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TRANSFORMATION OF
SPECTRA OF GRAPH LAPLACIANS

ROBERT S. STRICHARTZ

ABSTRACT. We study how the spectrum of a graph Lapla-
cian is transformed under two types of graph transformations:
1) replacing a graph G by its edge graph Gg; 2) edge substitu-
tion, where each edge of G is replaced by a specified graph H,
yielding a graph denoted G . Since we allow a rather broad
definition of what constitutes a Laplacian on a graph, part of
the problem is to define a Laplacian on the new graphs Gg
and G g that is naturally related to the original Laplacian and
such that the spectra are closely related. Our work extends
results of Shirai [11] on specific Laplacians on regular graphs.

1. Introduction. How does the spectrum of a graph Laplacian
transform when you transform the graph? This is a natural question
that we investigate for two types of graph transformations: 1) the
passage from a graph to its edge graph; and 2) edge substitution,
replacing each edge in a graph by a specified graph. We adopt the
point of view, promoted by Colin de Verdiére [2], that there are many
different Laplacians associated to a single graph. Suppose G is a graph
with vertices V and edges E. A weight on G is an assignment of positive
values to the elements of V' and E. We write u, for the weight of x € V'
and view p, as a measure on V. We write ¢(z,y) for the weight of the
edge e(z,y) € E joining vertices = and y (we also write z ~ y to
indicate that the vertices are joined by an edge), and regard c(z,y)
as a conductance whose reciprocal r(z,y) = 1/c(z,y) is a resistance.
Thus, the edge weights allow us to imagine the graph as an electric
network where the edges are resistors joining the vertices. The edge
weights give rise to a bilinear form called energy:

(1.1) E(u,0) = Y ela,y)(ulz) — u(y))(v(z) — v(y))
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for v and v functions on V, and we write £(u) = E(u,u) for the
associated quadratic form. (In case V is infinite, £(u) is well-defined
for all functions, but may take on the value 400, while £(u,v) is well-
defined and finite if both u and v have finite energy.) The Laplacian
associated to the weight is defined by

(1.2) E(u,v) =— Z Au(z)v(z) g,
%
which easily yields the pointwise formula

1

(1.3) Au(z) = i > cl@ y)(uly) - ul))-
x Y~z

Note that the Laplacian is unchanged if we multiply all weights by a

fixed constant. We say that the weight (and the associated Laplacian)

is consistent if

(1.4) pe =3 cla,y).

yn~z

In that case the formula for the Laplacian simplifies to

(1.5) Au(z) = <Z Mu(y)) —u(z).
ya P
In this work we always begin with a consistent Laplacian for our original
graph, but we do not always end up with a consistent Laplacian on the
edge graph. The reader should keep in mind that there are situations
in which one needs to work with Laplacians that do not satisfy the
consistency condition. Our work is a continuation of work of Shirai
[11] that studies these problems for a single Laplacian on a regular
graph, and only studies one kind of edge substitution.

Let us assume for the moment that the graph is both finite and
connected. Then A is a self-adjoint operator on the finite-dimensional
inner product space L%(G) = L?(V,u) and so has a complete set of
real-valued eigenfunctions {u;} with eigenvalues {);}, by convention

(16) *Auj :Ajuja J=12,.. ,#V,
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so that \; are nonnegative. We may arrange the eigenvalues in non-
decreasing order, in which case A\; = 0 (with u; constant), and all the
other eigenvalues are strictly positive. We call {\;} the spectrum of
the Laplacian, but we note that information about the eigenfunctions
should also be considered as part of the spectral data. In case of multi-
plicity, the individual eigenvalue is repeated in the spectrum {);}, and
there is no canonical choice of eigenfunctions in an eigenspace. With-
out multiplicity, it is often convenient to normalize the eigenfunctions
to have ||u;||L2 = 1, but this still only determines the eigenfunction up
to a multiple of +1. In the case of a consistent Laplacian it is easy to
see that the eigenvalues satisfy the inequality

(1.7) 0< )\ <2

(this follows by examining what happens at a point where u;(z)
assumes its maximum or minimum value), and A; = 2 is possible if
and only if G is bipartite, in which case the multiplicity of 2 is one,
with u; assuming values +1 on one set of vertices and —1 on the other
set in a 2-coloring of the graph.

In Section 2 we consider the edge graph G, whose vertices Vg are
the edges F of GG, and the edge relation e ~ €’ holds exactly when e
and e’ have a vertex in common, so e(z,y) ~ e(z,z). Given a weight
on G, how do we associate a weight on Gg? Since the weight on G
assigns weights c(z,y) to the edge e(zx,y), it is natural to take a weight
on G with

(1.8) Pe(a,y) = c(z,Y).

It is less clear how to assign a conductance c(e(z,y),e(z, 2)) to edges
in Gg. We will find it convenient to take

ac(z,y)c(z, 2)

(1.9) c(e(z,y), e(x, 2)) = .

for some positive constant a. With this choice of weight we have a
Laplacian Ag on Gg whose spectrum is easy to relate to the spectrum
of A, at least in the case that the original weight is consistent. We will
show that the ordered spectrum of Ag is

(1.10) {aX1,a)e, ... ,adgy,2a,...,2a}
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if G is not bipartite, and
(1.11) {ari,aXs,. .. ,;adpv_1,2a,...,2a}

if G is bipartite. The multiplicity of 2a is #F — #V in the first case
and #FE —#V +1 in the second case, so the total number of eigenvalues
is #E. Moreover, the eigenfunction associated with a); with A; # 2
on Gg is Suj, for the sum operator

(1.12) Su(e(z,y)) = u(z) + u(y)

mapping functions on V' to functions on E, and the eigenspace associ-
ated to 2a is the orthogonal complement of the image of S. It is not
always the case that the Laplacian Ag is consistent, although in some
cases, for example if G is k-regular with all conductances equal, this
can be achieved by the appropriate choice of the constant a. We do
not mean to suggest that the weight on Gg given by (1.8) and (1.9) is
the only, or even the best, choice.

In Section 3 we consider the construction of a new graph G g via edge
substitution, where H is a fixed graph with NV + 2 vertices Vg, two of
which, denoted ¢y and g1, are considered as boundary points. We will
assume that there is a graph isometry 7 of H that interchanges gy and
g1- We will fix a consistent weight for H that is invariant under 7.
We write cg(g,h) for the conductance of an edge e(g,h) in Ey, and
Vh = > g CH(g, h) for the measure on Vi. Edge substitution replaces
each edge e(z,y) in the original graph with a copy of H, identifying z
with ¢p and y with ¢;. Because of the symmetry, it doesn’t matter if
we interchange x and y. The new graph Gy has two types of vertices,
the old vertices V,q being just V, and the new vertices Vieyw, indexed
v(z,y, h) where e(x,y) is an edge of G and h € Vi \{qo,q1}. The edges
of Gy are exactly the edges Ey in each copy of H, so

v(z,y,h) ~v(z,y,9) ifg~hinH,
(1.13) v(z,y,h) ~x if h ~ gy and
v(z,y, h) ~y if h ~ q1.

We create a consistent weight on Gy by assigning conductances to
edges multiplicatively, so

C(’U(l’,y, h),v(.’c,y,g)) = C(:E, y)cH(g, h)
(1.14) cv(z,y, h),z) =c cu(qo, h)
C(U(ZL‘,y, h)vy) =z,
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The consistency condition implies

(115) ,uv(z,y,h) = C(l‘, y)yh

for the new vertices. In order to have the weight of the old vertices
unchanged, we will assume

(1.16) Vg = 1.

This condition can be achieved by multiplying all weights on H by a
constant, and so it does not affect the Laplacian Ag,. Note that at
new vertices the Laplacian A, agrees with the Laplacian Ay on the
inserted copy of H. The simplest example of edge substitution is to
choose H to be the 3-element graph with two edges (symmetry requires
the conductance to be the same on both edges); here G inserts a vertex
in the middle of each edge. This is discussed in Example 3.4.

It is clear that every eigenfunction on G with eigenvalue X' restricts
to a M -eigenfunction on the interior of each copy of H. The prob-
lem is to understand the \-eigenvalue equation at the old vertices.
We will show that there are two distinct types of solutions. There
are new eigenvalues corresponding to A’ in the Dirichlet spectrum of
H (eigenfunctions vanishing on the boundary {qo,g1}). There are ex-
actly N Dirichlet eigenvalues X' (counting multiplicity), and these give
rise to \-eigenfunctions on G’y that vanish on V,q. The number of
such eigenfunctions depends on the nature of the Dirichlet eigenfunc-
tions on H. If the eigenfunction on H is a joint Dirichlet-Neumann
eigenfunction, then the eigenfunctions on each copy of H may be cho-
sen independently, and the dimension of the )\ -eigenspace on Gg is
#E. Otherwise, there are #V linear constraints arising from the \'-
eigenvalue equation at the old vertices, so the dimension is at least
#E — #V.

The other type of solution we will call a bifurcated eigenvalue. In this
case the eigenfunction restricted to V54 is a A-eigenfunction G, and the
values A and )\ are related by

(1.17) A= R(N)

where R is a rational function. Thus, there are a finite number of
solutions )\’ for each A. In the generic case (A is not a Dirichlet
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eigenvalue of H) there is a unique extension from Vg to Vpew of a
M-eigenfunction on G to a \-eigenfunction on Gg. Between the two
types of eigenvalues, we obtain a complete description of the spectrum
of GH

In this paper we also consider the case of infinite graphs. Here
the question of interest is to relate the spectral resolutions of the
two Laplacians. In the case of the edge graph we give a complete
description, while for edge substitution we are only able to offer a
reasonable conjecture.

Graph Laplacians and their spectra have been studied extensively;
see the books [1, 2, 3]. Aside from its intrinsic interest, this subject
has applications to the study of Laplacians on fractals, as developed in
the work of Kigami [5-8]. See [12, 14] for expository accounts. Other
works that develop this connection include [4, 9, 10, 13, 15]. Indeed,
[13] explicitly uses some of the result of [11]. We hope that some of the
results of this paper will have applications to the study of Laplacians
on fractals.

2. Edge graph. Let G be a finite connected graph with a consistent
weight. We denote the associated Laplacian by Ag. Let Gg be the
edge graph of G, with weight given by (1.8) and (1.9), and denote its
Laplacian by Ag. To make the equations clearer, we use lower case
letters for functions on G and upper case letters for functions on Gg.
We denote the sum operator S from functions on G to functions on Gg
by

(2.1) Sf(e(z,y)) = f(@) + f(y)-

We compute the adjoint operator S* from the definition

(2.2) > S*F(x)g(x)ps = > F(e(z,y)Sg(e(z,y))c(,y).
% E

Using (2.1), the right side of (2.2) becomes

> 9(@) Y Fle(z,y)ele, y);

y~z

hence
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(2.3) S*F(z) =Y @Y pe(z,y)).

These operators intertwine aAg and Ag.

Lemma 2.1. (a) —AgS = —aSAg,
(b) =S*Ap = —alAgS*,

(c) SS* = (1/a)Ag + 21,

(d) f eker S & —Agf =2f.

Proof. (a) From the definition of Ag and (1.8) and (1.9) we find

~ApF(e(z,y) =a Y #(F(e(m, y) — Fle(z, 2))
(2.4) -
+a 30 L (e a,) — Pl )

2~y

z'#x

for any function F' on Gg. Note that we can drop the conditions z # y
and z’ # z in each sum because the last factor vanishes for the deleted
value. When F' = S f, this yields

ApS(el,y) =a Y %my) ()
(2.5) T ey,
ra Y () - 1)

2~y

Because the weight on G is consistent, the right side of (2.5) is equal

to
af@) a3 D po) tape) a3 WD i,

T /J,y

zNT 2~y

Rearranging terms, this is seen to be equal to

a(=Agf(r) — Acf(y)) = —aSAc f(e(z,y))-
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(b) This follows from (a) by taking adjoints.
(c) By (2.1) and (2.3) we find
SS*F(e(w,y)) = S*F(x) + S*F(y)

= olz,z) e(z,z
= > 48 e, )

(2.6) =
£ 3 B pegy, )

and the result follows from (2.4).

(d) Clearly f € ker S if and only if f(z) = —f(y) whenever z ~ y.
This implies —Agf = 2f. Conversely, if f satisfies this 2-eigenvalue
equation, then G must be bipartite and f(z) = —f(y) if z ~ y. O

Theorem 2.2. Let {\;} denote the eigenvalues of Ag with eigen-
functions {u;}. Then the spectrum of Ag consists of eigenvalues al;
for all \; < 2, with the same multiplicity as for Ag, and eigenfunc-
tion Su;, and the eigenvalue 2a with multiplicity #E —#V +1 if G s
bipartite and #E — #V if G is not bipartite.

Proof. From part (a) of the lemma
—AES’U,J' = —aSAGuj = a)\jSuj,

and by part (d) Su; is not zero if A\; # 2. Thus, Su; is an a)j-
eigenfunction of Ag if A\; # 2. Conversely, suppose U is a M-
eigenfunction of Ag with A # 2a. Then, by part (b) of the lemma

—AgS*U = —a " 1S*AgU = a~1A\S*T,

and by part (c) S*U is not zero. Thus, S*U is an a~!\-eigenfunction
of Ag, so it must be a multiple of u; for some j with A; # 2. Then U
is a multiple of Su;. This shows that the multiplicities are the same,
and there are no eigenvalues other than {a);} and 2a. A dimension
count gives the claimed multiplicity for the eigenvalue 2a. o

Note that the multiplicity of 2a might be zero, in which case 2a is
not an eigenvalue of Ag. This is always the case if G is a tree, for then
G is bipartite and #F = #V — 1.
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It follows from the proof that a function is in the image of S if and
only if it is orthogonal to the 2a-eigenspace.

Next we consider the normalization of the eigenfunctions. Suppose
u; is normalized so

(2.7) |U’]HL2(G Z“J po = 1.
Then
(2.8)

I1SuilZep = D (ui(@) + u(y)) e(z, y)

= Z uj(x)? Z c(z,y) + Z Z oz, y)uj(x)u;(y).

eV y~z zeV y~zx

Of course }, ., c(z,y) = pie so the first term on the right side of (2.8)
is 1. Also

(2.9) Ajuj(z) = —Aguj(z) = uj(x) — Z %u](y)

Yy~

Multiplying (2.9) by pyu;(x) and summing over z € V, we obtain

D> elwyui@)uiy) = (1= X)) ui(@)ue =1 =X,

€V y~x

0 (2.8) becomes simply
(2.10) 1Sujllzzee) =2 = Aj.

Thus, to obtain a normalized eigenfunction, we should take U; =
(2 — )\j)_l/QSUj.

The weight on Gg that we are using is not necessarily consistent.
However, it is easy to give a necessary and sufficient condition such

that there exists a choice of the constant a that will make the weight
consistent. Indeed, the consistency condition is

a a
(211) C(:U, y) = ,LL_ Z C(:U, y)C(ZL‘, Z) + ’u_ Z C(:U, y)c(yv Zl)'
Tz )



2046 ROBERT S. STRICHARTZ

We may cancel ¢(z,y) from (2.11) and use the consistency of the weight
on G to obtain the equivalent condition

(2.12) 2= L clay) (i + i),

a [

which we can write as

(2.13) c(z,y) = b(#’l)

for b =2 — 1/a. In other words, the measure determines the conduc-
tances. However, we cannot choose any measure, because the consis-
tency condition requires

(2.14) P L

Thus, we require that the left side of (2.14) be independent of . (This
value must be greater than 1/2 in order that a be positive, but it is easy
to see that this condition is automatic by considering the vertex x where
Ko attains its minimum.) Then we use (2.14) to define b and (2.13) to
define the conductances. The consistency condition then holds for the
weight on G, and then the choice a = (2 —b)~! implies the consistency
condition for the weight on Gg.

For example, suppose G is k-regular (for k¥ > 3) and we choose all
conductances equal, say c¢(z,y) = 1, so pu, = k for all vertices. Then
(2.14) holds with b = 2/k, hence a = k/(2(k — 1)). Of course, Gg is
2(k — 1)-regular, and the weight on G gives equal conductance to all
edges. If G is not bipartite, all eigenvalues of Ag are multiplied by
k/(2(k — 1)) to obtain eigenvalues of Ag, and the eigenvalue k/(k — 1)
appears with multiplicity ((k/2) — 1)#V. This result is essentially in
[11].

Finally, we consider the case of an infinite connected graph. Some-
times it is convenient to assume that each vertex has finite order, but
in fact we can obtain the same results assuming only that the weight
is chosen so that the possibly infinite sum in (1.4) converges.

Lemma 2.3. Under the above assumption, the operator —Ag is a
bounded operator on L*(G) with bound at most 2.
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Proof. If u and v have finite support,

(Agu,v) =Y e(x, y)uly)o(z) — (v, v).

E

By Cauchy-Schwarz (twice) and consistency,

> > elayuly)v(z)

zEV y~w
> <
y~T ~

/\/\

<> (X
> (Xete

@2 >”<
~(Zewrm) (Seer )

= [lull2q) vl 2

IN

Since functions of finite support are dense in L?(G), the same estimate
holds for u, v € L*(G); hence, Ag is bounded with bound at most 2. O

Lemma 2.4. The operator —Apg is bounded on L?(Gg) with bound
at most 4a.

Proof. Since the weight is not necessarily consistent, we need to
modify the proof of Lemma 2.3. The key observation is that

(2.15) Z c(e,€') < 2ap.,

e'~e

which then allows us to essentially repeat the proof. By (1.8) and (1.9),
we have

i) Y eg)oyiednd, v edns)

2~y

2/ #x

£y
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for e = e(x,y). By adding the omitted values z = y and 2z’ = z to the
right side of (2.16) we obtain 2a, which yields (2.15). o

Since the Laplacians are self-adjoint, the spectral theorem implies
the existence of a spectral resolution. One way to describe this is by
spectral projection operators. For Ag, there is a spectrum A, a closed
subset of [0,2], and a measure dm ()\) supported on A, and for each
A € A an operator Py with kernel Py (z,y),

(2.17) Paf() = Pa(e,v)f(y)uy,
Yy
satisfying
(2.18) _AGPAf = APAS
and
. = dm(\).
(2.19) f= [ Prsamy

Note that we are not claiming that P, is a bounded operator on
L?, but (2.17) makes sense for any finitely supported function f, and
these functions are dense in L2. For such functions (2.19) makes sense
pointwise. Also (2.18) is equivalent to

(2.20) —AgP(-,y) = AP(-,y) for all y,

and Py (z,y) = P(y, x) because —Ag is self-adjoint. Again, we do not
claim that either Py or the measure dm () are unique, since we can
always multiply Py by a function ¢(A) and simultaneously multiply
dm (X\) by 1/¢(X) without changing (2.18) and (2.19). It is true that
the product Pydm (A) is unique.

It is convenient to break up the measure dm () into a discrete dmg(\)
and continuous dm.(\) part. The discrete part can be written

(2.21) dma(X) =Y bi6(A = A;),

and, without loss of generality, we can take all the constants b; equal
to 1. Then {);} are the L?-eigenvalues of —Ag, and the corresponding
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eigenspaces may have finite or infinite multiplicity. If {u;;} is an
orthonormal basis for the A;-eigenspace, then

(2.22) Py, (z,y) = Zujk(x)ujk(y)'
k

We call Ag = {\,} the discrete spectrum. We do not claim that it is a
closed set. The continuous spectrum A, is the support of dm.()), and
by definition it is a closed set. Strictly speaking, the spectrum of —Ag
also contains the limit points of A4, which may or may not belong to A,

but these points do not play an essential role in the spectral resolution
(2.19).

The discrete eigenvalue A = 2 plays a special role. Such eigenvalues
can only occur if G is bipartite, and the associated eigenfunctions may
or may not be in L2. If the total measure of G is finite, then the function
that takes values +1 on the two parts of G is an L? eigenfunction. It
is not clear whether or not the converse statement is true. In any case,
we define A’ to be A with the discrete value A = 2 removed from Ay,
and dm/(X\) = dm.(\) + dm/(\), where dm/; is equal to dmg with the
atom §(x — 2) removed.

The value 2a may or may not be in the discrete spectrum of —Ag.
Let A’y denote the spectrum Ap of —Ag with the discrete eigenvalue
2a removed. Then every function F' € L?(Gg) can be written uniquely
F = F' 4+ F,, where Fy, is an L? 2a-eigenfunction and F’ is orthogonal
to all L? 2a-eigenfunctions.

Theorem 2.5. A, = al’, and we may take
1
(2.23) PL = 5 SPAS” for A #2

for the corresponding spectral projections. Then

(2.24) P = / L _sp.stRdam'(\)
NP

with

(2.25) CAp—t SP\S*F = aA—t_SP\S*F.

2-A 2-A
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Moreover, we can write

(2.26) PAF(e(z,y) = Y P3(elz,y), e(z,w))F(e(z,w))e(z,w)

e(z,w)EE
for
(2.27)  PE(e(z,y),e(z,w))
= ﬁ(R\(m, 2) + Px(z,w) + P\(y,2) + P\(y,w)).

Proof. Tt is easy to see that S is a bounded operator from L?(G) to
L?(Gg), and hence S* is bounded from L%*(Gg) to L*(G). We also
observe that Lemma 2.1 continues to hold for infinite graphs.

We have

1
(&ﬁQD/Q SPASTFldm(A) = | PASTF'dm (M) = S°F'
’ - Al

by (2.18) and (2.19). Composing on the left with S and using parts (a)
and (c) of Lemma 2.1, we obtain

<1AE+2I> LSPAS*F'dm \) = (EAE—FZI)F'.
a A 2= A a

Since F' is orthogonal to the kernel of (1/a)Ag + 21, we obtain
1
(2.28) / ——SPAS*F'dm (X\) = F'.
2 A

However, S*Fy, is a 2-eigenfunction by part (b) of Lemma 2.1, so
PrS*Fy, = 0for A # 2; hence, 1/(2 — A\)SPAS*F' =1/(2 — X\)SP\S*F.
Thus, (2.28) is the same as (2.24). Then (2.25) follows from (2.18) and
parts (a) and (b) of Lemma 2.1.

To establish (2.26) and (2.27), we compute from (2.17) and (2.3) that

SPAS*F(e(z,y)) = Z(P)\(LE, 2) + Py(y,2))S*F(2)p.

z

= Z(P)\(l‘, Z) + PA(yv Z)) Z F(e(zaw))c(zaw)'

z wn~Nz
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FIGURE 2.1.

We interchange z and w and then average to obtain (2.26) from (2.23)
with the kernel given by (2.27). o

What is the multiplicity of the discrete eigenvalue 2a for —Ag?
Shirai [9] shows that for any infinite k-regular graph with k£ > 3 and
all conductances equal, the multiplicity is always infinite. On the
other hand, when k& = 2, the multiplicity is zero, i.e., 2a is not an
eigenvalue. It is not difficult to construct examples with any given finite
multiplicity. For example, to get multiplicity one, just take a square
with radiating half-lines, as shown in Figure 2.1, with all conductances
equal (say 1). Take F to be the function that alternates 1 on the
edges around the square and vanishes on all other edges. It is obvious
that —AgF(e) = 0 on all the edges where F(e) = 0. If e is one of
the edges around the square, we have c(e,e’) = a/3 for each of its
four adjacent edges e’ by (1.9). A simple computation then shows that
—AgF(e) = 2aF(e). On the other hand, any 2a-eigenfunction that
does not vanish identically on the edges of one of the half-lines cannot
lie in L?(GE), so the multiplicity is exactly one. To get multiplicity N
we need to weave together N squares in a similar fashion.
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3. Edge substitution graph. Let Gy be an edge substitution
graph with weight as described in the introduction. We always assume
that H is finite and connected. We begin by discussing the case when
G is finite.

Suppose that )\’ is not a Dirichlet eigenvalue of H. Then every \'-
eigenfunction on the interior of H is uniquely determined by its values
on the boundary {qo, ¢ }:

(3.1) u(h) = ag(N', h)u(qo) + a1 (N, h)u(qy) for h € Vi

for certain functions a;(\', h). Since the X -eigenvalue equation is
h

3:2) (1 Xup) = Y 8D 4 )

v
g~h h

it follows by Cramer’s rule that a;()\',h) are rational functions of N
with a common denominator being a polynomial of degree N and the
numerators being polynomials of degree N —1. Of course, the Dirichlet
eigenvalues are exactly the zeroes of the denominator. Define

(3.3) A;(XN) =Y enlgo, h)ai(N ), i=0,1,
h~qo

so A;()\) is a rational function of the same type as a;(N,h). If
desired we could compute these functions explicitly from the data (the
structure of H and the weight).

Now we observe that, for u a )\ -eigenfunction,

> clv(z,y, h), z)u(v(z,y, h))

h~qo

c(z,y) Y cu(qo, h)(ao(N', h)u(z) + a1 (N, h)u(y))

h~qo

c(z, y)(Ao(N)u(x) + A1 (N)u(y)).

It follows that

Agpu() =3 = 3 c(o(, g, h), 2)u(o(z, 3, b)) — u(z)
I

y~z U7 hrgo

= (A(N) -~ Du(e) + 4, () T Yy )

gz He

= (Ao(X) = Du(z) + A1 (X)(Agu(z) + u(x)).
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In other words,

(3.4) —Agyu(z) = Nu(z) if and only if — Agu(z) = Au(z),
where A and )\’ are related by

(3.5) ATV =2 =1-X — Ay(N).

We summarize this computation as follows.

Theorem 3.1. Let N be an eigenvalue of Ag,, with eigenfunction
u. Then either X' is a Dirichlet eigenvalue of Ag, or ulv,, is a A-
eigenfunction of Ag where X and X' are related by (3.5).

We observe that (3.5) is a polynomial equation of degree N + 1 in X
for each fixed A. Thus, each of the #V eigenvalues A can give rise to
at most N + 1 values of X, for a total upper bound of (N + 1)(#V)
eigenvalues of Ag,,. There are two reasons why the true count could be
lower. One is that the polynomial equation (3.5) might have multiple
roots. The other is that one of the roots might be a Dirichlet eigenvalue
of H. On the other hand, there are two other potential problems that
do not arise. One is that the same value of A’ might arise for different
choices of A; this can’t happen because it is clear from (3.5) that X
determines A\. The other is that some of the values of \' might not
lie in the interval [0, 2]; this can’t happen because our argument shows
that every A’ that solves (3.5) gives an eigenvalue of Ag,,, hence must
lie in [0, 2].

If X is a Dirichlet eigenvalue of H, we would like to count its
multiplicity as an eigenvalue of Gy. Assume first that A’ does not
arise as a solution of (3.5). If the associated eigenfunction is a joint
Dirichlet-Neumann of H, which in this case means u(g;) = 0 and

(3.6) > enlgi h)u(h) =0, i=0,1,

h~g;

then we can place a copy of this eigenfunction on any of the #E copies
of H in G, so the multiplicity is #E. On the other hand, if (3.6) does
not hold, we obtain linear constraints at each old vertex. Specifically,
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for each choice of coefficients b(x,y) for = ~ y, consider the function u
vanishing at V,q with

(3.7) u(v(z, y, b)) = b(z, y)u(h).

Clearly u satisfies the M\'-eigenvalue equation at each new vertex.
Without loss of generality, we may take every eigenfunction on H to be
either symmetric or skew-symmetric; in the symmetric case, we require
b(z,y) = b(y, ), while in the skew-symmetric case b(z,y) = —b(y, ).
The N-eigenvalue equation at the point z € V;q takes the form

(3.8) Z c(z,y)b(z,y) = 0.

y~z

Lemma 3.2. The multiplicity of the X -eigenfunctions of —Agy
vanishing on Vyq for X' a Dirichlet eigenfunction of —Apg that is not
a joint Dirichlet-Neumann eigenfunction is given as follows:

(a) #E — #V + 1 if the Dirichlet eigenfunction is skew-symmetric;

(b) #E — #V if the Dirichlet eigenfunction is symmetric and G is
not bipartite;

(¢) #E — #V + 1 if the Dirichlet eigenfunction is symmetric and G
is bipartite.

Proof. The multiplicity is equal to the dimension of solutions of (3.8).
Since these are #V linear equations in #F unknowns, the issue is
the possible redundancy in the system. In other words, can we find
coefficients a(z) for z € V such that the equation

> a(z)) e(z,y)b(z,y) =0

eV y~z

is trivial? Note that the coefficient of b(x,y) is (a(z) + a(y))c(z,y)
in the symmetric case and (a(z) — a(y))c(z,y) in the skew-symmetric
case. Clearly a(z) = constant gives the unique solution in the skew-
symmetric case, while a(z) = % constant alternating on different col-
ored vertices gives the unique solution for bipartite G in the symmetric
case. O
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Note that #FE > #V —1, and equality holds only when G is bipartite.
Thus, the multiplicities in the lemma are always nonnegative.

It is also possible that a Dirichlet eigenvalue A of —Ay may cor-
respond to an eigenfunction of —Ag, that does not vanish on Vgq4.
If the Dirichlet eigenfunction is symmetric, then we have an obstruc-
tion to (3.1) when u(go) = w(g1), but not if u(go) = —u(q1), while if
the Dirichlet eigenfunction is skew-symmetric, then the reverse is true.
There are two ways this can arise:

(i) if A =0 and w is the constant function on Vg4, if A’ is related to
A by (3.5) and X is a Dirichlet eigenvalue of —Ap corresponding to a
skew-symmetric eigenfunction;

(i) if A = 2, G is bipartite and u = +1 on Vg, if X’ is related to
A by (3.5) and X is a Dirichlet eigenvalue of —Ap corresponding to a
symmetric eigenfunction.

Next we discuss the correct normalization of eigenfunctions. Suppose
we start with u a A-eigenfunction on G normalized so that

(3.9) lullee) = Y [u(@)Pue = 1,
z€V

and let u also denote its extension to a A -eigenfunction on Gg, so
(3.10) u(v(@,y, h)) = ao(X', h)u(z) + a1 (X', h)u(y)

on new vertices, where we have chosen one value of X’ satisfying (3.5)
where ) is not a Dirichlet eigenvalue of —Apy. Define

(3.11) Bo(X)= Y whao(N,h)?
heVa\{q0,q1}
and
(3.12) Bi(X)=2 Y wao(N,h)ar(X,h).
heVu\{qo,q1}
Then we have
> uv(z,y, k) ez, y)vn
heVa\{q0,q1}
= Bo(X)e(z, y)u(z)?
+ Bo(N)e(z, y)u(y)® + Bi(N)e(z, y)u(z)u(y).
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It follows that

lullZein) = D w@)pe + D > Bo(N)e(z, y)u(z)®

z€V z€V y~w

(3.13) + 373 Bi(N)e(z, y)u(z)u(y))

zeV y~e

=14 By(N) + Bi(N) D> (e, y)u(z)u(y)

zeV y~zx

by the consistency of the weight on G. Now

Bufe) = 3“0 uy) - ufe),

y~z

so multiplying by u,u(z), we obtain

Z c(z, y)u(z)u(y) = peu(z)Au(z) + peu(z)?.

y~z

If we substitute this into (3.13) and use the \-eigenvalue equation, we
obtain

(3.14) [ullZ2 gy = 1+ Bo(N) + (1= X)By(X).
Thus, to obtain a normalized eigenfunction, we should take

(3.15) %= (14 By(N) + (1 = X)By(\))"?u.

In particular, if the A-eigenspace of —Ag has an orthonormal basis
{ur}, then

(3.16) Pa(z,y) = Y u(z)ur(y)

is the kernel of the orthogonal projection operator

(3.17) Paf(@) =D Pa(x,y)f W)y

yev
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onto the \-eigenspace of —Ag. Then
(3.18) P (z,y) = (1+ Bo(N) + (1 = X)Bi(N)) " Pa(w, )

is the kernel of the orthogonal projection operator PSH onto the \-
eigenspace of —Ag,,, where f’)\(x,y) is obtained from Py(z,y) by
extending the values on Vq X V14 by solving the \’-eigenvalue equation
in each variable on V14 X View, Vaew X Vold and View X View.

Next, we consider the case when G is infinite. (As before, H is
finite.) As in Section 2, we assume the weight on G is chosen so that
(1.4) converges. Then Lemma 2.3 applies to both —Ag and —Ag,,.
Given a spectral resolution (2.17)—(2.19) for —Ag, split into a discrete
A4 and a continuous A, spectrum, denote by A’ the solutions to (3.5)
corresponding to A in A, but with Dirichlet eigenfunctions of —Apg
deleted. Note that the set of A € A, corresponding under (3.5) to a
Dirichlet eigenvalue of —Ap is a finite set, hence has measure zero for
dm.(X).

Conjecture 3.3. The spectrum of —Agy, is A" U {X;}, where {\}}
are the Dirichlet eigenvalues of —Ag and form part of the discrete
spectrum of —Ag, . The spectral resolution

(3.19) f=[ PG fam/ (V) + Y PSS
A’ ; 7

has spectral operators PO for N € A with kernels given by (3.18),
and

(3.20) dm/(N) = dm ()

where X is determined from N by (3.5).

The evidence for the conjecture is that it is clearly valid for the dis-
crete part of the spectrum by the previous discussion. The multiplicity
of each of the Dirichlet eigenvalues A in the spectrum of —Ag,, is dif-
ficult to determine. If )\; is a joint Dirichlet-Neumann eigenvalue, then
the multiplicity is infinite. Otherwise, it is equal to the dimension of
L? solutions of (3.8).
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We conclude with some examples.

Example 3.4. Let H be the 3-element graph g9 ~ hy ~ ¢1
with CH(qO,hl) = cH(hl,ql) = 1. Then a()()\’,hl) = al()\’,hl) =
1/(2(1 = X)). It follows that

(3.21) Ag(N) = A (V) = ﬁ

Note that A’ = 1 is the only Dirichlet eigenvalue of —A g, and it is not a
joint Dirichlet-Neumann eigenvalue. The corresponding eigenfunction
is symmetric. Then the solutions of (3.5) are given by

(3.22) /\':11\/1*%.

Note that for every A satisfying 0 < A < 2 there are two distinct
solutions satisfying 0 < X < 2, but for A = 2 there is just one solution,
and it happens to be the Dirichlet eigenvalue. So if G is not bipartite we
have 2#V bifurcated eigenvalues, and the eigenvalue 1 has multiplicity
#E — #V, while if G is bipartite we have 2(#V — 1) bifurcated
eigenvalues, and the eigenvalue 1 has multiplicity #E — #V + 2, made
up of the #F — #V + 1-dimensional space vanishing on V4 given by
Lemma 3.2, and a one-dimensional space generated by the function
u(z) = £1 on Vg and extended to be zero on Viey-

In this example By(N) = 1/(2(1 — M)2) and By(X) = 1/((1 — \)?),

, BN C2X2 6N +5
(3.23) L+ By(\)+ (1 - X)By(\) = T UE

Example 3.5. Let H be the 4-element square graph with vertices
Qo0,q1,h1,he and edges qo ~ hy ~ q1 and gy ~ hg ~ q1, with all
conductances equal to 1/2, so (1.16) holds. In this example ao(N, h;) =
a1 (N, hi) =1/(2(1 = X)) for i = 1,2, so Ag(N\') and A;(\') are again
given by (3.21) as in the previous example, and (3.22) again describes all
solutions to (3.5). Note that, although N = 2, we only have generically
two solutions. However, the Dirichlet eigenvalue \' = 1 of —Apy has
multiplicity 2. One eigenfunction has u(h;) = u(hg) = 1, and the other
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has u(hy) = —u(hs) = 1. The second one is a joint Dirichlet-Neumann
eigenfunction, so it adds #FE dimensions to the \' = 1 eigenspace of
—Ag,,, bringing the number of eigenvalues up to #V + 2#E.

Example 3.6. Let H be a complete-3 graph with c¢(qo, h1) =
¢(q1,h1) =t and ¢(go,q1) = 1 — t, where t is a parameter satisfying
0 <t <1 (note that ¢t = 1 just gives Example 3.4). Again a;(N,hy) =
1/(2(1 = X)), i=0,1, but a;(N,¢;) = 1,7 =0,1. Thus,

t t

(3.24) Ao()\l):m’ Al(A'):m

+(1-1¢).

We solve (3.5) to obtain

(3.25) 1— N = (L=t)(1-NE/Q =120 - N2 +4t(1 - (1/2)
: A '

It is straightforward to show that this yields two distinct solutions in
[0,2] for each A in [0, 2]. The only Dirichlet eigenvalue of —Ag is \' =1,
which corresponds to A\ = 2. The eigenfunction is symmetric and not
a joint Dirichlet-Neumann eigenfunction. Thus, if G is not bipartite,
then there are 2#V bifurcated eigenvalues, and the eigenvalue A’ = 1
has multiplicity #F — #V, with all eigenfunctions vanishing on V4.
If G is bipartite, then there are 2#V — 1 bifurcated eigenvalues,
and the eigenvalue A’ = 1 has multiplicity #F — #V + 1, with all
eigenfunctions vanishing on V4. (The difference between this example
and Example 3.4 is that the function satisfying u(z) = +1 on Vq and
vanishing on Ve is an eigenfunction with eigenvalue 2 — ¢.)

Example 3.7. Let H be the linear graph ¢y ~ hy ~ hg ~ -+~ hy ~
q1 with all conductances equal to 1. In this example it is convenient to
identify h; with the point j/(IN +1) on the unit interval, go with 0 and
q1 with 1. We introduce a parameter s with 0 < s < 1, related to A by

(3.26) 1—X=cosms.
Then (3.1) can be written

sinms(l — z) sin sz

(3.27) u(z) =

sins sin s
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‘We have
Ap(V) = sinTsN/(N + 1)
0 o sin s
and
A (V) = sinwsl/(N + 1)
! a sins ’
and (3.5) simplifies to
2 1- N = s
(3.28) cos Nl

The Dirichlet eigenfunctions of —Apg are
(3.29) uj(z) =sinmjz, j=1,...,N,

with eigenvalues given by (3.28) with s = j. These are never joint
Dirichlet-Neumann eigenfunctions, and they are symmetric when j is
odd and skew-symmetric when j is even.

Now if 0 < s < 1, then there are N + 1 distinct solutions to (3.5),
given by

+2§) .
3.30 1— N = m(s +2j) —-0,1,....N
( ) COS( N+l ) ] ) b b

and none of these are Dirichlet eigenvalues of —Ap. This breaks down
when A = 0 (corresponding to s = 0), when the solutions corresponding
to j and N 4+ 1 — j are equal, and also when A\ = 2 (corresponding to
s = 1), when the solutions corresponding to j and N — j are equal.
Note that these exceptional cases yield Dirichlet eigenvalues, except
N =0for A\=0(j =0in (3.30)), N =2 for A = 2 when N is even
(j =N/2in (3.30)),and X' = 2 for A\ = 0 when N isodd (j = (N+1)/2
in (3.30)). Of course A = 0 always occurs with multiplicity one in the
spectrum of —Ag, while A\ = 2 occurs with multiplicity one if and only
if G is bipartite.

If G is not bipartite and N is even there are (N + 1)(#V —1) +1 bi-
furcated eigenvalues of —Ag,,, namely, (N +1)(#V —1) corresponding
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to eigenvalues A # 0, and the constant function corresponding to A =0
and M = 0. There are N/2 symmetric Dirichlet eigenfunctions on H
that give rise to (N/2)(#E — #V) eigenfunctions on Gy that vanish
on Vyi4, and N/2 skew-symmetric Dirichlet eigenfunctions on H that
give rise to (N/2)(#E — #V + 1) eigenfunctions on Gy that vanish
on Vyu4, according to Lemma 3.2. Finally, the N/2 skew-symmetric
Dirichlet eigenfunctions on H each give rise to a single eigenfunction
on Gy that is constant on Vq. The total count is

(N+1)(#V-1)+14+ 5 (H#E-#V)+ Z(H#E—-#V+1)+5 = #V+N#E.

Similarly, if N is odd, there are (N + 1)(#V — 1) + 2 bifurcated eigen-
values of —Ag,,, and there are (N + 1)/2 symmetric and (N —1)/2
skew-symmetric Dirichlet eigenfunctions of —A g, reducing the count
of multiplicities of eigenspaces corresponding to Dirichlet eigenvalues
by one.

Similarly, if G is bipartite, then there are (N + 1)(#V — 2) + 2
bifurcated eigenvalues of —Ag,,, there are N Dirichlet eigenvalues of
—Ap, each corresponding to #E — #V + 1 eigenfunctions of —Ag,,
vanishing on V14, and one either constant or =1 on V4.
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