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GENERALIZED CAUCHY PROBLEM FOR
HYPERBOLIC FUNCTIONAL DIFFERENTIAL SYSTEMS

ZDZISLAW KAMONT

ABSTRACT. Weak solutions of nonlinear systems of func-
tional differential equations are investigated. The generalized
Cauchy problem is transformed into a system of Volterra type
integral functional equations. The existence of solutions of
this system is proved by using a method of successive approx-
imations. The theory of bicharacteristics and integral inequal-
ities are applied.

Differential systems with deviated variables and differential
integral problems are particular cases of systems considered
here.

1. Introduction. For any metric spaces X and Y we denote by
C(X,Y) the class of all continuous functions from X into Y. We
will use vectorial inequalities with the understanding that the same
inequalities hold between their corresponding components. Write

E=[0,a] xR", B=][—by,0] x [~b,}]
where a > 0, bp € Ry, b = (by,... ,b,) € R} and Ry = [0, +00).

Suppose that ¥y : [0,a] — R and ¥ = (Y1,...,%,) : E —
R” are given functions. The requirements on vy are that there is
¢ € Ry such that —cy < 9p(t) and ¥o(t) < t for ¢ € [0,a].
Write ¥(t,z) = (Yo(t), ¥ (t,z)) and dy = ¢o + by. For a function
z : [~dp,a] x R® — RF and for a point (t,z) € [—cp,a] x R™ we
define a function 2 ;) : B — RF by

Z(t,z)(Tay):z(t+77m+y)7 (T’y)EB'

Then z(; ;) is the restriction of z to the set [t — by, t] X [z — b,z + b] and
this restriction is shifted to the set B. Write Q = E x C'(B,RF) x R
and

EO.i = [—do,ai] XRn, 1= 1,... ,k,
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where 0 < a; < a for 1 < i < k. Suppose that f = (f1,...,fx) :
Q= RFand p;: Ey; - R, i=1,...,k, are given functions. Let us
denote by z = (21, ... ,2x) an unknown function of the variables (¢, z),
z = (21,...,%,). We consider the system of functional differential
equations

(1) 8tzi(t7x) = fi(taxaz¢(t,w)7azzi(t’x))? i= ]-7 aka

with the initial condition

(2) zi(t,x) = ¢i(t,z) on Eg,;fori=1,...,k,
where 0,2; = (0, 2iy- -+ ,0z,2). A function 7 : [—dy,c] x R* — RF,
Z=(%1,...,%), where a; < ¢ < afor 1 <i <k, is a solution of (1),

(2) provides

(i) 2 € C([-do,c] x R",R¥) and 0, exist on [a;,c] x R" for
1<i<k,

(ii) for each ¢, 1 < i < k, and z € R", the function Z;(-,z) : [a;,c] —
R is absolutely continuous,

(iii) for each € R™ and for 1 < 4 < k, the i-th equation in (1) is
satisfied for almost all ¢ € [a;, ¢] and condition (2) holds.

System (1) with initial condition (2) is called a generalized Cauchy
problem. If a; =0 for ¢ = 1,... ,k then (1), (2) reduces to the classical
Cauchy problem.

In this time numerous papers were published concerning various prob-
lems for first order partial functional differential equations. The follow-
ing questions were considered: functional differential inequalities and
their applications, uniqueness of solutions to initial or initial bound-
ary value problems, existence theory of classical or generalized solu-
tions, numerical methods of functional differential equations. It is not
our aim to show a full review of papers concerning the above prob-
lems. We mention the results on the existence of solutions only. There
are various concepts of solutions concerning initial or mixed problems
for functional differential equations. Continuous functions satisfying
integral systems obtained by integrating of original equations along
bicharacteristics were considered in [1, 12]. Generalized solutions in
the Carathéodory sense of quasilinear problems were investigated in
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[5, 7, 15]. The method of bicharacteristics and functional differential
inequalities are used for proving existence results. Difference method
was adopted in [6] for discussing the existence of Carathéodory solu-
tions of nonlinear equations with unknown function of two variables.
Weak solutions in the Cinquini Cibrario sense have been studied in
[3, 4, 11]. Existence results for nonlinear equations are based on a
method of quasilinearization. It consists of a construction of a quasi-
linear system for unknown function and for their spatial derivatives.
The system obtained is equivalent to a system of functional integral
equations of the Volterra type. Continuous solutions of integral func-
tional equations generate weak solutions of functional differential prob-
lems. Initial-boundary value problems for differential integral equations
were considered in [13]. The method of semi-groups of linear opera-
tors is used. The functional dependence in equations considered in [13]
concerns the time variable only. The spatial variable in the unknown
function appears in a classical sense. Classical solutions of functional
differential problems have been considered in [2, 8, 9, 14]. Existence
results presented in these papers are based on a method of successive
approximations which was introduced by Wazewski for systems without
a functional dependence [16]. For further bibliography on first order
partial functional differential equations see [10].

We list below examples of systems which can be derived from (1) by
specializing f and .

Example 1.1. Suppose that f = (fi,...,fz): E x R* x R" — R¥
is a given function. Write

f(t7 m7w’q) = f(t’ w7w(07 0)’q) on Q?

where 6 = (0,...,0) € R™ Then (1) reduces to the system with
deviated variables

(3) Opzi(t,x) = fi(t,:v,z(zﬂ(t,x)),@wzi(t,w)), 1=1,...,k.

Example 1.2. For the above f we put

f(t,z,w,9) = f(t,, /B w(r,y) dydr,q) on Q
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and assume that ¥ (¢,z) = (¢,2). Then (1) is the differential integral
system

(4)

Opzi(t,x) = fi(t,w,/ 2(t+ 71z +y)dydr, 0,2t x)), i=1,...,k.
B

It is clear that more complicated differential systems with deviated
variables and differential integral problems can be obtained from (1)
by a suitable definition of f.

Remark 1.3. Note that results on generalized Cauchy problems
presented in [14] are not applicable to (3) and (4).

2. Bicharacteristics. Let us denote by My, the set of all k x n
matrices with real elements. If X € Mpyy,, then X7 denotes the
transpose matrix. For z € R", p € R¥, X € My, where

T = (xlv"' al‘n)a p= (pla"' 7pk)7 X = [Xij]i'zl,...,k,

we define the norms

n
Izl = > lzil, [pllo = max{|p;| : 1 <<k},
=1

1X| = max{2|a:i]-| 11<i < k:}

j=1

The scalar product in R™ will be denoted by “o.” Write E; = [—dy, t] X
R" where 0 < t < a. For z = (21,...,2r) € C([~dp,a] x R",R¥),
v € C([—dp,a] x R™,R™) we define the seminorms

HZth = Sup{ |Zi(7-a y)| : (7-7 y) € Et}7 1<4i< ka
[2lle,rx) = sup{|z(7, 9) |l : (T,y) € Er},
[vll¢t,mm) = sup{[[v(m,y)|| : (1) € E¢}-

The norm in the space C(B, RF) is given by ||w||p = max{||w(t, z)]eo :
(t,z) € B}. We will denote by L([t1,t2], R+), [t1,t2] C R, the class of
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all functions ¢ : [t1,t2] — R4 which are integrable on [t1,t2]. Given
c1,ce € Ry and po, p1 € L([—dp,a],Ry), @ = max{a; : 1 < i < k},
we denote by K the set of all functions ¢ = (¢1,... ,¢k) such that for
each 7, 1 < i < k we have

(i) p; € C(Ey.4, R), the derivatives 0,¢; = (Oz, @i, .- ,0x, i) exist
on EO.i and

t
joittr) )| < | [ Mo(ﬁ)dﬁ‘ on Eos,
t

(ii) the estimates
10zt 2)|| < e,

||6z()02 t l‘ z(Pz t || / ,ul df‘ +02||x 71‘”

are satisfied on Ej ;.

Let ¢ € K be given, and let @ < ¢ < a. Suppose that d € R4, A €
L([—do,c],Ry) and d > c1, A(7) > po(7) for almost all 7 € [—dy, a.
We denote by C,.[d,A] the class of all 2 € C([—dy,c] x R",RF),
z=(z1,...,2), such that z;(¢t,z) = ¢;(t,x) on Ey,; and

T |<\/ ds\+d||w—f||,<t,x>,<a:z>e[ai,c],

where 1 < ¢ < k.

Suppose that s = (s1,s2) € R%, v € L([—do,c],Ry) and s1 > ¢y,
s2 > co and (1) > pi(7) for almost all 7 € [—dp,a]. We denote
by Coag,.c[s,7] the class of all v € C([—dp,c] x R",R™) such that
v(t,x) = Opi(t,x) on Ey,; and

[o(t, 2)[| < s1,

t
/t +(€) ds\ T solle— 2

[o(t, @) —v(t, 2)] <

where (¢,z), (¢,Z) € [a;,c] x R®. We put ¢ = 1,... ,k in the above
definition.
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Assumption H[0,f,1]. The functions f and 9 of the variables
(t,z,w,q) and (t,z) respectively satisfy the conditions:

1) the derivatives
9,f = [a‘iji]i:I,...,k,j:I,...,n

exist on Q and the function 0, f (-, z,w, q) : [0, a] — M}, is measurable
for (z,w,q) € R" x C(B,RF) x R" and 9,f(¢t, -) : R" x C(B,RF) x
R"™ — Mj,«,, is continuous for almost all ¢ € [0, a],

2) there are «, L € L([0, a], Ry) such that

104 f (¢, 2, w, q)|| < a(t)

and
(5)
104 f (8, x,w,q) = 0, f (¢, 2, w,@)|| < L(t) ||l — || + [|w — @[l 5 + ¢ — ll]
on €.
3) Yo € C([0,a],R), ¢¥' € C(E,R"™) and
(i) —ep < ¥o(t) < t for t € [0,aq],

(ii) the derivatives
0oy’ = [8mj¢i]i,j:1,...,n
exist on F and

19'(t,2) = ¢'(t,2)[| < Qllz — Z|| on E.

Suppose that Assumption H[04f, 9] is satisfied and ¢ € K, z €
Cocld, A, v € Coy,.c[s,7] and (t,z) € [a;,c] x R". Write 0,f; =
(Ogy fir--- »0q, fi» 1 <i <k, and consider the Cauchy problem

(6)  1'(r) ==0afi(r,n(7), 2y (rnry), v(7 (7)), n(t) ==,

and denote by g¢;[z,v](-,t,z) its Carathéodory solution. The function
9ilz,v](+, t, z) is the i-th bicharacteristic of (1) corresponding to (z,v).
We put i = 1,... ,k in the above definitions. We prove a lemma on the
existence and uniqueness and on the regularity of bicharacteristics.
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Lemma 2.1. Suppose that Assumption H[0qf, ] is satisfied and

0, €K, z€C,.ld, A, Z€ Cs.ld, ],
vE 03%,0[577]’ ve 0351--0[577]’
where @ < ¢ < a and 1 < ¢ < k. Then the bicharacteristics

9ilz,v](", t,z) and ¢;[Z,7](-,t,x) exist on [a;,c]. Solutions of (6) are
unique and we have the estimates

(1) llglesol(mt,) — il 0(m,  B)]) < ©() H [ a@de+ 1o zn}
where (1,t,z),(7,t, %) € [ai,c] X [a;,c] x R" and

®)  llgilz, v](7: 8, 2) = [z, 0 (7, ¢, 2)|

t
<0()| [ 2@l - Zlean + v - Tleno] da\

where (1,t,2) € [a;,c] X [ai, c] x R™ and

o(r) = exp{(l +dQ + s3) /OTL(g) dg}.

Proof. We begin with the observation that

(9) 2 (ry) = Zg(rp)llB < dQlly — 7|

where (1,y), (1,7) € [ai,¢] x R™. We conclude from Assumption
H[0,f,v] that the following Lipschitz condition is satisfied

(10) Haqfi(Tu Y, Zy(r,y)> U(Tv y)) - 8qfi(7_7 v, Zy(1,9)» U(Tv y))”
< L(7)(1+dQ + s2)|ly — 7l

where (7,y), (7,7) € [ai,c¢] x R™. Now, the existence and uniqueness
of the solution of (6) follows from classical theorems on Carathéodory
solutions of initial problems.
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It is easily seen that the integral inequality

lgi[z,v](7,t, ) — gilz,v](7, £, D) || < [l — 2| + ‘/ dﬁ‘

/ L&) lgilz vl €, 1, 2) — gilis (6, £, 2)]] de

is satisfied for (7,t,z),(7,t,Z) € [a;,c] X [a;,c] x R™. Then we obtain
(7) by the Gronwall inequality.

Now we prove (8). For z € Cy..[d, ], z € Cp.cld, A, v € Coyp, c[5,7],
U € Cay,.c[s,7], we have the integral inequality

||gi[Z,U](T, tax) - gi[za 5](Tatal‘)”

t
< / L(E) Iz - 2llers) + 1o — tlle.rm] dé

+ (1 4dQ + s2) / L(E) llgilz, vI(&: b, @) — gil2, 0] (€, 8, ) || d€

where (7,t,z) € [a;, ] X [ai,c] x R™. From the Gronwall inequality we
deduce (8). This proves Lemma 2.1.

6. Integral functional equations. We denote by CL(B,R) the
set of all linear and continuous real functions defined on C(B,R). Let

I - |l« be the norm in CL(B,R) generated by the maximum norm in
C(B,R). For

W = [wg;], , Where w;; € CL(B,R)

1,j=1,..

we put

k
W e { 3 gl s 1<k},
j=1

Assumption H|[f,¢]. Assumption H[0,f,] is satisfied and

1) the derivatives

Ot = [0n, fil iz,

=1,.

"
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exist on Q and 0, f(-,z,w,q) : [0,a] = Myx, is measurable,
2) there exist on 2 the Fréchet derivatives

Owf = [8iji]i,j:1,...,k
and Oy, fi(t,z,w,q) € CL(B,R) for i,j =1,... ,k,
3) the function
6wf( 7$7w7q)X : [O,G] — Mka7
8wf( 7m7w7q)X = [awjfi('7m7w7Q) X]i,jzl,...,k’
is measurable for each X € C(B,R), (z,w,q) € R" x C(B,R*) x R",
4) there are g, 8 € L([0, a], Ry) such that
||f(tamaw7Q)”00 < Olo(t),
102 f (&, @, w,q)|| < B(t), [|0wf(t 2, w,q)|l« < B()
and
102 £ (t, ,w,q) — 0= f (t, 2, W, q)|| < L(t) |||z — ]|
+ w5 +lg - all ],
||3wf(t,ac,w,q) - 8wf(t73_37m7 Q)”* S L(t) [”‘T - .’1_3H + ||U) - ’U_}HB
+llg — all]
for (z,w, q), (Z,w,q) € R*xC(B,R*)xR" and for almost all ¢ € [0, a,
5) there is a @ € Ry such that

109" (t, ) = 8,9/ (£, 2)|| < Qlle — ]| on E.

Let us denote by z and u the unknown functions of the variables (¢, z)
where

z = (217“ . ’Zk)T7 u = [uzJ]z: yeeesky
j=1,...,n
Write
U’(t,x) = [(uij)(t,z)]i:L...,k,a u[z] = (ui17 e ,'U/in),
j=1,...,n

Dpuf) = [0z, wiv , Opugy = (Bt -+ Opuin) "

v,u=1,...,n
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where i =1,... , k. Set

Wlz,u] = [Wiz, u]]z:l Ky

j=1,...,n

Wiglz,u] = (Wﬂ[z,u],... ,Wm[z,u]), 1=1,...,k,

and
Wiilz, u](t, x)
k n
= Z O, o (b, @) O, fi (t, T, 2,205 ui) (B @) (Wpw)p(t,0)
p=1lv=1

fori=1,... ,k, j=1,... ,n. Set
Plz,up](7,t, x)
= (7-7 gi [Z, u[l]] (T’ t, l‘)a (71,95 [z, up) (7,t,@)) » U[i] (7-7 gi [Z, u[l]] (T’ t, l‘))) :
Let us denote by

Flz,u] = (Fl[z, ul, ... ,Fk[z,u]),
G[Z, u] = [Gi]’ [Z, u]] i=1,...,k,

j=1,...,n

Gplzyul = (Galoyud, .., Ginlzyul), i=1,... K,
the functions given by
Filzul(t,2) = pi(as, 0l w0, 2)
[ 1P w6t 2) - 8Pl w6 )
o ugy(é, gilz, upi (€, t, )] dé

i

and
G[z] [Za u] (ta x) = 89:801'(“1'7 gi[za u[l]](aza t, x))
+ [ {ousiPleual(e t.0)

+ Wil ul(€, gile, w61, @) | de,
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where? =1,... ,k. We shall consider the following system of functional
integral equations

(11) zi(t,x) = Fi[z,u)(t,z), uy(t,z) = Gpylz,ul(t, x),

(12)  gileup)(ntoe) = o+ / 0, f+(Pleyugy) (€1, 2)) dE,

where i = 1,... ,k and
(13)
zi(t,x) = pi(t, ), up(t,z) = Oppi(t, ) on [—do, a;]xR" for 1 < i < k.

The proof of the existence of a solution of (1), (2) will be based on the
following method of successive approximations. Suppose that ¢ € K
and Assumption H[f,1] is satisfied. We define sequences {z(™} ,
{u{™} where

Hm) (z£m), e ,z,(cm))T, wl™ — [ugn)]zzllk,
Jj=1,...,n
ug]n):(ugn),...,ugzn)), i=1,...,k,

in the following way. We put first

2O(t,2) = pi(t,z) on Fou,

(14)
250) (t,z) = pi(a;,z) on [a;,c] x R",
and
ug}) (t,2) = Orpi(t,x) on Egy,,
(15) (

u[g(t,m) = 0zpi(ai,z) on [a;,c] xR,

and we take ¢ = 1,...,k in the above definitions. Suppose that
(20 u(™) where 2(™) : [=dy,c] x R® — RF, u(™) : [—dy,c] x R* —
My «n, are known functions. Then ug]nﬂ) is a solution of the functional

integral problem

(16)  ug(t,z) = G lugg |t ), (t@) € Bos U (las,c] x R™),
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Gy (@) = Buvpi(ai, gil ™) wgg)(ais £, )
t
+ [ {0 Pl (e, 2)
on [a;,c¢] x R™ and
G lug)(t, ) = dopi(t,z)  on By,
and
W, ugg] = (WY ), WS ™, ),

where

W0 ) (8, )

k n
=3 0,0t @) Ou, £i (2, (™) it sy (6 2)) (w2 o)

p=1lv=1

fori=1,... k j=1,...,n. The function z2(™*1 is given by
17) 2"t 2) = B[z, 0™ (¢, z), () € [as,d x R”,

(18) 2™ (4 2) = gi(t, ) on Eo,

where i = 1,... , k.

Remark 3.1. The sequences {z(™} and {u(™} are obtained in
the following way. Suppose that z(™) : [~dy,c] x R* — RF and
u(™ : [~dy,c] x R® — My, are known functions. Let us consider
the classical Cauchy problem

(19) Dzt z) = filt, 7, (2" )y (e, Onzi(t, 7)),
(20) z(a;, x) = pi(a;, ) for x € R™



FUNCTIONAL DIFFERENTIAL SYSTEMS 217

where 1 < i < k. We adopt a method of quasilinearization for (19),
(20). We introduce first additional unknown functions uf; = 0.2 in
(19). Then we consider the linearization of (19) with respect to uj;; and
we obtain the differential equations

(21)  Opzi(t, z)
= fi( Q") um)(t, 2)) +04 £ QL= ] (8, ) )0 (Do 2 (8, ) —upy (¢, 2))
where

Q[Z(m)v u[i]] (tv x) = (tv T, (z(m))W(tyw)’ Ufs) (t’ m))

By virtue of (19) we get the following equations for uj;:

(22) + W[ w4, @)
+ 0g fi (Q[Z(m)au[i]](tax)) [3zu[i](t,$)]T

where

’VV[(Z'T) = (Wi(lm)a .- ’Wi(;n))’

k
= DD 0,0 (t,) 0, Fi QL") w1, 2)) (92,2 o)

and

[0zu)] = [0, uin]

It is natural to consider the following initial condition for (22):

v,j=1,...,n"

upg(as, ) = Oppi(ai, z), = €R",

where 1 < ¢ < k. System (21), (22) has the following property:
differential equations of bicharacteristics for (21) and for (22) are the
same and they have the form

0 (1) = 0, fi(Q="), u) (7, (7))
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We put ufﬁf) = 8zvz,(]n) in (22). Then we integrate (21), (22) along
the bicharacteristics gi[z(m),um](-,t,m) and we obtain the system
equations

zit,w) = File™ u)(t2), gy (t2) = G ug) (¢, ),
with initial conditions (13) where i =1,... , k.

We prove that there exists a solution ug]nﬂ)

and we define zl-(mﬂ)(t,x) = F; [z(m),ufir]”+1)](t, z) where i =1,... k.

of the second equation

4. Successive approximations for integral functional equa-
tions. The main difficulty in carrying out our construction of a so-
lution of (1), (2) is the existence of the sequences {z(™} and {u(™}.
We introduce some technical notations and assumptions. We define the
functions I, T' : [0,a] — R4 by

I(r) = 0() |ea + (1 + 1Q)(1 +dQ + 52) / "L(e)de

o +ad) | "5(0) df],

F(r) = O(r) o1 + (1 + dQ) / " 86 de + 25, | "a(e) de
+51(1+dQ + s2) /OT L(¢) df].

Assumption H,. The constantsd € R, s € Ri, 0 < ¢ < a, satisfy
the conditions

1270, swza++nnQ) [ "B(E)de, 52> T(e)

y(r) = T()a(r) + (L +ns1Q)B(7), A7) = (s1+T(e))al7) + ao(r),

where 7 € [0, c].
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Theorem 4.1. If Assumptions H[f,v], H, are satisfied and ¢ € K,
then for any m > 0 we have

(I,) 2™ and u™ are defined on [—do,c] x R™ and

M Cy.cld, Al u(gz) € Coy,.c[s,7] fori=1,... k.

3

(IL,) 8zz§m) = uE.m) on laj,c] x R™ fori=1,... k.

Proof. We prove (I,;,) and (I1,,) by induction. It follows from (14),
(15) that conditions (I) and (II) are satisfied. Suppose now that (I,,)
and (II,,) hold for a given m > 0. We will prove that there exists a

u&nﬂ) : [=do, ] x R™ — R™ and u&nﬂ) € Cop,.c[s,y| fori=1,... k.

Suppose that 1 < i < k is fixed. We claim that
(23) GE:]n) : Oacpi.c[877] — C&Pi-c[svw]'
Indeed, it follows from Assumption H[f, ] and from Lemma 2.1 that

1G]t ) < 1 + (14 ns1Q) / Ble

and

||G[z] [uga] (8, ) — sz]n) [uga) (5, 7) |

) H /tta(sdf) tle fu] e +nle)‘ /ttﬁ(s) ds‘

where (¢, ), (t,Z) € [a;,c] x R". By Assumption H, we obtain (23).
It follows that there is a 3 € L([a;,c],R) such that

t
|G w8, =) — G [ (4, @) || < / B(&) lluy — e )

where up;), U] € Cay,.c[s,7]. For the above up;, up;) we put

[‘U]i] —ﬂ[i]” = sup {Hum ]H (t,R") exp / B df t S [az, ]}



220 ZDZISLAW KAMONT

Then we have

G fugl ¢, ) = GVl (¢, 2) |

(g — G /6 exp /6 ) dr) de

%Uuz]*umﬂ exp[/ V(&) dé],

@

| A

IN

and consequently,

(G Tum] = G lag)l] <

4] [upg — ]

l\:JIr—\

From the Banach fixed point theorem it follows that there exists exactly
one uET]nH € Chy,.c|5,7] satisfying (16). Then we have proved that

there exists exactly one u(™+1) : [—do,c] x R™ = Mpxn.
It is easily seen that z(™*1) € (O, .[d,\] where 2(™*D is given
y (17), (18). Now we prove that z(™*+1) satisfies the condition:

8 ZmTY = ug}nﬂ) on [a;,c] x R" for 1 <i < k.

Suppose that i, 1 < i <k, is fixed and

Ult,2,7) = 2"V (t,2) = 2"V (t,2) = uf] TV (t,2) 0 (7 - @)

where (¢, ), (t,T) € [ai,c] x R™. We prove that there is a C' € Ry such
that

(24) U(t,2,3)| < Clle — ]
Write

g™ (r,t,w) = gi[) uT V) (7 8, @),

P (&, t, )
= (é.’gl(m) (f,t,:l?),( ( ))1’[)(5 g(m)(§ t :v) 7u[;]n+1)(£ gz (£,t,$))),

QM (&, t,x,Z,7) =7 P™(E,t,T)+ (1 —7) P (¢, t,a), 0< 7 <1,
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and
k
B Fi(PU(€,8,2)) % (20™) e ) = 3 0us Fi P (E,8,2)) 5 (2™ 6.
j=1

where 1 < ¢ < k. It follows from (16), (17) that
(25)
U(t7 z, E) - @i(aia g(m) (aia t7 E)) - Sai(aia g(m) (aia t7 CE))

+ / [£i(P™(&,t,7)) — f;(PM™(¢,t,x))] de

i

— | 0 f:(PU (&1, 7)) 0 uf (€, 0i™ (6,8, 7)) dE

+ [ Bufi(PU™M (g t,m) 0w TV (€, g™ (6,8, 7)) de

ag

— 0ppi(ai, 0™ (a5, t,2)) o (T — 2)
t
- / Bufi (P ) dE o (7~ a)

t
_/ Wﬁ?") [2(m), [(ZTH)]( (m)(g,t z))déo (T —z).

For simplicity of formulation of the next properties of the function U
we define

ng(t,.’ﬂ,f) = w(aiaggm)(aiataf)) - <p(a’iag£m) (a’iatax))
- z@(alag@(m) (aiatax))
[gz(m)(ai t,T) — gz(m)(ai,t,x)],ﬁ(t,m,f)

/ / [0:£:( Q™ (&, t,2,7, 7)) — 8 f;(P™(&, 8, z))] dr
o [gz(m) (gataf) - gz(m) (é.atam)] df

/ / B F(QU (€, 1,2, , 7)) — Bs f:(P™(€, 1, 2))] dr

2(m)

) _
)zp(s 9™ (&,6,D)) ( zp(s,gﬁ’")(f,t,z))] dg

/ / [0,/:(QU™ (€,1, 2,7, 7)) — 8, f:(P™ (€, t, 2))] dr
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o [ull (€, 9™ (6,1,7) — u{ (€, 6{™ (€., 2))] de,

and
U*(ta z, f) = 61‘()01'((”7 gl(Tn) (aia tv CU))
o [gi™ (ai,t,7) — g{"™ (ai,t,0) — (T — 2)]

/ 00 f:( P (€,t,))
o [g\™(&,t,7) — o™ (&, t,0) — (T~ x)] d¢
/ W, ) (€, 6™ (6,1, 2))
[ (€t,7) — g™ (€t w) — (7 - )] de,
ot 2,7) / B fi (P (£,1, 7))
* [y 9™ (,,7) = (™), o (et 96
/ W0, um (e, g™ (¢, 1, 2))
o [g™ (&, t,7) — g™ (&,1,0)] dg

and

(t,2,3) / 0, i (P (€, t,2)) o uly (€, g™ (€1, 7)) de

) O (P )
o [u f:]”l”(g ?m)(f £,7) —u V(& 9™ (& 1, @))] de
/ 0, i (P (¢,1,2)) o ulf (€, 0™ (6,1, 7)) de.
By using the Hadamard mean value theorem to the difference

fi(P™(€,,7)) — f;(P™(€,,2))

and adding and subtracting gl (5 t,T) — gl(m) (&,t,z) in the last three
terms in (25) we can assert that

U(t,2,T) = Uy(t, &, ) +U(t, 2, 7) + Uy (t, 2, T) + Uy (t, 2, T) + Uy (L, z, T).
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It follows from Assumption H[f, %] and from Lemma 2.1 that there is
a (1 € Ry such that

|U<P(t7xa§)| < 01”3: - §H27 |ﬁ(t7xaf)| < ClHI‘ - f||2
According to (II,,) and Lemma 2.1 we have
|Uw (t, 2, 7| < Cal|z — Z||?

with Uy € Ry. It follows from Lemma 2.1 that the bicharacteristics
satisfy the condition

g™ (1,0 (rtx) = g™ (€, 1 2)

where &, 7 € [a;,c], (t,z) € [a;,c] x R™. The above relations and (16)
imply

(26)

uEiT}’H_l) (Ta ggm)(’rat’x)) = achl(ahgz(m) (ai,t,x))+/ [aﬁfZ(P(m)(Eatax))

+ W )€, g™ (6 1 )] de.

We conclude from (12) and (26) that
U*(ta zZ, f) = awgpi(aia gl(m) (aia t7 CL’))

o [ 0uP 1,3 - 0Pt
3[mﬁwWMmm>

Awﬁ< "(r,1,)) - 0,4:(P™ (r,t,0))] dr dg
+LWwwwmw?“m¢¢m@um>

Awﬁ< "(r,1,3)) - 0,4:(P™ (r,t,0))] dr dg
= [ B 5,07 - 0,5, 1,2))

i
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o {aw(pz(alagl(m)(azatax)) +/T azfl(P(m)(gatam))dg

+ / WP 0, uf V)€, 0™ (€ 8, ) de | dr

i

- [P 2 - 0Pt
oui (7, g™ (7,1, ) dr.
The result is
U,(t, 2, %) + Uy (t, 2, %)
:/ By f:(PU™ (7, ,)) — 0, f:(P™ (7,1, 2))]

o [u[;]'z+1)(T gz( )(Ta taf)) - ug]nle)(T? gl(m) (T7 i CE))] dr.

It follows that there is a C € R such that
U, (t,2,7) + U.(t,2,7)| < Cllz —T|*

This establishes the formula (24). From (24) we conclude (I1,,1).
This completes the proof of the lemma. o

Now we prove that the sequences {z(™} and {u(™} are convergent.

Lemma 4.2. If Assumptions H[f,y] and H, are satisfied and
¢ € K, then the sequences {z(™} and {u™} are uniformly convergent
n [—dg,c] X R™.

Proof. Write

m m m—1 m m m—1
ZI () = 2™ = 2 Pl U @) = Jul? - ul Y eme,

where t € [—dy,c],i=1,...,k, m>1and

ZM () = max{Z™(t): 1<i<k},
U™ (t) = max{U™ () : 1<i <k}
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It follows from (16), (18) that Zi(m)(t) =0, Ui(m)(t) =0fort €
[_doaai]a 1 S i S ka and there are Yo, Y15 V2, 5/07 5/17 5/2 € L([O,C],R+)
such that

200 < [ @2 de + [ e uie) de
(27) “

¢ 1
+ [ Uit de

and
¢

000 < [ @7 ©de+ [ 30U de

s

(28) ;
~ m—+1

+ [ aa(©U©de

where t € [a;,c], 1 <i <k, m > 1. We conclude from (28) and from

the Gronwall inequality that
(29)

Ul () < { / 50(6) 2™ (¢) dé+ / OUm @) ds} exp [ / 5 (5)} ,

where t € [a;,¢], 1 < i < k. It follows from (27), (29) that there is a
4 € L([0,c], R4) such that

(30) Z™M*V(t) + UM+ (1)
< / 5(6) (20 () + U™ ()] de, te[0,d], m> 1.

Write
v () = zM &) + U™ (), telo,d,

and
IVe™ ] = sup {V(m)(t) exp [-2/&@) dr} e [O,C]}.
We conclude from (30) that
v < [[vm)] /0 5(6) exp [2 /0 E&(r) df] dé

<

W jess | [ ) o), ten

N | =
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and consequently

(31) (vt < [V, m > 1.

N | =

There is a C' € R, such that [[VW]] < C. From (31) we conclude that
lim [[V™]] =0,

m—r 00

and the lemma follows.
5. The main theorem.

Theorem 5.1. If Assumptions H|[f,v], H, are satisfied and ¢ € K
then there is a solution 2 = (Z1,... ,Z) : [~do, c]xR™ — R* of problem
(1), (2). Moreover, z € Cy.c[d,N] and 0;Z; € Cay, c[s,7] for 1 <i <k.

Proof. Tt follows from Lemmas 4.1 and 4.2 that there are

z2€Cyeld, N, 2= (Z1,...,%), and @= [aij ]i:l,...,kj:l,...,n’
g = (Uit - - - > Uin) € Cop,.cls,y] fori=1,... k
such that
rr}gnoo 2 (t7 x) - Zl(t7 x)a n}gnoo UM (t7 x) U4 (ta .’13), i=1,... kK,

uniformly on [a;,c] x R™. Furthermore, 0,%; exists on [a;,c] x R™ and
0.%; = apy for i = 1,... k. Thus we get from (17) that

Zi(t,x) = @i(aiagi(aivt7x)) +/

a

' fi (P[Z, ale](é-, t, m)) d€

(32) _ / 0ufi (P12, 0.5](&, £, @) 0 0. 7:(€, 3(€, £, ) dE,

i=1,...,k,

where g;(&,t,2) = gi[Z, 0:Z] (€, t, ). Now we prove that Z is a solution
of (1). Suppose that 7, 1 < i < k, is fixed. For a given z € R™ we put
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y = gi(a;,t,x). It follows from Lemma 2.1 that g;(7,t,2) = gi(7,a;,y)
for 7 € [a;,c] and (32) is equivalent to

(33)  zi(t,gi(t ai,y))
= ¢(ai,y)

t
+ / fl (Ta gi (Ta Qj, y)a Zi,b('r,g,-(r,ai,y))a 81‘21' (Ta gi (Ta Qj, y))) dr

t
_/ 8qfi(7—agi(7_aaiay)vZw(‘r,gi(‘r,ai,y))v8z2i(7—7§i(7—7aiay)))
o awzi (T7 gz (Ta A, y)) dr.

The relations y = g;(a;,t,z) and x = g;(t, a;,y) are equivalent for
z,y € R", t € [a;,c]. By differentiating (33) with respect to ¢ and by
putting again x = g;(¢, a;, y) we obtain that Z satisfies (1) for almost
all t € [a;, c] with fixed x € R™. It is easily seen that Z satisfies (2).

This completes the proof. ]

Remark 5.2. Suppose that all the assumptions of Theorem 5.1 are
satisfied and that the functions

f('axawa(J)a 8z‘f('7$7waq)7 awf('7$7w7Q)7 aqf('amawaq)

are continuous on [0, a] for (z,w,q) € R™ x C(B,R*) x R™. Then there
is a classical solution Zz : [~dp, c] x R® — R* of (1), (2).

Acknowledgments. The author thanks the Referee for several
helpful comments.
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