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FILTERS IN ORDERED I'-SEMIGROUPS
KOSTAQ HILA

ABSTRACT. In this paper we characterize the principal
filters on any ordered I'-semigroup M and their structure and
properties are investigated by using the relation N which
is the smallest complete semilattice congruence on M. In
particular, we prove that every principal filter of any ordered
I'-semigroup M can be uniquely determined by its A -classes
of M. Also, by using the relation A/, we will observe that '
on any ordered I'-semigroup M is the equality relation on M if
and only if M is a semilattice such that a < aya foralla € M,
v €T, and N is the universal relation on M if and only if M
is the only principal filter. We also investigate properties of
the complete semilattice congruence classes of M.

1. Introduction and preliminaries. In 1987, Kehayopulu [8]
introduced the concept of filter in poe-semigroups. Later Kehayopulu
[12] defined the relation N on a po-semigroup and obtained some
results. Various kinds of ordered semigroups have been widely studied
by many authors [1, 2, 8-14, 17, 20] by using the notion of filter
and the relation A. In [15] Kwon introduced the concept of filter
and the relation AV in ordered I'-semigroups and obtained some results
extending those for ordered semigroups. Also, in [3, 4] we have used
these notions to characterize some classes of ordered I'-semigroups.
In the present paper we give some new results extending those for
ordered semigroups, dealing with the principal filters on any ordered I'-
semigroup M and their structure and properties, which are investigated
by using the relation N which is the smallest complete semilattice
congruence on M. In particular, we prove that every principal filter
of any ordered I'-semigroup M can be uniquely determined by its N-
classes of M. Also, we will consider a structure of principal filter on
ordered I'-semigroups and by using the relation N, we will observe that
N on any ordered I'-semigroup M is the equality relation on M if and
only if M is a semilattice having the property a < ava for all a € M,
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~ € T', and N is the universal relation on M if and only if M is the
only principal filter. We also investigate properties of the complete
semilattice congruence classes of M.

We introduce below necessary notions and present a few auxiliary
results that will be used throughout the paper.

In 1986, Sen and Saha [19] defined I'-semigroup as a generalization
of semigroup as follows:

Definition 1.1. Let M and I' be two nonempty sets. Denote by
the letters of the English alphabet the elements of M and with the
letters of the Greek alphabet the elements of I'. Then M is called a
I'-semigroup if there exists a mapping M x I' x M — M, written as
(a,7,b) — avyb satisfying the following identity

(aad)Be = aa(bBc) for all a,b,c € M and for all o, 8 € I.

A T-semigroup M is called commutative I'-semigroup if for all a,b €
M and v € T, ayb = bya. A nonempty subset K of a ['-semigroup M
is called a sub-I'-semigroup of M if for all a,b € K and v € I'; ayb € K.

Examples of I'-semigroups can be found in [18, 19].

Definition 1.2. A po-T'-semigroup (: ordered T'-semigroup) is an
ordered set M at the same time a I'-semigroup such that for all
a,b,c € M and for all v € T’

a < b= ayc < byc,cya < cyb.

Example 1.3. Let M be the set of all 2 X 3 matrices over the set
of positive integers, and let I be the set of all 3 x 2 matrices over the
same set. Then M is a I'-semigroup with respect to the usual matrix
multiplication. Also M and I' are posets with respect to “<” defined
by (air) < (by) if and only if a;r < by for all 4,k. Then M is a
po — I'-semigroup.

Example 1.4. Let G be a group, I, A two index sets and I' the
collection of some A x I matrices over G° = G U {0}, the group with
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zero. Let u® be the set of all elements (a);, where i € I, A € A
and (a);y the I x A matrix over G° having a in the ith row and Ath
column, its remaining entries being zero. The expression (0);) will be
used to denote the zero matrix. For any (a)ix, (b);u, (¢)k € p° and
a = (pri), B = (qni) € T we define (a)ire(b);j, = (apa;b)ip. Then it
is easily verified that [(a);rc(b);.]B(c)kv = (a)ire[(b);.0(c)ky]. Thus
p? is a I'-semigroup. We call I' the sandwich matrix set and pu° the
Rees I x A matrix I'-semigroup over G° with sandwich matrix set I’
and denote it by u°(G : I,A,T). In [5] we deal with lattice-ordered
Rees matrix I'-semigroups.

Example 1.5. Let M be the set of all integers of the form 4n + 1
and I the set of all integers of the form 4n+ 3, where n is a nonnegative
integer. If aab is a + o + b and aaf is a + a + B (usual sum of the
integers) and a < b means a is less than or equal to b for all a,b € M
and a,f € I', then M is a po — I'-semigroup.

Example 1.6. Let M be the set of all isotone mappings from a poset
P into another poset @ and I' the set of all isotone mappings from the
poset @ into the poset P. Let f,g € M and « € I'. Denote by fag the
usual mapping composition of f,« and g. Then M is a ['-semigroup.
We define a relation < on M by f < g if and only if af < ag, for all
a € P. This relation is a partial order on M and as such M is a poset.
We also define a relation < on I' by a < 3 if and only if za < z3, for
all z € Q. For this relation I' is a poset. Then M is a po—I'-semigroup.

Example 1.7. For a,b € [0,1],let M = [0,a] and " = [0,b]. Then M
is an ordered I'-semigroup under usual multiplication and usual partial
order relation.

Example 1.8. Fix m € Z, and let M be the set of all integers of the
form mn+1 and I' denotes the set of all integers of the form mn+m—1
where n is an integer. Then M is an ordered I'-semigroup under usual
addition and usual partial order relation.

Throughout this paper, M stands for an ordered I'-semigroup. For
nonempty subsets A and B of M and a nonempty subset IV of T', let
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AT"B = {avb:a € A,b € B and v € I'}. If A = {a}, then we also
write oI B instead of {a}I”B, and similarly if B = {b} or IV = {y}. A
nonempty subset A of M is called a right (respectively left) ideal of M
if

(1) ATM C A (respectively MT' A C A)

(2)acAb<aforbe M =be A

A is called an ideal of M if it is right and left ideal of M.

Let T be a sub-I'-semigroup of M. For A C T we denote

(Alr ={teT |t <a, for some a € A}
[A)r = {t € T|t > a, for some a € A}.

If T = M, then we always write (A] (respectively [A)) instead of
(A]nr (vespectively [A) ). Clearly, A C (A]r C (A] and A C B implies
that (A]y C (B]r for any nonempty subsets A, B of T. For A = {a},
we write (a] (respectively [a)) instead of ({a}] (respectively [{a})).

An ideal T of M is said to be prime if AI'B C T implies that A C T
or B C T, where A, B C M or equivalently, an ideal T of M is said to
be prime if al'b C T implies that a € Tor b € T (a,b € M) [9, 15]. An
ideal T' of M is said to be semiprime if A'A C T implies that A C T,
where A C M or equivalently, an ideal T" of M is said to be semiprime
if al'a C T implies that a € T (a € M) [11, 16].

Definition 1.9 [8, 15]. Let M be a po — I'-semigroup and F a
sub-I'-semigroup. Then F is called a filter of M if

(1) a,be Myaybe F (yel')=>ac FandbeF
(2)ae F,a<c(ce M) = cée F or equivalently [F) C F.

Lemma 1.10. Let Fy, Fs be two filters of M. Then the intersection
Fy N Fy, if it is nonempty, is a filter of M.

Proof. Tt can easily be verified from the definition above. O
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Lemma 1.10 shows that the intersection of a finite number of filters
of M, if it is nonempty, is a filter of M. It is clear that for every a € M
there is a unique smallest filter of M containing the element a, denoted
by N(a), which is called the principal filter generated by a.

The following example shows that, in general, the union of two filters
is not a filter.

Example 1.11. Let M = {a,b,c} and I' = {y} with the multiplica-
tion defined by
b fe=y=0
xyy=4qc¢c ife=y=c
a otherwise.

First we show that M is a I'-semigroup, suppose not. Then there
exist ,y,z € M such that (zyy)yz # zv(yvyz). If (zyy)yz = b, then
x =y = z = b. Thus zy(yyz) = b, which is impossible. If zy(yyz) = b,
then = y = z = b. Thus (zyy)yz = b, which is impossible. If
(zyy)yz = ¢, then x = y = z = ¢. Thus zy(yyz) = ¢, which is
impossible. If zy(yyz) = ¢, then z = y = z = ¢. Thus (zyy)yz = ¢,
which is impossible. Hence (zyy)yz = z7vy(yyz) for all z,y,z € M.
Obviously, zyy = yvx for all x,y € M. Therefore M is a commutative
I"-semigroup.

Define a relation < on M as follows:
<=1y U{(a,b), (a,c)}.

Then (M, <) is a partially ordered set. Let z,y € M be such that
x < y. Since zyz < yyz, zyx < zyy for all z € M and a < b,a < ¢,
then M is an ordered I'-semigroup.

It is easy to see that N(a) = {a,b,c}, N(b) = {b}, N(c) = {c} are
all the filters of the ordered I'-semigroup M. But N(b) U N(c) isn’t a
filter of M because byc = a is not in N(b) U N(c).

An equivalence relation  on M is called congruence [12, 15] if for
allyel' and c€ M,

(a,b) € R = (avyc,bye) € R, (eya, cyd) € R.
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A congruence R on M is called semilattice congruence [12, 15] if for
aly el and a,b e M,

(aya,a) € R and (avyb,bya) € R.

A semilattice congruence R on M is called complete [4, 14] if for any
a,be M,y €T, a<bimplies (a,ayb) € R.

We denote by “N” the equivalence relation on M defined by NV =
{(a,b) € M? | N(a) = N(b)} [9, 15]. N is a semilattice congruence on
M [15, Theorem 2.7]. We have proved that AV is a complete semilattice
congruence on M [4, Remark 2.17].

For any a € M, the N'-class containing a is denoted by (a)x and it
is clear that it is an ordered sub-I'-semigroup of M [4, Remark 2.3].
On the set M/N = {(a)x|a € M} we define (a)py(b)y = (avd)n,
for all (a)n, () € M/N, v € T. It is clear that the set M/N
is a I'-semigroup. In this set we define (a)pr < (b)a if and only if
(@) = (ayb)nr, for all v € T', then it can be easily seen that the set
M/N is an ordered I'-semigroup induced by the complete semilattice
congruence N on M [3, 4].

2. On the structure of principal filters. In [15] the following
lemma is proved as an easy modification of the Lemma in [12]:

Lemma 2.1. Let M be an ordered I'-semigroup and F a nonempty
set of M. Then the following are equivalent:

(1) F is a filter of M.
(2) M\F = @ or M\F is a prime ideal of M.

A direct result of above lemma is the following lemma.

Lemma 2.2. it If N(b) C N(a), then N(a)\N(b), if it is nonempty,
is a prime ideal of N(a).

The following lemma is an immediate result from the definition of the
principal filter.
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Lemma 2.3. Let a,b € M. Then b € N(a) implies that N(b) C
N(a).

Lemma 2.4. Let a,b € M. Then a < b implies that N(b) C N(a).

Proof. Since b > a then it is clear that b € N(a). By using Lemma
2.3, we have that N(b) C N(a). u]

Theorem 2.5. Let a € M. Then (a)x is a semiprime ideal of N(a).

Proof. We first prove that (a)r is a sub-I'-semigroup of N(a). For
any & € (a)pr, it is clear that # € N(z) = N(a). Thus we have
(a)py € N(a). Since N(a) is a filter of M, we have that zyy € N(a)
for any z,y € (a)p € N(a) and v € I'. By using Lemma 2.3, we
have N(zyy) C N(a) for all v € I'. Since xyy € N(z7yy) which is a
filter of M, we deduce that z € N(zvyy). By Lemma 2.3, we have that
N(a) = N(z) € N(zvyy) and N(zyy) = N(a). By definition, we see
that zyy € (a)n. Hence (a)ur is a sub-I'-semigroup of N(a).

We prove now that (a)a is an ideal of N(a). Assume that z € (a)n C
N(a) and y € N(a). Then zyy € N(a) since N(a) is a principal
filter. Hence N(zyy) C N(a) by Lemma 2.3. Since zyy € N(zvy)
which is a principal filter of M, we have z € N(zvyy) and so N(a) =
N(z) C N(zvy) by Lemma 2.3. Consequently, N(a) = N(zvyy), that
is, zyy € (a)n. Similarly, yyz € (a)nr.

In order to prove that (a)a is an ideal of N(a), we need to show
that ((a)v]n@) € (a)n- Assume that z € ((a)a]n(). Then there
exists t € (a)n such that x < ¢t. By Lemma 2.4, it is clear that
N(a) = N(t) C N(x). On the other hand, x € N(a). By Lemma 2.3,
we have N(z) C N(a), and N(z) = N(a). This implies that = € (a).
Hence ((a)a]n(a) € (a)a. Thus, we have shown that (a)a is an ideal
of N(a).

Finally, we prove that (a)a is a semiprime ideal of N(a). Let
z € N(a) and zyz € (a)y, for all v € T. Clearly, by Lemma 2.3,
N(z) € N(a). Also, since zyxz € N(z), for all v € T', we have by
Lemma 2.3 that N(a) = N(zyz) C N(z). Hence, we obtain that
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N(z) = N(a) which implies that « € (a)s. Thus, we have shown that
(a)n is a semiprime ideal of N(a). O

Theorem 2.6. Let a,b € M. Then (a)y = (b)a if and only if
N(b) C N(a).

Proof. Let a,b € M. Since (a)ar, (b)a are respectively semilat-
tice congruence classes of M, it is clear that (a)y =< (b)a implies
(a)py(b)ar C (a)u, for all v € T'. Hence, we have zyy € (a)p C N(a)
for any z € (a)p and y € (b)a. Since N(a) is a principal filter,
y € N(a). By Lemma 2.3, we have N(b) = N(y) C N(a).

Conversely, we only need to prove that (a)ay(b)a C (a)ar, (O)ny(a)a
C (a)u, for all v € T'. Suppose that z € (a)n and y € (b)ar C N(b) C
N(a). By Theorem 2.5, (a)u is an ideal of N(a). Hence, we have

zvy € (a)y and yyz € (a)y. This shows that (a)yy(b)y C (a)n,
(B)vy(a)ny € (a)y. O

Let us now consider the subset of M given by

K(a)={be M: (b)x > (a)n}

for any a € M.

Theorem 2.7. Let a € M. Then the following sets are equal:
(1) K(a) ={be M: (b)x > (a)x}-

(2) A={be N(a): (b)x > (a)n}.

(3) B = U{( v = (O = (a)n}

(4) € = N(a)\(a)n-

Proof. We prove that K(a) CAC B C C C K(a).

Let b € K(a). Since (b)ar > (a)x, by Theorem 2.6, we have
N(b) € N(a) and so b € N(a). This shows that K(a) C A. Clearly,
ACB.

Let € B. Then there exists b € M such that € (b)y > (a)n-
Hence, by Theorem 2.6, we have z € N(z) = N(b) C N(a). If
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z € (a)pr, then N(b) = N(z) = N(a) which contradicts N(b) C N(a).
Hence z € N(a)\(a)u, that is, B C C.

Let x € C. Then we have N(z) C N(a). Since z ¢ (a)n, then
N(z) # N(a) and so N(z) C N(a). Hence, by Theorem 2.6, we have
(x)v = (a)a, * € M. This shows that C C K(a) and the proof is
completed. ]

Corollary 2.8. Leta € M. Then N(a) = U{(b)n : (O)x = (a)x} =
{oeM:(b)y = (a)n}-

Proof. By the definition of K (a) and Theorem 2.7, we have N(a) =
(a)v U K(a) = (a)x U (H{(b)x : () = (a)n}) = U0y = (b =
(a)w}={be M: (b)x = (a)n}-

Using Corollary 2.8, we can easily see that every principal filter of an

ordered I'-semigroup M can be uniquely expressed by its A/-classes of
M. |

Example 2.9. Let M = {a,b,c,d,e, f,g} and T' = {y} with the
multiplication be defined by

ife=a,y€{a,clorz=y=borz=c,y=a
ife=a,y=borz=by€ {a,clorz=c,y=">
fer=y=c

ife=dye{dctorz=cy=d
fr=y=ceorz=y=Ff

vy =

fer=ey=forx=fy=e

Q@ ® Q. 0 o9

otherwise.

If we define a relation < on M as follows:

<=1y (J{(9,9), (9:0), (9,0), (9,d), (9, €), (9, f), (d, )}

then it can be easily verified that M is an ordered I'-semigroup. All
the N-classes of M are (a)y = {a,b}, (c)p = {c}, (d)x = {d},
(e)v = {e, f} and (9)n = {g}-
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We consider now the principal filter on M. By Corollary 2.8, we can
easily deduce that N(a) = N(b) = {a,b, c}, N(c) = {c}, N(d) = {c,d},
N(e) = N(f) = {e,f} and N(g) = {a,b,c,d,e, f,g}. Also, we have
that N(a) U N(d) isn’t a filter because ayd = g ¢ N(a) |JN(d).

From Lemma 2.1 and Corollary 2.8, we also have

Corollary 2.10. Let a € M. Then M\{b: (b)x = (a)n} is a prime
ideal of M.

To prove the following theorems we use some important notions and
results proved in [7, 1.3.2] for ordered semigroups, the modification of
which can easily be done for the ordered I'-semigroups.

Theorem 2.11. The following statement are equivalent:

(1) M is a semilattice such that a < avya, for alla € M, v € T.
(2) For every a € M,N(a) = [a).

(3) NV is the equality relation on M.

Proof. (1) = (2). Let M be a semilattice. For any a € M and
z,y € [a), we have > a,y > a. This implies that zyy > aya = a and
vy € [a) for all v € T. Hence, [a) is a sub-I'-semigroup of M.

To prove that [a) is a filter containing a, we suppose that b,c € M
such that byc € [a) for all v € T'. Then we have byc > a, for all y € T
Since M is semilattice, there exist 1,72 € ', such that b = by;b and
¢ = cygc. Since byc > a, for all v € T, then we have by;¢c > a and there
exists 72 € I' such that a = ay2by1c. Hence,

ay1b = by1a = ayabyiey1b = avyebyi1byic = a.
Also, there exists v3 € I" such that a = aysbyzc. Hence,
ayz2c = cy2a = avysbyacyac = avysbyzc = q,

and so b > a, ¢ > a. This shows that b € [a), ¢ € [a). Since [a) C [a)
always holds, [a) is a filter containing a, as required.

Let T be a filter containing a. By the definition of filters, we have
[T) C T. Since a € T, then [a) C [T) C T. Consequently, [a) is the
smallest filter containing a and then N(a) = [a).
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(2) = (3). Assume that aNb for a,b € M. Then [a) = N(a) =
N(b) = [b). Since a € [a) = [b) and b € [b) = [a), we have that
a > b,b > a and so a = b. This implies that A" = 1y,.

(3) = (1). For any a,b € M, we have (a)y = {a}, (b)p = {b}.
Since (a)n and (b)a are both semilattice congruence classes of M, it

is easy to see that (a)yy(a)x € (a)n and (a)ay(b)y = (D)ay(a)n
for all v € I'. Clearly, aya = a, ayb = bya. This shows that M is a
semilattice as required.

Moreover, the partial order on M is the natural order of semilattice.

Indeed: (a)y = (b)n if and only if (a)ay(b)x = (D)ny(a)y = (a)w,
for all v € I". Since N' = 17, we have that a < b if and only if
ayb = bya = a. o

Theorem 2.12. The following statements are equivalent:
(1) NV is the universal relation on M.
(2) M has only one filter and N(a) = M, for any a € M.

(3) M has only one complete semilattice congruence on M.

Proof. Since N is the smallest complete semilattice congruence on
M, it is trivial that (1) < (3).

(1) = (2). Since N is the universal relation on M which means that
for every a € M, (a)yr = M, we have that (a)yr € N(a) C M by
Theorem 2.5. Hence, N(a) = M as required.

(2) = (1). For any a,b € M, we have N(a) = M = N(b). This shows
that aN'b and N = wyy, as required. O

Theorem 2.13. Let o be a complete semilattice congruence on an
ordered T'-semigroup M and Y the semilattice M/o. Then for any
r €Y, we have

(1) M, is the union of some N -classes.
(2) The set T =U{My :y = x,y €Y} is a filter.

(3) For any a € M., N(a) = T if and only if o is the smallest
complete semilattice congruence on M.
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Proof. (1) Since N is the smallest complete semilattice congruence
on M, we have that (a,b) € N C o for every a € M, and b € (a)n. It
is clear that M, is a semilattice congruence class of M and so b € M,.
We have proved that (a)yr C M,. Consequently, Usenr, (a)ar € M.
Clearly, M, C Ugen, (a)a. Hence we have M, = Uzen, (a)ar- This is
exactly the union of some A -classes.

(2) To see that T is a filter, we first prove that 7" is a sub-T'-semigroup
of M. Since @ # M, C T, T is not empty. For any a,b € T, there exist
y,2 € Y such that a € My, b€ M,, y = z and z = x. This implies that
ayb € MyI'M, C Myr, and yyz = z, for all v € I'. Hence, ayb € T
and T is a sub-I'-semigroup of M.

Assume that ayb € T and a,b € M. Let y,z and t € Y such that
ac€ M, be M, ayb € M, and y = x, for all v € I'. This implies that
ayb € M, My C M,r¢y and zyt =y >~ z, for all v € I'. Since Y is a
semilattice, it is easy to see that z = x and ¢ > x. Thus, we have a € T
and beT.

For any a € [T'), there exists an element y € Y such that a € M,
and an element b € M, such that a > b, where z € Y and z > x. This
shows that ayb € MyI'M, C My, for all v € I'. Since o is a complete
semilattice congruence, we can see that (ayb,b) € 0. From b € M., we
immediately have ayb € M,. Then we have yyz=zandsoy > z = =
inY. Hence, a € T and [T") C T as required. We have shown that 7 is
a filter.

(3) If o is the smallest complete semilattice congruence on M, we
have 0 = N and M, is a N-class for every x € Y. Then we have
M, = (a) for any a € M,. T is the union of all the N-classes which
are greater than (a)a. This is exactly the set U{(b)x : (b)x = (a)n}-
By Theorem 2.7, N(a) =U{M, :y = z,y € Y}

Conversely, suppose that (a,b) € o and a € M,; then we have b € M,,.
Since N(a) = U{My : y = z,y € Y} for any a € M., we now have
N(a) = N(b) and (a,b) € N, then ¢ C N. Since A is the smallest
complete semilattice congruence on M, we have o = N thus, o is the
smallest complete semilattice congruence on M. ]

The following proposition is an immediate corollary of the above
theorem.
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Corollary 2.14. Let o be a complete semilattice congruence on an
ordered T'-semigroup M and Y the semilattice M/o. For any x € Y
and a € My,N(a) CU{M, :y = z,y € Y}.

Corollary 2.15. Let o be a complete semilattice congruence on an
ordered I'-semigroup M and Y the semilattice M /o. If there exists a
mazximal element x € Y such that M, has no proper sub-I'-semigroups,
we have N(a) = M, for any a € M,.

Proof. Assume that z is a maximal element in Y. By Corollary 2.14,
we have N(a) CU{M, :y > z,y € Y} = M, for any a € M,. This
shows that N(a) is a sub-I'-semigroup of M,. Since a € M,,, we have
that M, is nonempty. Since M, has no proper sub-I'-semigroups, we
have N(a) = M,. O

Example 2.16. Let M = {a,b,c,d,e, f,g} and T = {y} with the
multiplication defined by

a ifz=a,y€{a,ceqg}orz=cyéc{aeg}
orz=ey€ {a,c}
orz =g,y € {a,c}

c ife=y=c
zyy=4d fz=dye{cdlorz=cy=d
e fze=eyefe,gtorz=gy=e
f ifr—ey=fora=fyclefiglora=gy=f
g fz=g,y=gyg
b otherwise.

If we define a relation < on M as follows:
S:: 1M U{(a7 C)7 (a7 e)’ (a7 g)7 (b7 a)’ (b7 C)7 (b7 d)’
(bs€), (b, f), (b, 9),(d,c), (e, 9), (f.€), (f,9)},

then it can be easily verified that M is an ordered I'-semigroup. We
now define a complete semilattice congruence o on M as follows:

o:=1ym U{(aa b)a (ba a)a (C, d)a (da C), (6, f)a (fa 6)}
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Then M/oc = {{a,b},{c,d},{e, f},{g}}. If we denote M, = {a,b},
M, = {c,d}, M, = {e,f}, My = {g}, the order on semilattice
Y = M/o is shown below.

2= {(:c,x), (yay)a (Z, Z)a (tat)

(may)v (m’z)v (:E,t), (zvt)}

It can be easily seen that M is a semilattice. By Theorem 2.11, we
can easily see that N(a) = {a,c,e,g9}, N(b) = {a,b,¢,d,e, f,g}, N(c) =
(e}, N(d) = {e,d}, N(e) = {e.g}, N(/) = {e, f 9}, N(g) = {g} and
N = 1. By Corollary 2.14, we can see that N(a) C M;UM,UM_,UM,,
N(b) € M,UM,UM,UM,, N(c) C M,, N(d) C M,, N(e) C M,UM,,
N(f) € M, UM, and N(g) = M; by Corollary 2.15.
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