THE BOOLEAN SPACE OF R-PLACES

KATARZYNA OSIAK

ABSTRACT. We prove that every Boolean space is realized as a space of real places of some formally real field. This gives a partial answer to the problem posed in [1, 7].

1. Introduction. Let $\mathcal{X}(K)$ be the space of orders of a formally real field K, endowed with the Harrison topology introduced by subbasic sets of the form

$$H_K(a) := \{ P \in \mathcal{X}(K) : a \in P \}, \quad a \in \dot{K} = K \setminus \{0\}.$$

It is known that $\mathcal{X}(K)$ is a Boolean space, i.e., compact, Hausdorff and totally disconnected. In [3] Craven presented a construction of a field K, whose space of orders $\mathcal{X}(K)$ is homeomorphic to a given Boolean space X. Spaces of orders are closely related to the spaces of \mathbf{R} -places, and some main results on this relationship can be found in [8]. We shall recall a part of this theory in the next section. In particular, spaces of \mathbf{R} -places are known to be compact and Hausdorff. An open problem posed in [1, 7] is:

Which compact and Hausdorff spaces occur as a spaces of real places?

It was pointed out in [1, Remark 2.16] that if K is a totally Archimedean field then the space of \mathbf{R} -places and the space of orders are homeomorphic and consequently the space of \mathbf{R} -places is Boolean. Thus, every finite discrete space is realized as a space of \mathbf{R} -places, since totally Archimedean fields exist with any finite number of orders. Our main theorem, presented in Section 4, states that every Boolean space is realized as a space of \mathbf{R} -places of some formally real field. Before we can get to this, we need to develop some new methods in the theory of extensions of \mathbf{R} -places; Section 3 includes these results.

²⁰¹⁰ AMS $\it Mathematics$ $\it subject$ $\it classification.$ Primary 12D15, Secondary 14P05.

Keywords and phrases. Real places, spaces of real places. Received by the editors on November 14, 2007, and in revised form on May 20, 2008.

2. Basic properties of M(K)**.** Let K be a formally real field with the space of orders $\mathcal{X}(K)$. Denote by \mathbf{Q}^+ the set of positive rational numbers. For an order P of K, the set

$$A(P) := \{ a \in K : \exists_{a \in \mathbf{Q}^+} \ q \pm a \in P \}$$

is a valuation ring of K with the maximal ideal

$$I(P):=\{a\in K: \forall_{q\,\in\,\mathbf{Q}^+}\ q\pm a\in P\}.$$

Moreover, P induces an Archimedean order on the residue field k(P) = A(P)/I(P). Therefore, k(P) can be considered as a subfield of \mathbf{R} , and the map

$$\xi_P : K \longrightarrow \mathbf{R} \cup \{\infty\},$$

$$\xi_P(a) = \begin{cases} a + I(P) & \text{if } a \in A(P) \\ \infty & \text{if } a \notin A(P) \end{cases}$$

is the **R**-place associated to P. Conversely, if ξ is any **R**-place of K, then there exists an order P of K such that $\xi_P = \xi$. By [8, Corollary 2.13, Proposition 9.1], two orders P_1 and P_2 determine the same **R**-place if and only if $A(P_1) = A(P_2)$ and the Archimedean orders induced by P_1 and P_2 coincide. We let M(K) denote the set of all **R**-places of the field K. Therefore, the map:

$$\lambda_K : \mathcal{X}(K) \longrightarrow M(K), \qquad \lambda_K(P) = \xi_P$$

is onto and we can equip M(K) with the quotient topology inherited from $\mathcal{X}(K)$. Since $\mathcal{X}(K)$ is compact, M(K) is also compact. The ring

$$\mathcal{H}(K) = \{ a \in K : \forall_{\xi \in M(K)} \ \xi(a) \neq \infty \}$$

is called the real holomorphy ring of K. We denote by $\mathbf{E}(K)$ the set of units of $\mathcal{H}(K)$. In fact [8, Theorem 9.11], the quotient topology on M(K) coincides with the coarsest topology, such that the evaluation maps

$$e_a: M(K) \longrightarrow \mathbf{R}, \quad a \in \mathcal{H}(K),$$

defined by

$$e_a(\xi) = \xi(a)$$

are continuous. Moreover, this topology is the same as the topology introduced by subbasic sets of the form

$$U_K(a) = \{ \xi \in M(K) : \xi(a) > 0 \}, \text{ for } a \in \mathcal{H}(K).$$

Note that the complement $U_K^c(a) = \{\xi \in M(K) : \xi(a) \leq 0\}$ does not need to be an open set. However, if a is a unit in $\mathcal{H}(K)$, then $U_K^c(a) = U_K(-a)$ (since $\xi(a) \neq 0$, for every $\xi \in M(K)$) and thus $U_K(a)$ is a clopen set. By [8, Lemma 9.8], the evaluation maps e_a separate points of M(K), thus M(K) is a Hausdorff space.

A signature of a field K is a character $\chi: \dot{K} \to \{1, -1\}$ with additively closed kernel. It is known that the sets $\mathcal{X}(K)$ and $\{\ker \chi: \chi \text{ is a signature of } K\}$ are, in fact, equal. By $[\mathbf{2}, \text{ pages } 60\text{--}61]$, if P_1 , $P_2 \in \mathcal{X}(K)$ with $\lambda_K(P_1) = \lambda_K(P_2)$ and χ_1, χ_2 are their signatures then we have a relationship

$$\chi_2 = \chi_1 \cdot \tau \circ v$$

where v is the valuation corresponding to the valuation ring $A(P_1) = A(P_2)$ with value group Γ and τ is a character of Γ with values in $\{1, -1\}$.

If K is totally Archimedean, then the value group Γ_P of the valuation associated to A(P) is trivial for every $P \in \mathcal{X}(K)$. Then the map λ_K is injective, and hence a homeomorphism. In this case M(K) is Boolean. It is well known that, for a given positive integer k, there exists a subfield of \mathbf{R} with k Archimedean orders (see [6, page 582]). Thus every finite discrete space is realized as a space of \mathbf{R} -places of some formally real field K.

3. A Cantor cube as a space of R-places. One can find the theory of extensions of orders and signatures in [2]. Suppose that L is a field with an order P^L , and K is a subfield of L. Then $P^K = P^L \cap K$ is an order of K. We call P^L an extension of P^K . The map

$$\rho_{L/K}: \mathcal{X}(L) \longrightarrow \mathcal{X}(K), \qquad \rho_{L/K}(P^L) = P^L \cap K$$

is continuous, since $\rho_{L/K}^{-1}(H_K(a)) = H_L(a)$, for $a \in \dot{K}$.

If ξ^L is an **R**-place of L, then the restriction $\xi^L|_K$ is an **R**-place of K. Therefore, we have a map

$$\omega_{L/K}: M(L) \longrightarrow M(K), \qquad \omega_{L/K}(\xi^L) = \xi^L \mid_K.$$

By [5], the diagram

$$\begin{array}{c|c} \mathcal{X}\left(L\right) & \xrightarrow{\lambda_L} & M(L) \\ \downarrow^{\rho_{L/K}} & & \downarrow^{\omega_{L/K}} \\ \mathcal{X}\left(K\right) & \xrightarrow{\lambda_K} & M(K) \end{array}$$

commutes and all the maps are continuous.

Let $D_{\mathfrak{m}}$ be a Cantor cube with weight \mathfrak{m} , i.e. the set $\{1, -1\}^{\mathfrak{m}}$ with the product topology. We are going to show that there exists a field with space of **R**-places homeomorphic to $D_{\mathfrak{m}}$. We need the following lemma.

Lemma 3.1. Let P be an order of the field F, and let

$$K = F(\{\sqrt{a}, a \in \mathcal{A}\}),$$

where $A \subset \{a \in F : 0 < \lambda_F(P)(a) < \infty\}$. Then the restriction of λ_K to the set $\rho_{K/F}^{-1}(P)$ is injective.

Proof. By induction we shall first show that this lemma is true if A is finite.

If $0 < \lambda_F(P)(a) < \infty$, then $a \in P$. Thus P has two extensions to orders of $F(\sqrt{a})$, call them P_1 and P_2 . We can assume that $\sqrt{a} \in P_1$ and $-\sqrt{a} \in P_2$. Moreover, $0 \neq \lambda_K(P_i)(\sqrt{a}) < \infty$ since $0 < \lambda_K(P_i)(a) < \infty$, for i = 1, 2. Therefore, $\lambda_K(P_1)(\sqrt{a}) > 0$ and $\lambda_K(P_2)(\sqrt{a}) < 0$. Thus, $\lambda_K(P_1) \neq \lambda_K(P_2)$.

Now take a set $\{a_1,\ldots,a_n\}$ of elements of F such that $0<\lambda_F(P)(a_i)<\infty$, for $i=1,\ldots,n$. Let $K:=F(\sqrt{a_1},\ldots\sqrt{a_n})$, and suppose that the lemma is true for the field $K':=F(\sqrt{a_1},\ldots\sqrt{a_{n-1}})$. Let Q_1 and Q_2 be two different orders of K that extend P. If $Q_1\cap K'\neq Q_2\cap K'$, then by the inductive hypothesis, $\lambda_{K'}(Q_1\cap K')\neq \lambda_{K'}(Q_2\cap K')$, and therefore $\lambda_K(Q_1)\neq \lambda_K(Q_2)$. If $Q_1\cap K'=Q_2\cap K'=Q_1$, then we

can repeat the argument from the case n=1 with $F=K',\,P=Q$ and $a=a_n.$

Now, suppose that

$$K = F(\{\sqrt{a}, a \in \mathcal{A}\}),$$

where $\mathcal{A} \subset \{a \in F : O < \lambda_F(P)(a) < \infty\}$, and suppose that Q_1 and Q_2 are two different extensions of P in K. Then there exists an $\alpha \in K$ such that $\alpha \in Q_1$ and $-\alpha \in Q_2$. But α is in some $K' := F(\sqrt{a_1}, \dots, \sqrt{a_n})$, where $a_1, \dots, a_n \in \mathcal{A}$. Therefore, $Q_1 \cap K' \neq Q_2 \cap K'$, and then $\lambda_{K'}(Q_1 \cap K') \neq \lambda_{K'}(Q_2 \cap K')$, which implies that $\lambda_K(Q_1) \neq \lambda_K(Q_2)$. \square

Theorem 3.2. For every infinite cardinal number \mathfrak{m} , the Cantor cube $D_{\mathfrak{m}}$ of weight \mathfrak{m} is homeomorphic to the space M(K), for some formally real field K.

Proof. Let F be a real closed field of cardinality \mathfrak{m} . Consider the field F(X) and two of its orders:

$$P_{+} = \left\{ \frac{f}{g} : \frac{\operatorname{lc}(f)}{\operatorname{lc}(g)} \in \dot{F}^{2} \right\},$$

$$P_{-} = \left\{ \frac{f}{g} : (-1)^{\operatorname{deg}(f) - \operatorname{deg}(g)} \frac{\operatorname{lc}(f)}{\operatorname{lc}(g)} \in \dot{F}^{2} \right\},$$

where $\operatorname{lc}(f)$ and $\operatorname{lc}(g)$ denote the leading coefficients of the polynomials f and g, respectively. Easy computations show that the valuation rings $A(P_+)$ and $A(P_-)$ coincide and both orders induce the same order on the residue field F (see [9, pages 79–80]). Therefore, $\lambda_{F(X)}(P_+) = \lambda_{F(X)}(P_-)$. Let

$$K = F(X)(\{\sqrt{\frac{X-a}{X}} : a \in \dot{F}\}).$$

In [9] it was shown that $\rho_{K/F(X)}^{-1}(P_+) = H_K(X) \cong D_{\mathfrak{m}} \cong H_K(-X) = \rho_{K/F(X)}^{-1}(P_-)$. Moreover, for every $P_+^K \in \rho_{K/F(X)}^{-1}(P_+)$, there exists exactly one order $P_-^K \in \rho_{K/F(X)}^{-1}(P_-)$ such that $\lambda_K(P_+^K) = \lambda_K(P_-^K)$. Since $\mathcal{X}(K) = H_K(X) \dot{\cup} H_K(-X)$, the map $\lambda_K|_{H_K(X)}$ is surjective.

Finally, observe that $(X-a)/X = 1 - (a/X) \in 1 + I(P_+)$ and therefore $\lambda_{F(X)}(P_+)((X-a)/X) = 1$. By the previous lemma, $\lambda_K|_{H_K(X)}$ is injective. Thus, $\lambda_K|_{H_K(X)}$ is a continuous bijection of a compact space onto a Hausdorff space, so it is a homeomorphism. \square

4. The main theorem. Every Boolean space is a closed subspace of some Cantor cube. In this section we shall show how we can eliminate **R**-places by field extensions. Of course, if we eliminate an **R**-place, then we eliminate all orders which determine this **R**-place.

We recall the following result by Craven [3] which allows us to eliminate orders:

Proposition 4.1 [3, Proposition 2]. Let K be a formally real field, and let $Y \subset \mathcal{X}(K)$ be such that $Y = \bigcap_{\alpha \in \mathcal{A}} H_K(\alpha)$, where $\mathcal{A} \subset K$. Then there exists an algebraic extension L of K such that the map $\rho_{L/K} : \mathcal{X}(L) \to \mathcal{X}(K)$ is a homeomorphism onto Y.

We note that the field L constructed in the proof of the proposition above is of the following form:

$$L = K(\lbrace \sqrt[2^n]{\alpha} : \alpha \in \mathcal{A}, n = 1, 2, \ldots \rbrace).$$

Proposition 4.2. Let K be a formally real field. Suppose that H is a closed subset of $\mathcal{X}(K)$ such that $\lambda_K|_H$ is a bijection onto M(K), and suppose that Y is a closed subset of $\mathcal{X}(K)$ such that $Y = \cap_{\alpha \in \mathcal{A}} H_K(\alpha)$, where $\mathcal{A} \subset \mathbf{E}(K)$, i.e., \mathcal{A} is a subset of units of the real holomorphy ring of K. Let $Y_0 = H \cap Y$. Then there exists an extension L of K such that the map

$$\rho_{L/K}^{-1}(Y_0) \xrightarrow{\lambda_L} M(L)$$

is a bijection.

Proof. Note that if $\alpha \in \mathbf{E}(K)$, P, $Q \in \mathcal{X}(K)$ and $\lambda_K(P) = \lambda_K(Q)$, then $\alpha \in P$ if and only if $\alpha \in Q$.

Since $\lambda_K|_H$ is a bijection, we have that for every $P \in Y$ there exists exactly one $Q \in H$ such that $\lambda_K(P) = \lambda_K(Q)$. But then $Q \in Y$ and

therefore $Q \in Y_0$. Thus, the mapping $\pi : Y \to Y_0$, which assigns to every $P \in Y$ the unique $Q \in H$ such that $\lambda_K(P) = \lambda_K(Q)$, is well defined.

Let L be the field constructed in Proposition 4.1 for Y. The diagram

commutes. Let $\xi \in M(L)$. Choose an order $P^L \in \mathcal{X}(L)$ with $\lambda_L(P) = \xi$, and denote $P_0^L := \rho_{L/K}^{-1} \circ \pi \circ \rho_{L/K}(P^L)$. Then $P_0^L \in \rho_{L/K}^{-1}(Y_0)$ and $\lambda_L(P_0^L) = \xi$; hence, $\lambda_L|_{\rho_{L/K}^{-1}(Y_0)}$ is a surjection.

Now suppose that P_0^L and Q_0^L are two different orders in $\rho_{L/K}^{-1}(Y_0)$. Then $\rho_{L/K}(P_0^L) \neq \rho_{L/K}(Q_0^L)$ in Y_0 , and by the injectivity of $\lambda_K|_{Y_0}$ we have $\lambda_K(\rho_{L/K}(P_0^L)) \neq \lambda_K(\rho_{L/K}(Q_0^L))$. Thus, $\lambda_L(P_0^L) \neq \lambda_L(Q_0^L)$ which proves the injectivity of λ_L on $\rho_{L/K}^{-1}(Y_0)$.

Remark 4.3. Since Y_0 is a closed subspace of $\mathcal{X}(K)$ and $\rho_{L/K}$ is continuous, $\rho_{L/K}^{-1}(Y_0)$ is a compact space. Since M(L) is Hausdorff and λ_L is continuous, $\lambda_L|_{\rho_{L/K}^{-1}(Y_0)}$ is a homeomorphism. Therefore, $\lambda_K \circ \rho_{L/K}^{-1}$ is a homeomorphism from Y_0 onto M(L).

Now we are in the position to prove the main theorem.

Theorem 4.4. Every Boolean space is realized as a space of \mathbf{R} -places of some formally real field L.

Proof. Take Y_0 to be any Boolean space and view it as a closed subspace of the Cantor cube $D_{\mathfrak{m}}$.

Let K be the field constructed in Theorem 3.2, so that $M(K) \cong D_{\mathfrak{m}} \cong H_K(X)$ and the map $\lambda_K : H_K(X) \to M(K)$ is a bijection. Now we can consider Y_0 as a closed subset of $H_K(X)$. By [4], K is an SAP field, in particular the Harrison subbasis is a basis of $\mathcal{X}(K)$. The complement $[Y_0]_{H_K(X)}^c$ of Y_0 in $H_K(X)$ is an open set; thus, there exists a subset $\mathcal{B} \subset K$ such that

$$[Y_0]_{H_K(X)}^c = \bigcup_{eta \in \mathcal{B}} H_K(-eta).$$

Take $\beta \in \mathcal{B}$. Note that

$$\lambda_K(H_K(\beta) \cap H_K(X)) \cap \lambda_K(H_K(-\beta) \cap H_K(X)) = \varnothing.$$

By the Separation Criterion [8, Proposition 9.13], there exists an $\alpha \in K$ which is a unit in the ring A(P) for every $P \in [H_K(\beta) \cap H_K(X)] \cup [H_K(-\beta) \cap H_K(X)] = H_K(X)$ and $H_K(\beta) \cap H_K(X) \subset H_K(\alpha)$ and $H_K(-\beta) \cap H_K(X) \subset H_K(-\alpha)$. Since $\lambda_K : H_K(X) \to M(K)$ is a bijection, we have that α is a unit in A(P) for every order P of K, and therefore $\alpha \in \mathbf{E}(K)$.

We shall show that $H_K(\beta) \cap H_K(X) = H_K(\alpha) \cap H_K(X)$. Since $H_K(-\beta) \cap H_K(X) \subset H_K(-\alpha)$ and $H_K(-\beta) \subset H_K(X)$, we have $H_K(-\beta) \subset H_K(-\alpha)$. Therefore, $H_K(\alpha) \subset H_K(\beta)$ and thus $H_K(\alpha) \cap H_K(X) \subset H_K(\beta) \cap H_K(X)$. The converse inclusion is obvious. Repeating the argument for arbitrary $\beta \in \mathcal{B}$ we get a subset $\mathcal{A} \subset \mathbf{E}(K)$ such that

$$Y_0 = \bigcap_{\beta \in \mathcal{B}} H_K(\beta) \cap H_K(X) = \bigcap_{\alpha \in \mathcal{A}} H_K(\alpha) \cap H_K(X).$$

Now it suffices to use Proposition 4.2, taking the set $\cap_{\alpha \in \mathcal{A}} H_K(\alpha)$ as Y, and the set $H_K(X)$ as H. \square

REFERENCES

1. E. Becker and D. Gondard, Notes on the space of real places of a formally real field, in Real analytic algebraic geometry, W. de Gruyter, Berlin, 1995.

- 2. E. Becker, J. Harman and A. Rosenberg, Signatures of fields and extension theory, J. Reine angew. Math. 330 (1982), 53–75.
- 3. T.C. Craven, The Boolean space of orderings of the field, Trans. Amer. Math. Soc. 209, (1975), 225–235.
- 4. ——, The topological space of orderings of rational function field, Duke Math. J. 41 (1974), 339–347.
- ${\bf 5.}$ D.W. Dubois, Infinite primes and ordered field, Dissert. Math. ${\bf 69},~(1970),~1-43.$
- **6.** Y.L. Ershov, *The number of linear orders on a field*, Math. Z. **6**, (1969), 201–211; Math. Notes **6** (1969), 577–582 (in English).
- 7. D. Gondard and M. Marshall, Towards an abstract description of the space of real places, Contemp. Math. 253 (2000), 77–113.
- 8. T.Y. Lam, Orderings, valuations and quadratic forms, CBMS Regional Conf. Ser. Math. 52, American Mathematical Society, Washington, D.C., 1983.
- 9. K. Osiak, A Cantor cube as a space of higher level orderings, Tatra Mt. Math. Publ. 32 (2005), 71–84.

INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY, BANKOWA 14, 40-007 KATOWICE, POLAND

Email address: kosiak@ux2.math.us.edu.pl