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PROJECTIVE OPERATOR SPACES,
ALMOST PERIODICITY AND COMPLETELY
COMPLEMENTED IDEALS IN
THE FOURIER ALGEBRA

BRIAN FORREST

ABSTRACT. We will show how projective operator spaces
arise naturally as spaces of almost periodic functions. In par-
ticular, we will show that a locally compact group is compact
if and only if its Fourier-Stieltjes algebra (or equivalently its
Fourier algebra) is projective as an operator space. From this
we see that if K is a compact subgroup of G, then the ideal
I(K) is completely complemented in A(G).

1. Introduction. The notion of an operator space as a quantized
analog of a Banach space has gained considerable attention of late.
Four of the principal objects of abstract harmonic analysis; the group
algebra L'(G), the measure algebra M(G), the Fourier algebra A(G)
and Fourier-Stieltjes algebra B(G) of a locally compact group, are op-
erator spaces by virtue of being preduals of von Neumann algebras.
In commutative harmonic analysis, the fact that these algebras are
preduals of von Neumann algebras is seldom if ever considered. Gener-
ally speaking, the same is true of the study of the algebras L!(G) and
M (G) even for noncommutative groups. However, for the Fourier and
Fourier-Stieltjes algebras of noncommutative groups one can not stray
far from the world of operator algebras. For this reason, it seems very
natural to include the operator space structure as part of our work-
ing environment. In this paper, we will show how for certain types
of problems concerning the Fourier and Fourier-Stieltjes algebras this
additional structure is essential. We will also illustrate how the oper-
ator space structure was actually playing a fundamental role even in
the study of commutative groups or in the study of L!(G) and M(G)
without our noticing.

To begin with, we note that the group algebra and the measure
algebra are in a strong sense dual objects of the Fourier and Fourier
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algebras, respectively. This can be made more precise when G is an
abelian group in that the classical Fourier-Stieltjes transform yields
an isometric algebra isomorphism between M (G) and B(G), where G
denotes the dual group of G, which when restricted to L'(G) yields
A(@) In both cases the correspondence also preserves the operator
space structure. However, when G is nonabelian the duality is more
philosophical in nature. Still, one can very often translate theorems
about L!'(G) and M(G) into corresponding conjectures about A(G)
and B(G), respectively. While this principal is valid in a surprising
number of circumstances, and it even ”preserves” the main aspects
of Pontryagan’s duality, it fails miserably with respect to problems of
cohomology. The reason for this stems from the fact that, while it
can be seen that the operator space structures on L!'(G) and M(G)
are essentially redundant, for nonabelian groups the operator space
structure of the Fourier algebra A(G) is known to carry important
information about both A(G) and the underlying group that cannot be
obtained from studying its structure as a Banach algebra alone. The
first striking illustration of this was an important cohomological result
due to Ruan [35] which will be outlined below.

In [22] Johnson introduced the notion of amenability for a Banach
algebra. (A Banach algebra A is amenable if every bounded derivation
from A into an arbitrary dual Banach-bimodule X is inner. A is
weakly amenable if every bounded derivation from A into .4* is inner.)
He also established a fundamental connection with the more classical
notion of amenability for a locally compact group by showing that G
is amenable if and only if the group algebra L!(G) is amenable as
a Banach algebra. Since amenable Banach algebras always contain
bounded approximate identities and since it is well known that A(G)
has a bounded approximate identity if and only if G is amenable, our
duality principal would suggest that it would be reasonable to speculate
that A(G) would be amenable precisely when G is also amenable.
However, Johnson [23] eventually provided examples of compact groups
for which A(G) is not even weakly amenable as a Banach algebra.
Indeed, the author and Runde have recently shown that the only groups
for which A(G) is amenable are those groups with abelian subgroups of
finite index [17]. The key to the difference in behavior between the two
settings, A(G) versus L!(G), seems to lie in the fact that while there is
always a natural identification between L'(G)®L'(G) and the algebra
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LY(G x @), it is known that the natural mapping from A(G)®A(G)
into A(G x G) is surjective if and only if G has an abelian subgroup
of finite index [31]. This in turn can be shown to be a consequence of
the fact that a group has an abelian subgroup of finite index precisely
when the irreducible representations are of bounded finite degree [31].
In contrast, if we replace the Banach space projective tensor product
with the operator space projective tensor product, we get a complete
isometry between A(G)®.,A(G) and A(G x G). Ruan was able to
exploit this identification to show that the proper notion of amenability
for A(G) is operator amenability in that the group G is amenable if and
only if A(G) is operator amenable (see [35] for the relevant definitions).

Carrying on with the theme, we note that Johnson has shown that
the group algebra L'(G) is weakly amenable for every locally compact
group [24]. That is, every bounded derivation from L'(G) into L= (G)
is inner. Again, our principle of duality could lead us to speculate
that the Fourier algebra might also share this property. In fact, as
was indicated earlier, in stark contrast with the case of the group
algebra it is known that there are compact groups for which the
Fourier algebra fails to be weakly amenable. However, Spronk [37]
has recently established what is surely the proper analog of Johnson’s
weak amenability theorem by making use of the operator structure to
show that the Fourier algebra of every locally compact group is operator
weakly amenable.

In [26, 27, 28], Khelemskii has given a detailed analysis of the
homological properties of Banach and topological algebras. As our final
illustration of our thesis that the operator structure contains important
information, we will focus on one of Khelemskii’s results, namely that
L'(G) is biprojective in the category of Banach spaces if and only if
the group G is compact. Biprojectivity is a rather strong property
and as such we would expect to find that the class of groups for which
A(Q) is biprojective to be rather restricted. Still, by appealing to the
duality between compact and discrete groups, one might hope to show
that A(G) would be biprojective if and only if G is discrete. While
Khelemskii’s result shows that this is true for abelian groups, we should
not be surprised to find that this is not true in general. For example,
in [38], Steiniger showed that if F5 is the free group on two generators,
then A(F3) is not biprojective. Moreover, since biprojective algebras
with approximate identities are known to be amenable, the above
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discussion leads us to conclude that the only amenable groups for which
A(QG) is biprojective in the category of Banach algebras are discrete
groups with abelian subgroups of finite index. It is therefore worth
noting that as part of a pair of recent studies on the operator space
analogs of the basic concepts from homology including biprojectivity,
Wood [39] and Aristov [6] were independently able to establish the
natural analog of Khelemskii’s result quoted above by showing that
A(Q) is operator biprojective if and only if G is discrete, lending further
evidence to the theory that operator spaces provides the appropriate
category for studying the homological or cohomological properties of

A(G).

In this paper, we will continue this theme that the operator structure
for A(G) carries vital structural information. However, rather than
focusing on cohomological or homological properties we shall focus
on a variant of Grothendieck’s notion of projectivity for a Banach
space [19]. Indeed, in [8], Blecher considered the operator space
analog of projectivity for a Banach space. In particular, he was able
to completely characterize those preduals of von Neumann algebras
which are projective as operator spaces. In this note, we will show
how projective operator spaces arise naturally as spaces of coefficient
functions of finite dimensional representations of a locally compact
group G. Along the way, we will show that the operator space version
is again the proper formulation when considering projectivity for the
Fourier and Fourier-Stieltjes algebras of a noncommutative locally
compact group. In particular, we will show that A(G) is projective
as a Banach space if and only if G is compact and abelian while it is
projective as an operator space if and only if the group is compact.

Finally, we will connect projectivity for operator spaces with some
well-known geometric properties of Banach spaces and then apply what
we know to the problem of identifying some completely complemented
ideals in the Fourier algebra. of various locally compact groups.

2. Preliminaries. Let G be a locally compact group with a fixed left
Haar measure pug. We will let L'(G) denote the group algebra of G and
M (G) denote the measure algebra of G. It is a standard fact that M (G)
decomposes into a direct sum M (G) = M4(G)® M,(G)® M,(G) where
M4(G) denotes the discrete measures, M,(G) denotes the measures
absolutely continuous with respect to pug and Ms(G) denotes the
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continuous measures that are singular with respect to ug. It is also well
known that My(G) = [,(G) and that M,(G) = L*(G). Furthermore, if
M= pd + ta + ls, then H:u” = ||:U’dH + ||N‘a|| + ||:U’s|| [21]

Let 7 be a continuous unitary representation of G. By a coefficient
function of 7, we will mean a function of the form u(z) = (n(z){,n)
where (,n € H,, the Hilbert space on which 7 acts.

We say that 7 is a character of G if H, is one dimensional. We denote
the set of all such characters by char (G).

We will let B(G) denote the space of all such coefficient functions of
G. B(G) was introduced by Eymard in [13] where it was shown that
B(G) could be realized as the linear span of the set of all continuous
positive definite functions on G. From this it was deduced that B(G)
is the Banach space dual of C*(G), the group C*-algebra of G. Finally,
with respect to the dual norm and pointwise operations B(G) becomes
a Banach algebra called the Fourier-Stieltjes algebra of G.

If 7 is a continuous unitary representation of G, we denote by A,(G)
the closure in B(G) of the linear span of the coefficient functions of
7. The dual of A,(G) is the von Neumann algebra VN, (G) generated
by {m(z) : ¢ € G}. Br(G) will denote the weak-* closure of A,(G)
in B(G). It can be shown that there exists a representation m; such
that Ar, (G) = Bz(G). Moreover, B(G) = A, (G) where w denotes the
universal representation of G [5].

Let A\ denote the left regular representation on G. Then A)(G) is
denoted simply by A(G) and VN, (G) is denoted simply by VN(G).
A(G) is a closed ideal of B(G) called the Fourier algebra of G. When
G is abelian, the classical Fourier transform (or Fourier-Stieltjes trans-
form) determines an isometric isomorphism between A(G) and L*(G)
and between B(G) and M(G). Here G denotes the dual group of G
[13]. Similarly VN(G) can be identified with L>(G).

Given a (bounded) continuous function u(y) on G and z € G, let
uz(y) = u(zy). The function u(y) is said to be almost periodic if
{uz : x € G} is relatively compact in C(G), the Banach space of all
bounded continuous functions on G. The space of all almost periodic
functions on G is a C*-subalgebra of C(G) which we will denote by
AP(G). Let mp denote the direct sum of all of the (nonequivalent) finite
dimensional irreducible representations of G. Then it is well known that
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B(G)NAP(G) = A, (G) (see [T]). If G is abelian, B(G) N AP(G) is
isometrically isomorphic with ¢;(G).

Let 7 be a continuous unitary representation of G. Then there exists
a central projection P, € VN, (G) such that A,(G) = P,B(G). In
particular, A,(G) is a complemented subspace of B(G). Furthermore,
VN, (G) is simply P,V N, (G) [5].

Let I a closed ideal of A(G). We define Z(I) = {z € G | u(z) = 0 for
every u € I}. Clearly, Z(I) is a closed subset of G. If E C G is closed,
then we define the closed ideal I(F) of A(G) by I(E) = {u € A(G) |
u(z) = 0 for every x € E}. We let R(G) denote the ring of subsets of
G generated by the set of left cosets of subgroups of G. We then define

Re(G)={E CG|E € R(G) and FE is closed in G}.

We say that a closed ideal I in A(G) is complemented if there exists a
bounded projection P from A(G) onto I. I is completely complemented
if the projection P can be chosen to be completely bounded.

A Banach space X is said to have the Schur property if any weakly
convergent sequence is norm convergent. X has the Dunford-Pettis
property (DPP) if whenever {z,} is weakly null in X and {z}} is
weakly null in X*, then {z? (z,,)} is null or equivalently if every weakly
compact operator defined on X is completely continuous. Finally, X
has the Radon-Nykodym property (RNP) if every vector measure of
bounded variation on the Borel subsets of [0, 1] with values in X has a
Bochner-integrable derivative with respect to its variation.

3. Projectivity in L'(G), M(G), A(G) and B(G). We begin
with a few easy facts about Banach space projectivity and the spaces
LY(G), M(G), A(G) and B(G). Recall the following definition:

3.1. Definition. A Banach space F' is said to be projective if,
given any Banach space X, a closed subspace Y and an € > 0, every
contractive map

[': F — X/Y lifts to a bounded map I with ||T]| < 1 + ¢ such that
the following diagram commutes
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>

F —5—X/Y.

Grothendieck completely characterized projective Banach spaces by
showing that F' is projective if and only if F is isometrically isomorphic
to £1(2) for some set Q2 [19]. It follows immediately from this that every
projective Banach space must have the Schur property. It is clear from
the definition that the Schur property is inherited by closed subspaces.
As such, if M (Q) is projective, L' (G) has the Schur property. However,
it is easy to see that this can only happen if the Haar measure is
completely atomic, that is, if G is discrete. On the other hand, if G
is discrete, then M(G) = L'(G) = ¢1(Q2) and as such it follows that
M(Q) is projective. We have the following simple proposition:

3.2 Proposition. Let G be a locally compact group. Then the
following are equivalent.

i) M(G) is projective.
ii) L'(G) is projective.

iii) G s discrete.

A naive appeal to duality would suggest that B(G), and hence A(G),
would be projective precisely when G is compact. For abelian groups,
this is clearly the case by duality. However, what is less obvious is
that commutativity turns out to be essential in this regard. Indeed, we
have:

3.3 Proposition. Let G be a locally compact group. Then the
following are equivalent.

i) B(G) is projective.
ii) A(G) is projective.

ili) G s compact and commutative.
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Proof. If either B(G) or A(G) is projective, then A(G) has the Schur
property. However, it is known that A(G) has the Schur property if
and only if G is compact ([7, 30]). It then follows that B(G) = A(G)
and hence that i) and ii) are equivalent.

Assume that A(G) is projective and hence that it has the Schur
property. Then again, as above, G is compact. As such, we get that

AG) =1t - ) ®An,,

where each 7, is a finite dimensional irreducible representation [5].
Since A, is an ¢;-direct summand, there is a contractive projection
from A(G) onto A,,. From this it is routine to show that A,  is
also projective. However, since m, is irreducible, A,_ is isometrically
isomorphic as a Banach space with TC(H,.) [5], the space of trace
class operators on the finite dimensional Hilbert space H,_, on which
Tq 1s represented. Now, T'C'(H ) is projective if and only if #,_ is one
dimensional, that is, if and only if each 7, is a character. Finally, every
irreducible representation of G is included in the decomposition. As
such, G is a compact locally compact group with only one dimensional
irreducible representations. This shows that G is also abelian. Hence
i) implies ii).

That iii) implies i) or ii) follows from the dual version of the previous
proposition. u]

If we restrict ourselves to closed translation invariant subpaces of
B(G), then we can identify the projective part of B(G). Indeed, the
proof of the previous proposition shows us that such a space M is of
the form:

M=10-) @A, =4(Q)
YEQR
where Q C char (G). If G is abelian, then this result is as it should
be since in this case @ = G and ¢ (@) is the ”projective part” of
M(@) ~ B(G). However, we will see in the next section that when
G is not abelian part of the story is missing. Indeed, in this case, the
natural dual analog of ¢, (G) is not ¢y _Zyechar(c) @A, , but is rather
B(G)N AP(G). The latter space carries all of the information encoded
in the finite dimensional representations of G whereas the former space
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recognizes only the one dimensional representations and is therefore
very much a “commutative” object.

4. Projective operator spaces in B(G). We have seen in the
previous section that Banach space projectivity for the Fourier and
Fourier-Stieltjes algebras is an inherently commutative phenomenon.
Our main focus in this section is to demonstrate how projective oper-
ator spaces arise naturally in noncommutative harmonic analysis. We
begin by recalling the following definitions which were given by Blecher
in [8]:

4.1. Definition. A uniformly closed operator space F' is said to
be projective if given any operator space X, a closed subspace Y and
an € > 0, every completely contractive map I' : F — X/Y lifts to a
completely bounded map I' with ||T|c, < 1+ ¢ such that the following

diagram commutes
/ J

F———X/Y.

We say that a dual operator space E is weak-* injective if whenever
X is a dual operator space and Y is a weak-* closed subspace of X
given any weak-* continuous completely bounded map T : Y — FE and
an ¢ > 0, there is a weak-* continuous completely bounded extension
T:X — E with ||T||es < ||T||eb + €.

The next theorem can be viewed as an extension of [8, Theorem 3.12].
It shows that for preduals of von Neumann algebras projectivity can
be determined by geometric means.

4.2. Theorem. Let V be a von Neumann algebra. Then the
following are equivalent:

1) V is a weak-* injective operator space
ii) Vi is a projective operator space

iii) V is a finite atomic von Neumann algebra
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iv) Vi has the Schur property
v) Vi has the RNP and DPP.

Proof. The equivalence of i) and ii) follows from the observation that
an operator space E is projective if and only if its standard dual E* is
weak-* injective [8]. The equivalence of i) and iii) is [8, Theorem 3.12].

The equivalence of iii) and iv) is due to Hamana [20, Theorem 3].

Chu showed that the predual of a von Neumann algebra V' has the
RNP if and only if V' is atomic [10]. Chu and Iochum [11] proved that
if V is type I, finite, then V, has the DPP and that if V, has the DPP,
then V' must be finite. (Bunce [9] completed the characterization of
preduals of von Neumann algebras with the DPP by showing that if V,
has the DPP, then V' must be type I, finite.) Combining these results
establishes the equivalence of i) and v) thereby completing the proof. O

We note that Blecher [8] showed that any projective operator space
has the Schur property. This clearly implies that a projective operator
space has the DPP. We will now show that any such space also has the
RNP.

4.3. Proposition. Let E be a projective operator space. Then E
has both the RNP and the DPP.

Proof. We have already established that E has the DPP.

If V, is the predual of a finite atomic von Neumann algebra, then we
have that V, has the RNP by Theorem 3.1 (or [10]). It is well known
that the RNP is inherited by closed subspaces [12]. This shows that
any closed subspace of V, will also have the RNP.

In [8, Theorem 3.12] Blecher showed that any projective operator
space is linearly and topologically isomorphic to a complemented sub-
space of the predual of a finite atomic von Neumann algebra. Since the
RNP is clearly preserved by Banach space isomorphisms, we conclude
that F has the RNP. a
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Our main goal in this section is to look for projective operator
spaces that arise naturally in harmonic analysis. To motivate our
search, we appeal to the abelian case. As we have seen, in this case

~

B(G) N AP(G) = ¢1(G) is a projective Banach space in the sense of
Grothendieck. Moreover, since the space ¢; (@) is the predual of an
abelian von Neumann algebra its natural operator space structure is
the MAX structure [8]. This is in a strong sense a trivial operator
space structure in that any linear map from a MAX operator space
into an operator space that is bounded is also completely bounded
with the same bound. This means that when working with group
algebras, or measure algebras, the operator space structure remains
hidden. In particular, it means that projectivity in the category of
operator spaces corresponds exactly to Grothendieck’s notion for 41 (G).
Moreover, since the identification between B(G) N AP(G) and £1(G) is
a complete isometry, we conclude that if G is abelian, B(G) N AP(G)

is also a projective operator space.

For nonabelian groups, the situation with respect to the operator
space structures on A(G) and B(G) is quite different. Indeed, the
operator space structures on A(G) and B(G) are the respective MAX
structures precisely when G is abelian [15]. This is the reason why the
cohomology results translate from L!(G) to A(G) for abelian groups
but not for nonabelian groups. We have seen that with respect to our
principal of duality the proper cohomology for group algebras really
is the completely bounded cohomology. We can now show that this
is also true for projectivity. In fact, we can use Theorem 3.1 to show
how even for noncommutative groups, projective operator spaces once
again arise as spaces of almost periodic functions.

4.4. Theorem. Let m be a continuous unitary representation of G.
Then the following are equivalent:

i) A-(G) is a projective operator space.
ii) A,(G) C B(G)N AP(G).

iii) 7 is the direct sum of finite dimensional irreducible representa-
tions.

iv) A;(G) has the RNP and the DPP.
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Proof. This follows immediately from Theorem 3.1 and from [7,
Theorem 27]. o

4.5. Corollary. Let M be a closed subspace of B(G) that is
projective as an operator space. Let My be a closed translation invariant
subspace of M. Then My C B(G) N AP(G).

Proof. Since M is closed and translation invariant, there exists a
continuous unitary representation 7 of G such that M; = A,(G).
Proposition 4.2 implies that M has both the RNP and the DPP. It
is easy to see that this means that M; = A,(G) also has both the RNP
and the DPP. Theorem 3.3 shows that M; C B(G) N AP(G). o

We are now in a position to establish the proper analog of Proposi-
tion 4.1.

4.6. Theorem. Let G be a locally compact group. Then the following
are equivalent:

i) G is compact.
ii) B(G) is a projective operator space.

iii) A(G) is a projective operator space.

Proof. If G is compact, then B(G) = B(G) N AP(G) [13]. It follows
from Theorem 4.3 that B(G) is projective as an operator space.

If B(G) is projective as an operator space, then since B(G) = A, (G),
Theorem 4.3 implies that w is the direct sum of finite dimensional irre-
ducible representations. It follows that the left regular representation
A also has this property and hence that A(G) = A,(G) is a projective
operator space.

Finally, assume that A(G) is a projective operator space. Then
A(G) C B(G)NAP(G). But A(G) C Cy(G) [13]. If G is not compact,
then it is easy to see that Cyp(G) N AP(G) = {0}. Hence it must be
that G is compact. O
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Even if G is not compact it is certainly possible for A(G) to contain
closed subspaces that are projective as operator spaces. Simply take
any one dimensional subspace for example. However, the previous
theorem shows that if G is noncompact, then these spaces are from
the perspective of harmonic analysis not quite natural in the sense
that they are not translation invariant. In fact, we can show that if G
is noncompact and if M is any subspace of A(G) that is projective as
an operator space, then for any nonzero u € M the set of translates of
u that belong to M is necessarily very restricted.

4.7. Proposition. Let M be a closed subspace of B(G) which is
projective as an operator space. Let uw € A(G) N M be nonzero. Let
S={reG|u, € M}. Then S is compact.

Proof. First observe that since the map x — u, is continuous, S is
closed.

Assume that S is not compact. Then certainly G is noncompact.
By modifying an argument of Miao’s [32, Lemma 3.1] in an obvious
way, we get a sequence {x,} C S such that the sequence {u,, }
converges to 0 in the o(A(G), VN(G)) topology. In particular, {u,, }
converges to 0 in the o(M, M*) topology. Since M has the Schur
property, {u,, } converges to 0 in the norm topology. However, since
lullB(@) = l|uz, || B(q) for each n € N, this is only possible if u = 0. 0O

5. Completely complemented ideals in A(G). The problem of
characterizing complemented ideals in the group algebra of a locally
compact abelian group, and hence the Fourier algebra of its dual, has
a long history. In [33] Newman showed that if II is the circle group
and if H' = {f € L'(IT) | f(n) = 0 for every n < 0}, then H' is not
complemented in L'(II). A year later, in [36], Walter Rudin showed
that an ideal I in A(G) is complemented if and only if I = I(A) where

n

A= J(@Z+b).

i=1

In [34], Rosenthal showed that a necessary condition for I to be
complemented would be that I = I(A) where A € R.(G). If G is

compact, and hence Gis discrete, it is routine to show that the converse
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of Rosenthal’s theorem holds. However, Rosenthal’s condition is far
from sufficient in general. For example, Alspach and Matheson [2]
showed that in L'(R) a closed ideal I is complemented if and only if
I =1(A) where

A= J(@Z+b)\F

i=1

with the a}s being pairwise rationally dependent and F is finite.
Alspach, Matheson and Rosenblatt [3] (see also [4]) looked at arbitrary
abelian locally compact groups. They succeeded in finding necessary
and sufficient conditions for an ideal with a discrete hull to be comple-
mented. They also developed a complicated inductive procedure that
was then used successfully in [1] by Alspach to completely characterize
the complemented ideals in L'(R?). Some further progress was made
on the complementation problem for abelian groups by Kepert in his
thesis [25] but there is still no characterization of the complemented
ideals even in L'(R?).

In [15], we made the first attempt at studying the complemented ideal
problem for the Fourier algebra of a nonabelian group. Our first goal
was to try to establish the analog of Rosenthal’s theorem by showing
that if I C A(G), then I = I(A) where A € R.(G). We were unable
to do this. In fact, the result turned out not to be true. As pointed
out by Leinert, there are idempotent completely bounded multipliers of
the Fourier algebra of the free group on two generators that are not in
B(G). These are characteristic functions of sets that are not in R.(G).
Multiplication by such functions leads to (completely) complemented
ideals of A(G) with hulls that are again not in R.(G). In the end, we
settled for trying to identify some nontrivial complemented ideals in
some nonabelian groups.

It easy to show that for any closed subgroup H of an abelian locally
compact group G, the ideal I(H) is complemented [3]. Since such
ideals are the building blocks of all known complemented ideals for
abelian groups, one might hope that I(H) would again generate a
complemented ideal in any nonabelian group. While we showed that
this was the case if the subgroup H was compact [15, Proposition 3.3
and Corollary 3.7] or central [15, Proposition 3.3 and Corollary 4.2], we
were also able to show that even if H is a normal abelian subgroup of
an amenable group, I(H) need not be complemented in A(G). While a
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substantial amount of work has been done since then by various authors
on weakly complemented ideals, (ideals in which I+ is complemented
in VN(G)), no progress was made on the complemented ideal problem
until very recently.

It is easy to see that Rosenthal’s theorem can be obtained as a
consequence of the Banach algebra amenability of the group algebra of
an abelian group. After developing the necessary tools from completely
bounded cohomology, Wood exploited Ruan’s theorem on the operator
amenability of A(G) to show that if G is an amenable locally compact
group and if T is a closed completely complemented ideal in A(G),
then I = I(A) where A € R.(G) [39]. If we again note that
the group algebra of an abelian group has a trivial operator space
structure, we are led to the conclusion that Wood’s result is the proper
extension of Rosenthal’s theorem to the nonabelian setting and that
our focus [15] should really have been on completely complemented
ideals. In the same paper, Wood was able to establish the converse of
the above result and as such completely characterized the completely
complemented ideals in the Fourier algebra of an amenable discrete
group. However, for nondiscrete and nonabelian groups there were no
examples of completely complemented ideals presented.

We will now show that if K is any compact subgroup of a locally
compact group G, then I(K) is completely complemented. To do
so we begin with the following result that is a partial analog of [15,
Proposition 3.3].

5.1. Lemma. Let H be a closed subgroup of a locally compact
group G. Assume that there exists a completely bounded linear map
I': A(H) — A(G) such that (Tu)|,, = u for every u € A(H). Then
I(H) is completely complemented in A(G).

Proof. We first note that the restriction map is a completely contrac-
tive homomorphism from A(G) onto A(H). It follows that the map
Q : A(G) — A(G) given by

Q(V) =v—(Tyy)

ia a completely bounded map. Moreover, just as in [15, Proposition
3.3], Q is easily seen to be a projection from A(G) onto I(H). O
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5.2. Theorem. Let G be a locally compact group. If K is any
compact subgroup of G, then there exists a completely bounded linear
map I' : A(K) — A(G) such that (T'u)|,, = u for every u € A(K). In
particular, I(K) is completely complemented.

Proof. By Theorem 4.5, A(K) is operator projective. Also, the
restriction map establishes a canonical completely isometric isomorphic
between A(K) and A(G)/I(H) [18, Proposition 4.2]. Let ¢ > 0.
If we let F = A(K), X = A(G), Y = I(K) and T : A(K) —
A(G)/I(H) be the inverse of the canonical isomorphism between A(K)
and A(G)/I(H), then by operator projectivity, ' : F — X /Y lifts to a
completely bounded map I' with ||T'||s; < 1+ ¢ such that the following

diagram commutes
/ J

F —%— X/Y.

However, for the diagram to commute, we must have that (fu)| p=U
for every u € A(K). It now follows from Lemma 5.1 that I(K) is
completely complemented. ]

We remarked earlier that if H is a closed subgroup of an abelian group
G, then I(H) is complemented in A(G). Let P : A(G) — I(H) be a
continuous projection. Since G is abelian, A(G) has the MAX operator
space structure. This means that P is also completely bounded and
that ||P||ee = [|P]|. In particular, I(H) is completely complemented
in A(G). We will now see that this holds whenever an abelian closed
subgroup is such that I(H) is complemented.

5.3. Proposition. Let H be a closed abelian subgroup of G.
Assume that I(H) is complemented in A(G). Then I(H) is completely
complemented in A(G).

Proof. Since I(H) is complemented in A(G), there exists a bounded
linear map I' : A(H) — A(G) such that (T'u)|,, = u for every u € A(H)
[15, Proposition 3.3]. Since H is abelian, A(H) has the MAX operator

|a

——
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space structure. Consequently, I' is also completely bounded and
[Tlles = [IT[l. o

5.4. Corollary. Let G € [SIN] be almost connected. Let H be a
closed abelian subgroup of G. Then I(H) is completely complemented
in A(G).

Proof. Tt follows from [16, Corollary 4.15] that I(H) is complemented
in A(G). The previous propositions show that I(H) is completely
complemented in A(G). O

5.5. Corollary. Let G € [IN] be almost connected. Let V be a
closed vector subgroup of G. Then I(V) is completely complemented in
A(G).

Proof. It follows from [15, Proposition 4.16] that I(V) is comple-
mented in A(G). Again, the previous proposition shows that I(V) is
completely complemented in A(G). O

5.6. Definition. We will follow [15, Definition 3.1] and say that
a closed subgroup H of G has the completely complemented ideal
property (CCIP) in G if I(H) is completely complemented in A(G).
We let CCIP(G) = {H | H has the CCIP in G}.

Let G and G5 be locally compact groups. Let ¢ : A(G1)®,,A(G2) —
A(G1 x G2) be given by

P(u®v)(s,t) = u(s)v(t).

Then 9 establishes a complete isometry between A(G})®,,A(G2) and
A(Gy x G2). The following lemma is similar to [15, Lemma 4.4].

5.7. Lemma. Let G = G; X G2. Then for each ¢ = 1,2
there exists a linear complete isometry T'; : A(G;) — A(G1 x Ga)
such that T'y(u)(g1,e2) = u(g1) for each u € A(G1),91 € Gy and
Ty (v)(e1,92) = v(g2) for each v € A(G3), g2 € Ga.
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Proof. Choose vy € A(G2) such that vy(ez) = 1 and ||vz[|4(q,) = 1.
Define I'y (u) = ¢ (u ® ve). Since

[(T1)n ([wi i Dlln = [ (ui; @ v2)]lln
= [|¢hn[ui,; ® va]lln
< @nlllllwis]llnllvall as)

= [[[ui 5]lln,

I'; is a complete contraction. Moreover, I'1(u)(g1,e2) = ¥(u ®
v2)(g1,€2) = u(g1)va(ez) = u(g1) as desired. Finally, to see that T'y
is a complete isometry, we note that A(G}) is completely isometrically
isomorphic to A(G1 x {e2}) and the restriction map from A(G1 x Ga2)
is also completely contractive.

The map I's is defined in a similar manner. ]

5.8. Corollary. Let G = Gy X G2. Then Gy x {e2},{e1} x G2 €
CCIP(Gl X GQ)

The next lemma follows exactly as in [15, Lemma 4.4] even though
our map ¢ is defined on the operator space projective tensor product
A(G1)®opA(G2).

5.9. Lemma. Let G = Gy X Gy. Let A = Ay X Ay where A; is
closed in G;. Assume that A is a set of spectral synthesis in G. Then
I (A) is the closed linear span (J)~ of

J={¢¥(lg, (A1) ® A(G2)) U(A(Gl) ® Ig,(A2))}.

The next theorem can be viewed as the completely bounded analog
of [15, Proposition 4.5]. It is important to note that we have removed
the assumption from [15, Proposition 4.5] that one of the groups have
an abelian subgroup of finite index.

5.10. Theorem. Let G = Gy X Go. Let A = A1 X Ay where A; is
closed in G;. Assume that A is a set of spectral synthesis in G. Assume
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also that Ig,(A;) is completely complemented in A(G;). Then I(A) is
completely complemented in A(G1 X Gs).

Proof. Since 9 : A(G1)®,pA(G2) — A(G1 x Gs) is a completely
isometric isomorphism so is ! : A(G1 x G2) — A(G1)®,pA(G2). Let
P; be a completely bounded projection from A(G;) onto I(A;). Define
P: A(G) — A(G) by

P(u) =u—y{((1 - P1)® (1 - P)) (¥~ (u)}-

Then P is completely bounded.
Let u; € A(G;), and let (z1,22) € A = Ay x As. If u = ¢¥(ug ® uz),

then
P(u)(z1,z2) = w1 (z1)uz(z2)
= [1 = PJus(z1)[1 — Paluz(22)
= uy (z1)uz(z2) — u1(z1)uz(x2)
=0.
It follows that P(u) € Ig(A) for each u € A(G).
Let uy € I, (A1) and uy € A(G2). Let u = ¥ (u; @ uz). Then

P{(1-P)©(1—-P)) (¥ '(u)}
=¢{(1 = P1)(u1) ® (1 — P2)(u2)}
={0® (1 - Py)(uz)}
=0.

Thus P(u) = u. Similarly, we have that if us € Ig,(A2), u1 € A(G)
and u = ¥(u; ® uz), then P(u) = u. It now follows immediately from
the previous lemma that P(u) = u for each u € I(A4). O

5.11. Corollary. Let G = G1 X G2 where each G; is amenable.
Let A = Ay x Ay where A; is closed in G;. Assume also that
I, (A;) is completely complemented in A(G;). Then I(A) is completely
complemented in A(G1 X G3).

Proof. It follows from [40, Theorem 5] that if I, (A;) is completely
complemented in A(G;), then A; € R.(G;). This shows that A €
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R.(G). However, since G is also amenable, A is a set of spectral
synthesis [16, Lemma 2.2]. o

5.12. Corollary. Let G = Gy x Ko where each Gy is abelian and
K> is compact. Let H = Hy x Hy where Hy is a closed subgroup of G
and Hy is a closed subgroup of Ko. Then H € CCIP(G).
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