the pixel shader must assign
zero to the boundary points of the domain. When the three-dimensional
output is stored as an array of tiles, the boundary points of the tiled
array are boundary points of the three-dimensional output. However,
some of the interior points of the tiled array are also boundary points
of the three-dimensional output. Just as in the two-dimensional GPU
solver, a mask texture is used whose values are 1 at tiled-array points
corresponding to the interior points of the three-dimensional output
and are 0 elsewhere.

468 DAVID EBERLY AND JERROLD BEBERNES

Again, a large portion of the details of implementing the GPU-based
solver are in the realm of software engineering, not mathematics, so
the details are not presented here. The source code distribution [6]
contains implementations for the three-dimensional blow-up problems.

5. Variations of the GPU-based solvers. The numerical exper-
iments described here were for 2 which is an interval in dimension 1
and a Cartesian product of intervals in higher dimensions. Although a
lot of research results have been developed for convez (2, less is known
about the qualitative behavior of solutions when the domains are not
convex. The GPU-based solvers may be extended in a simple manner
to allow experimentation with nonconvex domains. It is sufficient to
embed (2 in a Cartesian product of intervals. A corresponding domain
mask texture may be provided to the pixel shader. This mask is a bi-
nary image that is 1 for pixels in 2 and 0 for pixels not in €. The
look ups of u-values for the finite differences can be clamped using an
appropriately initialized offset texture. The outputs computed by the
pixel shader are multiplied by the domain mask values.

The initial functions in the numerical experiments were even functions
in their components. However, the textures corresponding to the initial
data can be whatever you want. For example, if you want to explore
blow up at a point not at the origin or at multiple points, you can vary
the initial data to try to make this happen.

The main limitation of GPU-based methods is the size of the output
textures. Graphics drivers impose limits on the size; for example,
the NVIDIA 9800 GT GPU on which the experiments were run has
a limitation of 4096 per dimension. The largest two-dimensional
output supported for the experiments is 4096 x 4096 using a 1-channel
texture whose component is 32-bit floating-point. To have more dense
sampling, a significant amount of systems/software engineering must
take place to decompose the domain and solve the PDE piecewise.
This is tedious but tractable.

6. GPU-based solvers for the Navier-Stokes equation. For
many years, the real-time video game industry has had an interest in
simulation of fluids and gases; for example, [8-14].

GPU-BASED METHODS 469

Of particular interest related to this paper, [14] discusses equations
for conservation of mass and conservation of momentum (Navier-Stokes
equation). The focus is on producing a believable simulation, not on
obtaining numerically accurate solutions, but there is nothing inherent
in the presentation that prevents one from implementing simulations
that produce accurate solutions. The conservation equations are stated
in the paper without derivation and with few details about the assump-
tions made to produce them. The paper also discusses only a CPU-
based numerical method. From a practical perspective, the important
part of this paper is showing how to deal with diffusion, advection, and
the nonlinearity when solving the equations numerically.

A somewhat elementary but detailed pedagogic derivation and dis-
cussion about various simplifying assumptions are presented in [4].
Moreover, the book has discussions about the mapping of the Navier-
Stokes equation onto the GPU, both for the two-dimensional and three-
dimensional problems. The system-engineering details are significant,
but at the core are the concepts mentioned in this paper about use
of shaders, Gauss-Seidel iterations, memory mapping, mask textures
and offset textures. The source code is available from the Geometric
Tools website (http://www.geometrictools.com/). Screen captures
and a flow chart for a GPU-based two-dimensional simulation of the
Navier-Stokes equation used in [14] is available online [5].

REFERENCES

1. J. Bebernes and D. Eberly, A description of self-similar blowup for the solid
fuel ignition model, Indiana Math. J. 36 (1987), 295-305.

2. , Mathematical problems from combustion theory, Appl. Math. Sci. 83,
Springer- Verlag, New York, 1989.

3. J. Bebernes, D. Eberly and W. Fulks, Solution profiles for some simple
combustion models, Nonlinear Analysisn—Theory, Methods and Applications 10
(1986), 165-177.

4. D. Eberly, Game physics, 2nd edition, Morgan Kaufmann (an imprint of
Elsevier), Burlington, MA, 2010.

5. , GPU-based numerical solution of the 2D Navier-Stokes equation,
http://www. geometrlctools com/SamplePhysics/GpuFluids2D/GpuFluids2D.html,
2010.

6. , Source code for GPU-based numerical solution of parabolic PDEs,
http://wuw. geometrlctools com/RMMJ/GpuPdeSolvers.zip, 2010.

470 DAVID EBERLY AND JERROLD BEBERNES

7. D. Eberly and W. Troy, On the ezistence of logarithmic-type solutions to the
Kassoy-Kapila problem in dimensions 3 < n < 9, J. Diff. Equations 80 (1987),
309-324.

8. R. Fedkiw, J. Stam and H.W. Jensen, Visualization of smoke, in Proceedings
of SIGGRAPH 2001, 15-22, 2001.

9. N. Foster and R. Fedkiw, Practical animation of liquids, in Proceedings of
SIGGRAPH 2001, 23-30, 2001.

10. Mark Harris, CUDA fluid simulation in NVIDIA PhysX, http://sa08.idav.
ucdavis.edu/CUDA_physx_fluids.Harris.pdf, 2008.

11. D.Q. Nguyen, R. Fedkiw and H.W. Jensen, Physically based modeling and
animation of fire, in Proceedings of SIGGRAPH 2002, 721-728, 2002.

12. Hagit Schechter and Robert Bridson, Evolving sub-grid turbulence for smoke
animation, in Proceedings of the 2008 ACM /Eurographics Symposium on Computer
Animation, 2008.

13. Andrew Selle, Nick Rasmussen and Ronald Fedkiw, A vortex particle method
for smoke, water and ezplosions, in Proceedings of SIGGRAPH 2005, 910-914,
2005.

14. Jos Stam, Real-time fluid dynamics for games, in Proceedings of the Game
Developer Conference, March 2003, 2003.

15. L. Williams, Pyramidial parametrics, Computer Graphics 7 (1983), 1-11.

GEOMETRIC TooLs, LLC, 5911 EAST SPRING ROAD, SCOTTSDALE, AZ 85254-
5548
Email address: deberly@geometrictools.com

DEPARTMENT OF APPLIED MATHEMATICS, 526 UCB, UNIVERSITY OF COLORADO,
BouLbpER, CO 80309-0526
Email address: Jerrold.Bebernes@Colorado.edu

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

