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INTEGRABILITY OF TWO DIMENSIONAL
QUASI-HOMOGENEOUS POLYNOMIAL
DIFFERENTIAL SYSTEMS

A. ALGABA, C. GARCIA AND M. REYES

ABSTRACT. In terms of the conservative-dissipative de-
composition of a vector field, we characterize the two di-
mensional quasi-homogeneous polynomial differential systems
with a polynomial first integral (in these systems, polynomial
integrability and analytic integrability are equivalent). We
also provide an easy method to allow us to compute them and
their centers. Finally, as an application, we find the quasi-
homogeneous polynomial systems of degree two which have
a polynomial first integral (the cubic homogeneous systems,
among others, are included).

1. Introduction. In this paper, we deal with polynomial differential
systems

(1) (i‘ay)T =F, = (Pa Q)Ta

where F, is a quasi-homogeneous polynomial vector field of degree
r € N U {0} with respect to type t = (t1,t2) € N2, ie., for any
arbitrary positive real e, P(e'tz,e2y) = "1 P(z,y), Q(e'*z,2y) =
e"t2Q(z,y). In the particular case that t = (1,1), system (1) is a
homogeneous polynomial differential system of degree r + 1.

We recall that a function H is a first integral of (1) in an open subset
U of R? if H is a non-constant function in U which is constant on each
solution curve of (1). Clearly, if H € C'(U) verifies VH - F, = 0. If
there exists a polynomial (analytic) first integral of (1), it says that it
is polynomially (analytically) integrable.

We are interested in analyzing when system (1) is analytically inte-
grable. For systems (1), it is easy to prove that the analytic integrability
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and polynomial integrability are equivalent, since H is an analytic first
integral of (1), with H = H,, + H,, 11 + - -+, its expansion into quasi-
homogeneous polynomials of degree m + i with respect to a fixed type
t, if and only if each quasi-homogeneous part H,,;; is a first integral
of system (1) for all . Therefore, we are interested in studying when
system (1) has a quasi-homogeneous polynomial first integral.

Among other applications, the existence of an analytic first integral
can be used for determining the local phase portrait at an isolated
singular point; in particular, for characterizing when a monodromic
singular point (the orbits of the system close to the isolated singular
point revolve around it) is a center or a focus. So, it will be interesting
to know when a monodromic point is analytically integrable, since in
such a case it is a center. However, there are centers which do not have
an analytic first integral. An example can be seen in [6, page 122].

Other papers related to the problem of integrability and integrability
of centers are [1, 3].

The results obtained in this paper are closely linked to the conservative-
dissipative decomposition of (1), see Lemma 3. In the third section,
and in relation to polynomial integrability, Theorems 3.1 and 3.2 offer
an easy characterization of the quasi-homogeneous polynomial systems
with a polynomial first integral. And, concerning the center problem,
Theorem 3.3 finds the centers of system (1).

As an application, the last section shows the quasi-homogeneous
polynomial systems of degree two having a polynomial first integral
(Theorem 4.1). As far as we know, only degree one polynomially
integrable systems have been calculated, see Tsygvintsev [8] and Llibre
and Zhang [5]. Recently, Cairé and Llibre [2] found the degree two
polynomially integrable systems. Finally, we characterize the centers
of these systems (Theorems 4.2 and 4.3), by obtaining centers which
are not analytically integrable.

2. Preliminaries. We recall that a function of two variables
f is a quasi-homogeneous function of degree k£ > 0 with respect to
type t = (t1,t2) if f(eh'z,e?y) = eFf(z,y). We will denote Pt
the vector space of quasi-homogeneous polynomials of degree k£ with
respect to type t. A two-dimensional vector field F = (P, Q)7 is quasi-
homogeneous of degree k with respect to type t if P € ‘:P%‘i‘tl and
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Qe P +t,- The vector space of quasi-homogeneous polynomial vector
fields of degree k with respect to type t will be denoted by Qf.

There is no loss of generality in assuming that ¢; and t; are coprime
(this can be achieved by canceling common factors) and ¢; < to
(otherwise, we interchange x and y).

The following lemma provides a basis for the vector space P%.

Lemma 1. If there exist k1, ko, k3 integer numbers with 0 < k1 < ta,
0<ky<ty, ks >0 withk = kit1 + kgtg + kstita, then the vector space
Pt is Pt = span {xk1+t2(k3’7)yk2+t”}?3:0. Otherwise, Pt = {0}.

Throughout this paper, given the vector fields F = (F}, F»)T, G =
(G1,G2)T, the Lie bracket of both vector fields is defined by [F, G| =
DF.G — DG.F where DF and DG are the derivatives of F and G,
and the wedge product of two vector fields by F A G = F1Gy — F2Gs.
We denote by X the hamiltonian system associated to h, i.e., Xp =
(—(0h/dy), (0h/0z))T, denote Dy = (t1,t2y)T (the dissipative vector
field of degree 0 with respect to type t) and we also denote [t| = t; +15.

Next, we cite some properties of the quasi-homogeneous polynomials
and vector fields which are easily obtained.

Lemma 2. The following properties hold:
L. IfU € P} and F € Q%, then VU - F € P}, ; and div (F) € P.
2. IfU € ?2+|t\7 then Xy € QY.

3. IfFc Qf and Ge Qf, then FAG € T;;JFJ‘JFM'
4. IfU € P, then VU - Dy = Do A Xy = iU (Euler theorem for
quasi-homogeneous functions).

5. If F € Qf then [F,Dg| = iF.

We now prove a result that provides a decomposition of a quasi-
homogeneous vector field as a sum of two quasi-homogeneous fields,
one conservative (having zero-divergence) and the other dissipative.



4 A. ALGABA, C. GARCIA AND M. REYES

Lemma 3. Every F € Qf can be ezpressed as

1

@ P =

[Xp,ar + div (F)Dy].
Furthermore, such a decomposition is unique.

Proof. Let F = (P,Q)" € Q%. It is straightforward to show that

0Dg A F . _ oP oP
,Ty + tizdiv(F) = (tlx 5 + toy 3y> + to P,

0Dy AF . B oQ 0Q

8—3; —i—tgydlv (F) = (tll' oz + taoy (9y + 41 Q.

As P € P;,, and Q € P}, , from the Euler theorem for quasi-
homogeneous polynomial.

We prove the second part. For any h € P}, ., , u € Py, it has that

div (Xp) = 0,
div (/J,D()) =Vu-Dy+ (tl + tz)p, = (k} +t1 + tg),u.

Therefore, if h, u verify (2), it has that

1
div(F)= ———(div (X di Dy)) =
v (F) = = (div (Xa) + div (uDo)) = 1,
1 1
DoAF=——  DyAX,=-——Vh-Dy=h,
0 k+ti+ty 00T kot + 4y 0
the result follows. m|

Our purpose is to know when the system (1) has a quasi-homogeneous
polynomial or analytic first integral at origin. We emphasize that
system (1) always has a first integral, since by Lemma 2 and from [7],
Do AF, = t12Q(z,y) —t2yP(z,y) is an inverse integrating factor of (1)
and therefore H(z,y) = [ P(z,y)(t12Q(z,y) — t2yP(z,y)) ' dy+ f(z),
satisfying (0/0z)H = —Q(t,xQ(z,y) —toyP(z,y)) !, is a first integral
of (1). But in general H is not defined at origin, therefore it is neither
an analytic first integral at origin, nor a formal first integral.
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Before presenting our main results, we make the following considera-
tions:

If PQ = 0, then x or y are first integrals of system (1); so system (1)
is polynomially integrable.

If P, are not coprime, it has that P = fP', Q = fQ' where
F., = (P',Q")7 is a quasi-homogeneous polynomial vector field of
degree r’' < r with respect to t. It is easy to prove that H is a first
integral of (1) if and only if H is a first integral of (#,9)7 = F,.
Therefore, it is sufficient to study the integrability of the second system.

Also, under the above conditions, we can assume that Dy A F,. Z 0,

since otherwise, the vector field F, is 1/(r + |t|) div (F,)Doy which
doesn’t have an analytic first integral, since it is radial.

Consequently, we will assume from now on that Dy A F,, Z 0 and
P, Q coprime with PQ # 0.
The following result links the existence of a quasi-homogeneous poly-

nomial first integral of system (1) to the quasi-homogeneous polynomi-
als div (F,) and Dy A F,..

Theorem 3.1. Let system (1) be with Do AF,. £ 0, P,Q coprime
and PQ # 0. System (1) has got a polynomial first integral if and
only if div(F,) = 0, or else Dy AF, = H§:1 f; where f1,..., fr are

quasi-homogeneous polynomial of degree sy, ... , sy with respect to type
t, irreducible in K[z,y] (where K is either R or C), k > 2 and there
exist k integer numbers, non-negative, ny,na, ... ,Ng, not all zero, such
that
(3)

k
OIVESIMENEY (H )XY ) v,

j=1 j=1l=j+1

Moreover, in such a case, Hj:1 f;ﬁ_l s a quasi-homogeneous polyno-
mial first integral of (1).

Proof. If div (F,) = 0, the system is Hamiltonian and Dy A F,. is a
polynomial first integral. We henceforth assume that div (F,) Z 0.

Necessity. Let U € Pt be a polynomial first integral of F, = (P, Q)7
that is, VU - F,, = 0. As the components of F, don’t have common
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factors, it has that VU = f(—@Q, P). Thus, the first integral U verifies
(4) Xy =f(P,Q)" = fF,, f€Pi |y, i=r+]t].

Hence, system (1) has a polynomial first integral if and only if there
exists an f € T:Lrﬂt\ such that div (fF,) = 0. Applying Lemma 3,

0 = div (fF,) = Vf - F, + fdiv (F,)

1
= X
r+ |t|vf DoAF,.
i—r—|t] .
——— div (F, div (F,)f.
S v )+ div (F)f

Thus, we have that
(5) Vi -Xpoar, = —tdiv (F,)f.

From (5), f(z,y) = 0 is a polynomial invariant curve of the hamiltonian
vector field Xp,ar,. If f is a product of polynomials g, ... , gm, then
every g;(xz,y) = 0 is an invariant curve of Xp,ar,, thus g;(z,y) =0
is a solution curve which passes through the origin. On the other
hand, we know that the solution curves which cross the origin verify
(Do A F.)(z,y) = 0. Thus, it follows that any irreducible factor of
f is a factor of Dy A F,.. Therefore, if fi1,..., fr are the irreducible
quasi-homogeneous factors of Dy AF,. on K[z, y], f has the expression
f= H§:1 f;” with Z;“:l sjn; =1i—r— |t|, with n; > 0.
Thus, the left side of (5) gets

I, f}" fvEeX
e fl LV fi - XpoaF, = onjif] f'DOAFT.
J J

Jj=1

k
Vf-Xporr, = ) 1y

j=1

Replacing this in (5) yields

(6) (7“ + [t] + ans]> div (F an ij XDyAF, -

j=1

We now prove that Dy A F,. has the prescribed form. First, we prove
that Do A F,. has at least two simple and irreducible factors in K[z, y].
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On the one hand, if Dy A F, had a unique irreducible factor, that
is, Do AF, = fi* with m > 1, by imposing (6), it would arrive at
div (F,) = 0. Thus, the assumption leads us to a contradiction.

On the other hand, if Do A F, = [[;_, f{"™, with some m; > 1,
1 < j <k, it would have that

k

k k k

Do AF, . 2

Xpoe, = Y mi—e =Xy, = <H s 1> S Hlle fig,
=1 =1

=1

So, by (6), f;nj_l would be a factor of both, Xp,sr, and div (F,), and

from Lemma 3, f;" ~! would be a factor of F, which would contradict
the fact that the components are coprime.

Therefore Dy AF, is Hle fi with & > 2, and in such a case, the right
side of (6) is

oo il
I#]
ok Dy AF
=> > (nu—ny) “Vfi- Xy,
j=li=j+1 It
k k k 1
—(T15) % 3 - m) £ V5 X,
j=1 7 j=1i=j+1 fif

Thus, (3) holds and consequently the necessity follows.
Sufficiency. It is easy to check that H?Zl f;ﬁl is a polynomial first
integral of F,., where Dy AF, = H§:1 fj and n; given by (3).

From Theorem 3.1 and Lemma 1, we obtain the following result:

Corollary 3.1 (Necessary condition for polynomial integrability).
Let system (1) be with P,Q coprime, PQ # 0 and div(F,) # 0. If



8 A. ALGABA, C. GARCIA AND M. REYES

system (1) has a polynomial first integral, the decomposition of the
quasi-homogeneous polynomial Dy A F,. over Clz,y] is

(7) (Do AF,)(@,y) = ca®y [ (" — Nia™),

i=1
with 7 + |[t| = 10, + t20, + titam, where ¢ # 0, 6,,6, € {0,1},
0z + 0y +m > 2 and A1, ..., Ay, distinct non-zero complex numbers. If

some \; € C — R, then there exists a j such that A\; = ;.

In what follows, we will use the rational function n := [div (F,)/
Dy A F,]. We now give a result which simplifies the conditions of poly-
nomial integrability of a quasi-homogeneous polynomial system. This
provides an effective way for computing the polynomially integrable
systems, to be used in the applications.

Theorem 3.2. Let system (1) be with P,Q coprime, PQ # 0 and
Do AF, given by (7). The system (1) has a polynomial first integral if
and only if div(F,) = 0, or else there exist ng, ny, n;, ¢ = 1,...,m
non-negative integers, not all zero, verifying
(8)

Res [n(z,1),0] = —(1/t2) + [(no + 1)(r + [t])]/(E2M)  if b2 =1,

Res[n(1,y),0] = (1/t1) — [(ny + 1)(r + [t])]/ (t1 M) if oy =1,

Res [(1,y), A" = (1/t2) — [(ni + ) (r + [t} /(L M) i=1,...,m,

where M = t1(ng + 1)z + t2(ny + 1), + t1ta Z;.nzl(nj +1).

Proof. We first prove the necessity. If div (F,) = 0, the system is
Hamiltonian and Dy A F,. is a polynomial first integral. We assume
that div (F,) #Z 0 and that system (1) has a polynomial first integral.
So, taking into account (7), by applying (3), it has that div (F,) is
equal to

) 1 Dy AF
M[(ny - nz)§$5yV(:E) ’ Xyir

m

20y

Dy AF,
+ Z(na —nz)0: V() 'X(ytl*)\jﬂ"tz)ajzsm (yh — Ajat2)
J

Jj=1



Therefore,

n(way) -
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i Dy AF,
+3 (1 = 1y)8,V(Y) - Xytrxyata) 5

you(yh — Ajat2)
D) SURALTEREE

. Dy AF,
T A (yt N zt2) (ytr = Njat2)(ytr — Nat2)’

1

1

m ytl—l
ty(ng — nj)0p ——
+]:ZI 1(nz n]) Il'éz(ytl _ )\ja}'t2)
m to—1

x
todi(n, —n g —
+Z 2Aj(ny = 15) Yy (yh — Njztz)

—Z > tata(ng —m)(A — )

" xt2 lytl 1
WA =) )

If §, = 1, we have that

Res [n(z,1),0] = lim zn(z,1)

1
:M[ 5 +Zt1 7”]

(et D) - M
to M

Analogously, if §, = 1, it holds

Res [n(1,y),0] = M[ )0z —Ztg y — 1))

_(ny +1)(r + Itl) -
tiM
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. . . 1
As for each X\;, i = 1,...,m, it holds that llmy_))\i/tl(y_)\i/tl)/

(y'r=N) = (1/ta )\1 1/tl) then the residue of n(1,y) at each one of

the t; roots of y = )\;/tl is the same, and its value is

Res (1, y), A}/ "]

= lim (y—A™)n(1,y)
y—>)\1/t1

:%«n )5+ 6+§)z >
- (tlunm 1) = (i D)6 + tal(ny + 1)

— (n; + 1)]6y + tito Z[(nj +1)—(n; + 1)])
j=1
—(ni + 1) (8105 + 26y + titam) + M
LM
—(ni +1)(r +[t]) + M
tiM '

We now prove the sufficiency. Firstly, with Dy A F,. of the form (7)
fixed, we prove that the conditions (8) determine univocally div (F,).
Furthermore, we prove that (8) provides m — 1 + §, + ¢, independent
conditions on div (F,). In fact, the degree of the quasi-homogeneous
polynomial div (F,) with respect to t is

r= tléw +t2(5y + tltzm - tl — tz
= tltz(m -2+ (Sz + (Sy) + tl(tZ — 1)(1 — 635) + tz(tl — 1)(1 — 6y)

Thus, by Lemma 1, div(F,)(z,y) = 22~ D-8)y (- 1)(1=8y) hom (5t>
y"), where "™ is a homogenous polynomial of degree m — 2 +§, + 0y
which has the expression

m—2+4+0,+0,

(10) 'uhom(x,y) — Z djx(m72+51+5y*j)y]
j=o

First, we will prove that the conditions (8) are conditions on div (F,) x
(1,y). On the one hand, if A is a simple root of (Dg A F;)(1,y), it has
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that (Do AF

div (F,)(1,A) = Res [n(1,y), A]%(L 2.
On the other hand, we prove that
(11) Res [n(lay)aoo] = —d,Res [77(33,1)70],

where, by definition, Res[n(1,y),00] = (1/277) ﬁy, n(1,y) dy with v~
any negatively oriented closed curve which contains all the poles of
n(1,y) in its interior.

In fact, if 6, = 0, for a sufficiently large R it has
2 ) )
‘j{ n(l,y) dy| = ‘/ n(1,Re ") (—iR)e % df
. 0
2m

g/ [n(1,Re )| Rdf
0

The difference between the degree of the polynomials (Dg A F,.)(1,y)
and div (F,.)(1,y) is greater than or equal to two, therefore,

27

‘ § ntay < im [ o, R Ras =0,
>

R—o0 /g

hence, (11) holds.

If §, = 1 the difference of both degrees is greater than or equal to
one, hence Res [1(1,y),00] = —limy_, o yn(1,y). By (7) and (10), it is
easy to show that
Am_

C Yy—ro0

Res [1(z,1),0] = lim 2n(z,1) =

thus, (11) holds.

In summary, the conditions (8) are m+4,+46, conditions on p2°™(1,y)
and by the residues theorem, there are m — 1 + §, + §, independent
conditions. Since the degree of "™ (1,y) is m — 2 + &, + §,, it holds
that pP°™(1,y) is univocally defined by (8) and, as a consequence,
div (F,)(1,y) is also.

Lastly, we prove that F, verifies (3). Let F, = (1/r + |t|)[Xp,r, +
puDo], where u is the quasi-homogeneous polynomial given by the right
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side of (9). Trivially, F, verifies (3), thus F, has a polynomial first
integral. From the necessary condition, p satisfies the conditions (8).
Therefore, p = div (F,.). Hence, F, is polynomially integrable. O

We finish the section by presenting a result concerning the center
problem of system (1). That is, the problem of characterizing when a
monodromic point is either a center or a focus.

Theorem 3.3. Let system (1) be with div (F,.) # 0, DoAF, #0, P,Q
coprime, PQ % 0 and the origin being a monodromic point. The origin
of system (1) is a center if and only if 2;21 Im (Res[n(1,y),w;]) =
0 where wy,...,ws are the complex roots of (Dy A F.)(1,y) with
Im (w]') > 0.

Proof. From Lemma 2, [F,,Dy] = rF,, thus Dy A F,. is an inverse
integrating factor of (1), see [7]. Therefore, their factors are invariant
curves of (1) (see [4]), and as O is a monodromic point, all the
factors of Dy A F,. must be complex. Thus, Dy A F, = H?:1 f; with
fi =y — X\jz"> where \; € C — R. Let us note that the )\; cannot
be distinct. In [1], it is proved that, in such a case, O is a center
if and only if I := [%_n(l,y)dy = 0. It is easy to check that the
difference between the degrees of the polynomials (Dy A F,.)(1,y) and
div (F,)(1,y) is greater than or equal to two; thus, the above integral
is I = 2miYy.°_, Res[n(1,y),w;], where wi,...,w, are the roots of
(Do A F,)(L,y) with Im () > 0, 1 < j < s < k.

Using the fact that Res[n(1,y),w;] = Res[n(1,y),w;] and from the
residue theorem it holds that

O—ZRes (1,9), wﬂ-QRe(ZRes 1y)wj]>

j=1
The proof is concluded. O

4. Applications to the quasi-homogeneous polynomial sys-
tems of degree two. In this section, we characterize the quasi-
homogeneous polynomial systems of degree two (#,9)7 = Fy which
have an analytic first integral and the systems which have a center at
the origin. For simplicity, we will assume that the vector fields F,
have coprime components, since otherwise their integrability would be
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equivalent to the integrability of irreducible quasi-homogeneous vector
fields of a minor degree.

According to its type, the quasi-homogeneous vector fields of degree
two with ¢; < to (if ¢4 > to, it interchanges z and y) come given by

th,tz), t1 > 2,

Fé2,2n+1) — (a1x2,b1$y)T, n Z 1,

Fgl,n) _ (a1$3,b1$n+2 + b2x2y)T’ n Z 47
Fél’?’) = (a12° + agy, b1z® + byz’y)T,
) — (

FU? = (0123 + asay, bia® + boay + byy?)”,

Fgl’l) = (a12° +apr?y+azzy® +asy®, by +bozr?y +bszy® +byy®)

For t; > 2, from Lemma 1, P4 = {0}, hence div (thl’tZ)) is zero.
Further, if one of the components of the vector field were non-null, for
instance P, from Lemma 1, it would be 2+t = kit1+koto+kstits, that
is, ki = ks =0 and ke =1, i.e., t3 = 2 +t;. Thus, Dg A thhh) = cy?,
hence @ is null.

Fg2,2n+1)

The components of the fields and Fgl’") have common

factors, so we do not consider them.

The necessary condition of integrability, given by Corollary 3.1,
provides a pre-classification of the polynomially integrable vector field
F3, according to the factors of Dy A Fs.

Proposition 4.1. A system (&,9)" = Fo with Fo quasi-homo-
geneous vector field of degree two, with coprime components and non-
null, is polynomially integrable if it can be transformed by means of a
linear change of variables into one of the following systems:

1. (z,9)T = Ggl’S) given by
(12) &= (dy — co)x® — 21y, ¥ = 6c3x° + 3(c + do) 2y,
)

)T

with c1,ca,c3,ds Teal numbers and Gél’s
2. (&,9)T = Ggm) given by

& = (dz — c2)z® + (d1 — 2¢1)zy,

y = begxt + (3ca + 2d2)m2y + (1 + 2d1)y2,

with coprime components,

(13)
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. 1,2
with ¢y, ca,c3,dy,ds real numbers, Gg 2)

3. (&,9)T = Gé}l’ll) given by

with coprime components,

&= (dy — c1)x® + (do — 2¢2)x?y + (d3 — 3c3)xy?,
¥ = (31 + d1)a’y + (da + 2¢2) 7y + (ds + c3)y°,

: 1,1) . )
with ¢y, c2,cC3,dy, da,ds real numbers, Gg . ) with coprime components,
b

(14)

4. (z,9)T = Ggél) given by

& = (do — co)x® + (dy — 2¢1 — 2¢3)xy + (do — 3c2)xy® — desy®,
g = 4c12® + (3cy + do)x?y + (dy + 2¢1 + 2¢3)xy® + (do + c2)y°,
where ¢y, ¢, c3,do, dy,do Teal numbers, Géll’)l) with coprime components
and c% —4cie3 < 0.

(15)

Proof. It is easy to check that the vector fields Ggl’S) and Ggl’z) are
Fém) and Fgm), by rewriting their coefficients, respectively.

From the necessary condition of polynomial integrability, the factors

of the decomposition of the polynomial Dy A Fél’l) over R must be

simple. Thus, Dy A Fgl’l) either has at least two distinct real roots or
has no real roots. In the first case, Dy A Fél’l) = (12 + Bry)(cex +
B2y)p2(z,y) where py is a homogeneous polynomial of degree two in
x,y. Making u = a1 + 51y, v = asx + B2y, the system is transformed
into (u,9)T = f‘gl’l) with Do A f‘él’l) = wv(c1u? + couv + c3v?). Hence,
FO iy GULD.

In the second case, Dy A Fél’l) = [(y — az)? + f%2?|q2(z, y) where
B # 0 and ¢ is a homogeneous polynomial of degree two in z,y
with imaginary roots. Letting u = z, v = —(a/B)z + (1/8)y,

the system is transformed into (u,9)T = i‘gl’l) with Do A Fél’l) =
(v +u?)(cru® + couv + c3v?) with ¢3 —4cye3 < 0. So, Fgl’l) = Ggl’)l). u]

Next, we determine the polynomial integrability of the families given
in Proposition 4.1 and, as a consequence, we will compute all the
irreducible quasi-homogeneous polynomial systems of degree two which
are polynomially integrable.
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We study each of them separately.

Proposition 4.2. The system (&,9)7 = Ggl’?’) with G;l’?’) having
coprime components is polynomially integrable if and only if
i) do = 0 (Hamiltonian system), or
ii) dy # 0, ¢; # 0, da(ny + n2 +2) = (ng — nl)\/z where A :=

cg —4cqic3 > 0, with ny, ne any non-negative integer numbers and where
at least one is non-zero.

Proof. The vector field Ggl’?’) is quasi homogeneous of degree 2 with
respect to type (1,3). Their conservative and dissipative parts are

Do A Ggl’?’) = 6(c1y® + oy + c32®), div (Gél’s)) = 6doz”.

Thus, if dy = 0, system (12) is Hamiltonian, case i). We assume that
dy # 0. If the discriminant A or ¢; are zero then the polynomial
Do A G® has multiple factors. And if A < 0, Dy AGS"®) has only an
irreducible factor. In both cases, by Theorem 3.1, system (12) is not
polynomially integrable.

If A >0 and c; # 0, it has that Do A GS™® = 6¢, (42 — (co/c1)ay —
(c3/c1)x®) = 6c1(y — Aiz3)(y — A2x3), with Ay, A2 distinct non-zero real
numbers. By (8), system (12) is polynomially integrable if and only if
there exist m1,n2 non-negative integer numbers, not all zero, verifying

ds (TLZ + 1)6 - M

1 1 _ 19 L

where M = 3n; + 3ny + 6. And as ¢;(A\; — A2) = V/A, it holds that
dg(nl —+ no + 2) = (TLQ — nl)\/Z (Case 11)) m]

Proposition 4.3. The system (&,9)7 = Ggm) with Gél’z) having
coprime components is polynomially integrable if and only if one of the
following series of conditions holds:

i) dy = dy = 0 (Hamiltonian system),

11) dy 7& 0 or ds 7& 0, A < 0, dica = 2d201, d2(nm + 4nq + 5) =
(ngy — ny)cy, where ng,my any non-negative integer numbers and at
least one is non-zero,



16 A. ALGABA, C. GARCIA AND M. REYES

iii)dy #0 ords #0, A >0, ¢; #0 and

2ny — N1 — Na

dl = C1,
Ng +2n1+2n9+ 5
2n, — N1 — No 5(n2 —ny)
do = VA,
2= Slne + 2m1 + 212 +5) 2 T 2(ny + 201 + 20z + 5)

where ng,n1,n2 any non-negative integer numbers and not all zeros
and A := c3 — 4cyc3.

Proof. In this case, we have that
Do A Gél’z) =5z(c1y” + cox’y + czz?), div (Gél’z)) = 5(dyy + daz?).

We assume that either di # 0 or do # 0; otherwise, system (13) is
polynomially integrable since it is Hamiltonian (case i).

If A <0, it has ¢je3 # 0 and Dy A Ggm) = 5c1z(y — Az?)(y — Az?),
with A € C—R. By applying Theorem 3.2, with 6, = 1, §;, = 0, system
(13) will be polynomially integrable if there exist n;,ny (ny = n;) non-
negative integer numbers and where at least one is non-zero, such that

2(ng —n1) (e —m)

——"cy, dy =
nz+4n1+51 2

d =
1 g +4ny + 5

ca, (case ii).

If A > 0 and ¢; # 0, it has that Dg A Ggl’z) = 5cix((cz/c1)zt +
(c2/c1)x?y +y?) = berx(y — Aix?) (y — Aea?) where A1 + Ao = —(c2/c1)
and AjA2 = (cg/c1). In this case, system (13) will be polynomially
integrable if

_d B(ne+1) =M

1 = = 7
Res fn(z, 1),0] = & =
do + di1 )\ 5(n1+1) - M .. . .
Res [7(1,y), ] = = - , hi=1,2, :
es [n(1,y), Ail u ) i 0] i F ]

where M = ng +2n1 +2ne+5 with A; j; = (—c2 £ \/Z)/2cl. Thus, one
arrives at case iii).

If A =0 or ¢; =0, the polynomial Dy A Gél’z) has multiple factors
and therefore the system does not have a polynomial first integral. And
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if A <0,DgA Ggl’z) has only an irreducible factor. Thus, system (13)
is not polynomially integrable. ]

Proposition 4.4. The system (&,9)7 = Gg&l) with Gg(’ll) having
coprime components is polynomially integrable if and only if one of the
following series of conditions holds:

i) di = dy = d3 = 0 (Hamiltonian system),

ii) dy, ds,ds are not zero simultaneously, A < 0, and

3ng —ny — 2n; Ng — 3Ny + 2103
d3 = C3, 1= C1,
Ng +ny + 2n; + 4 Ng +ny + 2n; + 4
dy — 2(ngy — ny)

Ng + Ny + 21y +4C2

where ng,ny, N1 any non-negative integer numbers and at least one is
non-zero.

iii) dy, d2 or ds are different to zero, A > 0, cic3 # 0 and

g —ny —ng —no c —n$+3ny—n1—ngc

Nz +ny +ny +ng +4 » Ny +ny +ny +ng +4 b
2(ng —ny) 3 2(ny — ng) A

nz+ny+n1+n2+42 Ng +ny +ny +mny +4 ’

d3: d1:

dy =

where ng,ny, N1, N2 any non-negative integer numbers and not all zero,
being A := c3 — 4cjcs.

Proof. The vector field Géi’ll) is a quasi-homogeneous of degree two
with respect to type (1,1). We have

Do A GS&D = day(c13” + cowy + c3y?),
div (GELY) = 4(dia? + dowy + day?).

If dy = dy = d3 = 0, case i). We assume that div (Gé}(’ll)) Z£0. IfA <0,

one has that cjes # 0 and Dg A ch’ll) = deszy(y — M) (y — Az), with
A € C—R. From Theorem 3,2, system (14) is polynomially integrable
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if and only if there exist n;,ny,n1,n2 such that

Res [, 1),0] = 2 = 1+ A £1)

Res [1(1,9),0] = i—i =1- W,

Resln(L,9), = 8 -
Res [(1,1), 3] = & ;;gjj)ﬁz Ay +A;) =

where ny = n; and M = ng + ny + 2n; + 4. So, one arrives at case ii).

If A > 0 and cic3 # 0, one has that Dy /\th’ll) = deszy(y— Mz)(y—
A2x) where Ay + Ao = —(c2/c3) and A Ao = (¢1/¢3). Thus, system (14)
will be polynomially integrable if

ds 4. +1) - M

R ),0=—=—+—"——
es (. 1),0] = D=
dy 4(ny +1)— M
R 1 Oj=—=-——"4——~-
esfi(1,9),0) = 2 =

dy 4 doA;i + dsA?
1,y), \i] = i
ReS [77( 7y)7 ] CBAi(Ai _ )\])

4(n; +1)—M . .,
:_%a 27.7:1727 7’7é.77

where M = ng +ny +n1 +ng +4 with \; ; = (—co £ \/K)/QC;J,. So,

one has iii).

In the remaining situations, system (14) is not polynomially inte-
grable. O

Proposition 4.5. The system (&,9)7 = Ggél) with Gggl) having
coprime components and A := ¢ —4cic3 < 0, is polynomially integrable
if and only if one of the following series of conditions hold:

i) do = d1 = d2 = 0 (Hamiltonian system),
ii) do,dy,dy are not zero simultaneously and
n3 — ny
ny +n3 + 2

ng —ny

dy =2 I S
! 7’Ll+TL3+202,

(c1 — c3), dog = —dy =
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where ny,ng any non-negative integer numbers and at least one is non-
zero.

Proof. In this case, Dg A G(1 2 = 4(x? + y?)(c12® + c2xy + c3y?) and
div (G33") = 4(doa? + dyawy + day?). If dg = di = d = 0, system (15)
is integrable since it is Hamiltonian (case i)).

We assume that div (G, (1 2 ) #£ 0. As A < 0, one has that cjes #
0 and Dy A Gé},;l) = 403(y + iz)(y — iz)(y — A\z)(y — Ax), with
A = (—c2++V—Ai)/2¢c3 € C — R. Let us assume that c3 + (¢; —

c3)? # 0, since otherwise Dgy A G (1 1) has multiple factors. From
Theorem 3.2, system (15) is polynomlally integrable if and only if there
exist ny,nq,ng,ng such that

do + dyi — dy utl)-M
R N ’
es[n(l,y),i] = 2csi(i — N)(i — ) M
1o doodidy _ Angt1) M
Res[n(1,y), —i] = —2¢3i(—i — A\)(—i — A) M ’
do + diX + d2\? Ang+1) = M
R 1,y),\ = N ’
es[n(1,y), Al cs(A — ) (A +i)(A =) M
— <2
: do + diX + do) Anat 1) - M
R ]., 7)‘ = 5% Y 2 T ’
S UCEUR s s s ey M

with ne = ny, ng = ng and M = 2ny + 2n3 + 4. So, it has ii). o

In summary, we have obtained the following result.

Theorem 4.1. System (&,9)7 = Fy with Fy quasi-homogeneous
vector field of degree two having non-null coprime components, is
polynomially integrable if and only if it can be transformed, by means
of a linear change of variables, into one of the systems given by the
series of conditions of the Propositions 4.2, 4.3, 4.4 or 4.5.

Finally, we characterize the centers of these systems. We assume,
therefore, that Dy A F2 has no real factors. Therefore, only systems

(&,9)T G(1 ® and (,9)T = Ggél) can be centers.
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Theorem 4.2. Systemn (12) has a center at the origin if and only if
do =0 and c% —4cie3 < 0.

Proof. The origin is monodromic if and only if Dy A Gél’g) =

6(c1y® + caz®y + c3x®) has no real factors. Thus, we assume that
c3 —4cie3 < 0.

If dy = 0, O is a center, since (12) is monodromic and Hamiltonian.
Otherwise, (d2 # 0), one has that Dg A Ggl’?’)(l, y) =6c1(y—A)(y—A)
with A € C — R non-zero. By Theorem 3.3, system (12) has a center if
and only if

o (Res (1), ) =t () = —— L

Cl()\ — X) \/40103 — C%

This contradicts the fact that dy # 0. O

As a consequence of Proposition 4.2 and Theorem 4.2, we obtain the
following result:

Corollary 4.1. The centers of system (12) are Hamiltonian (all are
integrable centers).

Theorem 4.3. System (15) has a center at the origin if and only if

one of the following series of conditions holds:
1) c1=c3#0,c0=0,dy+dy =0,

11) (C%—F(Cl—Cg)Q)(do—‘rdg) = (61+63—\/Z)(d1(22+(d2—do)(Cg—Cl)),
with (c1 — ¢3)? + 3 #0 and A := 4dcyez — & > 0.

Proof. For this system, Dg A Ggél) = 4(2® +y?)(c12? + comy + c39?).
The origin is monodromic if and only if ¢z — 4cic3 < 0. So, Dg A
G343V (1,y) = 4es(y — i) (y +9)(y — A)(y — X) with A € C - R.

We distinguish two cases: if cg = ¢; —c3 = 0, i.e., ¢ and —i double
roots of Dy A Ggl’)l)(l, y), one has that

2. d ) . d d0+d1y+d2y2>
Res[1(1,%),i] = lim — ((y — i)%n(1, =lm — | ———————
(0,00, = i (0 = P(1,9)) =l L (BEDEES
_ (do+do)i

463
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Therefore, by applying Theorem 3.3, system (15) has a center, in this
case, if and only if dy + d2 = 0.

And, if 3 + (¢1 — ¢3)? > 0, i.e., the roots of Dg A Gg,’,l)(l,y) are
i,—i,A and X with A € C and Re ()\) # 0. In such a case, by applying

Theorem 3.3, O is a center if and only if the sum of the following
expressions is zero

Im (Res [(L,y), i]) = Co5pltgaone,

ca—c cg—dacy)—(c1+c c c2
Im (Res (1, y), A)) = — Ha=elbeziani st ol

Thus, we arrive at ii). u]

Finally, we show the following result, which is easily obtained from
Theorem 4.3 and Proposition 4.5.

Corollary 4.2. We assume that system (15) has a center at the
origin. Then, the origin is not analytically integrable if and only if one
of the following series of conditions holds:

i)ep=c3#0,c0=0,dy#0,
ii)er=e3#0,c2=0,dop=0, dy #0,
iii) e1 # e3, c2 = 0, (n1 + n3 + 2)dy # 2(ng — n1)(c1 — c3), for any
ni, ng non-negative integer numbers and where at least one is non-zero,
iv) (1 —e3)?+ 3 #0, do + da # 0,

V) (Cl — 03)2 + C% ;'é 0, do + d2 = 0, (Tll + ns + 2)d2 7& (’I’Lg — ’l’Ll)Cz,
for any ni,n3 non-negative integer numbers and where at least one is
non-zero.
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