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THE BOOLEAN SPACE OF R-PLACES

KATARZYNA OSIAK

ABSTRACT. We prove that every Boolean space is realized
as a space of real places of some formally real field. This gives
a partial answer to the problem posed in [1, 7].

1. Introduction. Let X' (K) be the space of orders of a formally real
field K, endowed with the Harrison topology introduced by subbasic
sets of the form

Hi(a):={Pc X (K):a€c P}, acK=K)\J{0}.

It is known that X (K) is a Boolean space, i.e., compact, Hausdorff and
totally disconnected. In [3] Craven presented a construction of a field
K, whose space of orders X (K) is homeomorphic to a given Boolean
space X. Spaces of orders are closely related to the spaces of R-places,
and some main results on this relationship can be found in [8]. We shall
recall a part of this theory in the next section. In particular, spaces of
R-places are known to be compact and Hausdorff. An open problem
posed in [1, 7] is:

Which compact and Hausdorff spaces occur as a spaces of real places?

It was pointed out in [1, Remark 2.16] that if K is a totally Archimedean
field then the space of R-places and the space of orders are homeomor-
phic and consequently the space of R-places is Boolean. Thus, every
finite discrete space is realized as a space of R-places, since totally
Archimedean fields exist with any finite number of orders. Our main
theorem, presented in Section 4, states that every Boolean space is re-
alized as a space of R—places of some formally real field. Before we
can get to this, we need to develop some new methods in the theory of
extensions of R-places; Section 3 includes these results.
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2. Basic properties of M(K). Let K be a formally real field with
the space of orders X (K). Denote by QT the set of positive rational
numbers. For an order P of K, the set

AP):={a € K:3,cq+ qtac P}
is a valuation ring of K with the maximal ideal
I(P):={a € K:Vycq+ qtac P}.

Moreover, P induces an Archimedean order on the residue field k(P) =
A(P)/I(P). Therefore, k(P) can be considered as a subfield of R, and
the map

¢p: K — RU {0},

_ Ja+I(P) ifac A(P)
ép(a) = {oo ifag¢ A(P)

is the R-place associated to P. Conversely, if £ is any R-place of K,
then there exists an order P of K such that ép = £. By [8, Corollary
2.13, Proposition 9.1], two orders P; and P, determine the same R-
place if and only if A(P;) = A(P;) and the Archimedean orders induced
by Py and P, coincide. We let M (K') denote the set of all R-places of
the field K. Therefore, the map:

Ak X (K) — M(K), Ag(P)=¢p

is onto and we can equip M (K) with the quotient topology inherited
from X (K). Since X (K) is compact, M (K) is also compact. The ring

H(K)={a€ K: VYecm) &(a) # oo}

is called the real holomorphy ring of K. We denote by E (K) the set
of units of # (K). In fact [8, Theorem 9.11], the quotient topology on
M(K) coincides with the coarsest topology, such that the evaluation
maps

e : M(K) — R, acH(K),

defined by
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are continuous. Moreover, this topology is the same as the topology
introduced by subbasic sets of the form

Uk(a) ={{ € M(K) :£{(a) > 0}, for a € H(K).

Note that the complement Ug(a) = {£ € M(K) : £(a) < 0} does
not need to be an open set. However, if a is a unit in H (K), then
Ui (a) = Uk(—a) (since &£(a) # 0, for every & € M(K)) and thus
Uk(a) is a clopen set. By [8, Lemma 9.8], the evaluation maps e,
separate points of M(K), thus M(K) is a Hausdorff space.

A signature of a field K is a character X : K — {1,—1} with
additively closed kernel. It is known that the sets X (K) and {ker X :
X is a signature of K} are, in fact, equal. By [2, pages 60-61], if Py,
P, € X (K) with Ax(P1) = Ag(P2) and X1, X2 are their signatures
then we have a relationship

X2 =X1-Tov,

where v is the valuation corresponding to the valuation ring A(P;) =
A(P,) with value group T' and 7 is a character of I' with values in
{1,-1}.

If K is totally Archimedean, then the value group I' p of the valuation
associated to A(P) is trivial for every P € X (K). Then the map A is
injective, and hence a homeomorphism. In this case M (K) is Boolean.
It is well known that, for a given positive integer k, there exists a
subfield of R with k& Archimedean orders (see [6, page 582]). Thus

every finite discrete space is realized as a space of R-places of some
formally real field K.

3. A Cantor cube as a space of R-places. One can find the
theory of extensions of orders and signatures in [2]. Suppose that L is

a field with an order P¥, and K is a subfield of L. Then PX = P'NK
is an order of K. We call PL an extension of PX. The map

pr/k X (L) — X (K),  pp/x(PY)=P'NK

is continuous, since pz/lK(HK(a)) = Hi(a), forac K.
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If ¢& is an R-place of L, then the restriction ¢¥|x is an R-place of
K. Therefore, we have a map

wr/k + M(L) — M(K), wL/K(ﬁL) =& |k .

By [5], the diagram

X (L) —2= 5 M(L)

PL/KJ/ JWL/K

X (K) —2£ 5 M(K)

commutes and all the maps are continuous.

Let Dy, be a Cantor cube with weight m, i.e. the set {1, —1}™ with
the product topology. We are going to show that there exists a field
with space of R-places homeomorphic to Dy,. We need the following
lemma.

Lemma 3.1. Let P be an order of the field F, and let

K = F({Va, a € A}),

where AC {a € F: 0 < Ap(P)(a) < oo}. Then the restriction of Ag
to the set pl}l/F(P) is injective.

Proof. By induction we shall first show that this lemma is true if A
is finite.

If 0 < Ap(P)(a) < o0, then a € P. Thus P has two extensions to
orders of F'(y/a), call them P; and P». We can assume that v/a € P; and
—y/a € P,. Moreover, 0 # Ak (P;)(y/a) < oo since 0 < A (P;)(a) < oo,
for i = 1,2. Therefore, Ax (P1)(v/a) > 0 and Ag(P2)(v/a) < 0. Thus,
Ak (Pr) # Ak (P2).

Now take a set {ai,...,a,} of elements of F such that 0 <
Ar(P)(a;) < oo, for i = 1,...,n. Let K := F(\/a1,...\/a,), and
suppose that the lemma is true for the field K' := F(\/ay,. .. \/an_1).
Let Q1 and Q2 be two different orders of K that extend P. If Q:NK' #
Q@2NK', then by the inductive hypothesis, Ax: (Q1NK") # g (Q2NK"),
and therefore Ax (Q1) # Ak (Q2). T Q1 NK' = Q2N K' =: Q, then we
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can repeat the argument from the case n = 1 with F = K', P = Q and
a = ay.

Now, suppose that

K = F({Va, a € A}),

where A C {a € F: O < Ap(P)(a) < oo}, and suppose that Q; and Q-
are two different extensions of P in K. Then there exists an o € K such
that o € Q1 and —a € Q2. But « is in some K’ := F(\/a1,-..\/an),
where ai,...,a, € A. Therefore, Q1 N K' # Q2 N K’', and then
)\K’(Ql ﬂK’) 75 )\KI(QQHK/), which implies that )\K(Ql) 75 /\K(Qg) O

Theorem 3.2. For every infinite cardinal number m, the Cantor
cube Dy, of weight m is homeomorphic to the space M(K), for some
formally real field K.

Proof. Let F be a real closed field of cardinality m. Consider the field
F(X) and two of its orders:

poo (£ ED) o),

g lc(g)
[ \des (D) —deg (o€ (f) '2}
P_ {g.(l)g gglc(g)EF :

where lc (f) and lc (g) denote the leading coefficients of the polynomials
f and g, respectively. Easy computations show that the valuation rings
A(Py) and A(P-) coincide and both orders induce the same order on
the residue field F' (see [9, pages 79-80]). Therefore, Ap(x)(Py) =

AF(X)(P—) Let
K= F(X)({,/X); Liae Y.

In [9] it was shown that py;p ) (Pr) = Hx(X) & Dy = Hg(—X) =
p;{}F(X)(P,). Moreover, for every P € p;{}F(X)(PQ, there exists
exactly one order PX € p;(}F(X)(P,) such that A (P{) = Ax (PX).
Since X(K) = Hg(X)UHg(—X), the map Ag|p, (x) is surjective.
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Finally, observe that (X —a)/X =1—(a/X) € 1+ 1(Py) and therefore
Arx)(P1)((X —a)/X) = 1. By the previous lemma, Ag|pm,(x) is
injective. Thus, Mg |, (x) is a continuous bijection of a compact space
onto a Hausdorff space, so it is a homeomorphism. O

4. The main theorem. Every Boolean space is a closed subspace of
some Cantor cube. In this section we shall show how we can eliminate
R-places by field extensions. Of course, if we eliminate an R-place,
then we eliminate all orders which determine this R-place.

We recall the following result by Craven [3] which allows us to
eliminate orders:

Proposition 4.1 [3, Proposition 2|. Let K be a formally real field,
and let Y C X (K) be such that Y = NgeaHgk (o), where A C K.
Then there exists an algebraic extension L of K such that the map
pr/k X (L) = X (K) is a homeomorphism onto Y.

We note that the field L constructed in the proof of the proposition
above is of the following form:

L=K{*a:a€eA n=12,...1}).

Proposition 4.2. Let K be a formally real field. Suppose that H is
a closed subset of X (K) such that Ak |g is a bijection onto M(K), and
suppose thatY is a closed subset of X (K) such that Y = NoaecaHi (),
where A C E (K), i.e., A is a subset of units of the real holomorphy
ring of K. Let Yy = HNY. Then there exists an extenston L of K
such that the map

_ A
pL/lK(YO) == M(L)
s a bigection.

Proof. Note that if o € E(K), P, Q € X (K) and Ag(P) = Ax(Q),
then o € P if and only if o € Q.

Since Ak |g is a bijection, we have that for every P € Y there exists
exactly one @ € H such that Ag(P) = Ax(Q). But then Q € Y and
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therefore Q € Yy. Thus, the mapping 7 : Y — Yj, which assigns to
every P € Y the unique Q € H such that A\g(P) = Ag(Q), is well
defined.

Let L be the field constructed in Proposition 4.1 for Y. The diagram

L) AL M
N T
)

PZ/IK (YO

X ( (L)

pr/ K (bij.) pL/K(bij.)J WL/K

Yo
/ Wg‘.)
)\K M

commutes. Let £ € M(L). Choose an order PX € X (L) with A\(P) =
¢, and denote Pf := pz/lK omoprk(P"). Then Py € pz/lK(Yo) and

Y

(K)

AL (PE) = €; hence, /\L‘P;/IK(YO) is a surjection.

Now suppose that PF and Qf are two different orders in pz/lK (Yo).
Then pr x(PY) # pr/x(QF) in Yo, and by the injectivity of gy,
we have Ak (pr/x(Py)) # Ax(pr/x(QF))- Thus, AL(P) # AL(QF)
which proves the injectivity of Ay, on pz/lK (Yo). O

Remark 4.3. Since Yj is a closed subspace of X' (K) and pp,/x is
continuous, pz/lK(Yo) is a compact space. Since M (L) is Hausdorff
and Ar is continuous, Ar| -1y is a homeomorphism. Therefore,

Pr;x(Yo)

Ak © pz/lK is a homeomorphism from Y; onto M(L).
Now we are in the position to prove the main theorem.

Theorem 4.4. Every Boolean space is realized as a space of R-places
of some formally real field L.
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Proof. Take Y, to be any Boolean space and view it as a closed
subspace of the Cantor cube D,,.

Let K be the field constructed in Theorem 3.2, so that M(K) &
Dy, = Hg(X) and the map Ag : Hg(X) — M(K) is a bijection.
Now we can consider Y; as a closed subset of Hg(X). By [4], K is
an SAP field, in particular the Harrison subbasis is a basis of X (K).
The complement [YO]%K(X) of Yy in Hi (X) is an open set; thus, there
exists a subset B C K such that

Yol (x) = U Hy (—B).
geB

Take 8 € B. Note that

.

Ak (Hg (B) N Hg (X)) N Ak (Hi (—B8) N Hi (X))

By the Separation Criterion [8, Proposition 9.13], there exists an o € K
which is a unit in the ring A(P) for every P € [Hg(8) N Hx(X)] U
[HK(_B) N HK(X)] = HK(X) and HK(B) N HK(X) C HK(Oé) and
Hig(—B) N Hx(X) C Hix(—a). Since Ak : Hg(X) - M(K) is a
bijection, we have that « is a unit in A(P) for every order P of K, and
therefore o € E (K).

We shall show that Hg(8) N Hx(X) = Hg(a) N Hx(X). Since
Hg(-B) N Hx(X) C Hg(—a) and Hg(—pB) C Hgk(X), we have
Hg(—B) C Hix(—a). Therefore, Hx(a) C Hi(B) and thus Hg(a) N
Hk(X) C Hk(B) N Hx(X). The converse inclusion is obvious. Re-
peating the argument for arbitrary 8 € B we get a subset A C E (K)
such that

Yy = (| Hx(B)NHg(X) = () Hx(a) N Hg(X).
peB acA

Now it suffices to use Proposition 4.2, taking the set Npc 4Hk () as
Y, and the set Hg(X) as H. O
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