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ON THE DIOPHANTINE EQUATION z* — ¢* = py?

FLORIAN LUCA AND ALAIN TOGBE

ABSTRACT. In this paper, we improve upon some recent
results of Savin [11] on the Diophantine equation from the
title.

1. Introduction. In [11], Savin showed that the Diophantine
equation

(1) zt — ¢* =py®

has no solutions in integers x, y, p, g subject to the following restrictions:
(i) p and ¢ are distinct primes;
(ii) p does not divide z;
(iii) p=11 (mod 12) and ¢ =1 (mod 3);
(iv) p is a primitive root modulo g;
(v) 2 is a cubic residue modulo q.

Note, however, that equation (1) has the solution x = +¢q and y = 0,
so the condition y # 0 should be imposed.

In this paper, we relax most of Savin’s restrictions. Our first result
is:

Theorem 1. The Diophantine equation (1) has no integer solutions
(z,y,p,q) with ged (z,y) =1, zy # 0, and p and g primes.

One may ask what happens if we do not impose the restriction that
z and y are coprime. Well, then there must be a prime r | ged (z, y).
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Clearly, this prime must divide ¢*, so it is in fact ¢q. Writing = = qzo,
we get ¢*(z§ — 1) = py?, and since p # ¢, we get that y = ¢y, and
later that 23 — 1 = pg®y3. Concerning this equation, we have not been
able to prove any finiteness result of the same generality as Theorem 1.
However, we can show that this equation does not have any solutions
under Savin’s restrictions (iii)—(v). We record this as follows:

Theorem 2. The Diophantine equation
(2) z* —1=pg’y*

has no integer solutions (x,y,p,q) with y # 0, and p and q primes
satisfying the conditions (iii)—(v) above.

We suspect that equation (2) has only finitely many integer solutions.
We record this suspicion as:

Conjecture 1. Eguation (2) has only finitely many positive integer
solutions (x,y,p,q) with p and q prime numbers.

In the last section of the paper, we give heuristics supporting Con-
jecture 1.

2. Preliminary considerations. We shall assume that z, y, p, g are
integers with p and ¢ primes and y # 0. Clearly, we may assume that
x > 0. The sign of y is then determined by the sign of * —g¢*. The case
when p = ¢ can be handled easily by the following argument. If p = q,
then p divides two of the three terms involved in (1), so it must divide
the remaining one z*. Thus, = = pz, leading to p*(z§ — 1) = py®. The
above equation implies that p | y and, with y = pyo, we get zf —1 = y3,
which has the uninteresting solutions (z¢, yo) = (0, —1), (£1,0). From
now on, we assume that xgyo > 0. Then our equation is a particular
case of Catalan’s equation z™ — y™ = 1 in positive integer variables
z,y,m,n all > 1 which was recently completely solved by Mihailescu
[10]. However, the instance relevant to us, namely the case n = 4,
follows from Ko’s work [2], who showed more than 40 years ago that
the only positive solution of the equation 2 — 1 = y™ with m > 1 is



ON THE DIOPHANTINE EQUATION z* — ¢* = py® 997

x =3,y =2, m= 3. Since 3 is not a perfect square, it follows that
zs — 1 = y3 does not have any positive integer solutions (z¢, o).

From now on, we shall assume that p # ¢ and that x > 0. In
particular, z > 0. We now comment on the case g = 2.

If  is odd, then the left-hand side of equation (1) factors as (z? —
4)(2? 4 4) and these two factors are coprime. Thus, either 2% — 4 = u?
or z2 + 4 = u> holds with some divisor u of y.

The curve X2 = U2 + 4 is elliptic and appears as curve 108A1 of
Cremona’s tables available online free of charge at [4]. It has rank 0
and torsion group of order 3 formed by the points (X,U) = (£2,0)
together with the point at infinity. Thus, the first of the two equations
above does not lead to any solutions. The second one corresponds to
the elliptic curve X2 = U® — 4, which is curve 432B1. This has trivial
torsion and rank 1 with (X, U) = (2, 2) as the generator. However, Luca
[9] has determined all solutions of the equation z2 + 29 - 3* = y™ with
integers a > 0,b > 0, n > 3 and « and y coprime. A quick investigation
of his list reveals that (z,u) = (11, 5) is the only solution of the equation
22+4 = u? with  odd. For this solution, 22—4 = 121—4 = 117 = 32-13
is not of the form pv® for some prime p and integer v. So, there is no
solution in this case either.

If x is even, then * = 2z,. In this case, 16 | py3, therefore 4 | y.
With y = 4yg, we get the equation zj — 1 = 4py3. Hence, zg is odd,
so 2||zg + 1. It now follows that there exists a divisor u of yo such that
either z3—1 = 2u® or 341 = 2u®. The first Diophantine equation leads
to (2z9)? = (2u)® + 4, a particular integer solution (X, U) = (2, 2uo)
of the Diophantine equation X? = U® + 4 with U = u # 0, which,
by the above remarks, does not exist because the curve 108A1 does
not have a rational point (z,u) with uw # 0. The second Diophantine
equation 7 —2u® = —1 was treated a long time ago by Cohn in [3] (in
fact, he treated the more general Diophantine equation % —2u™ = —1
with m > 2 except for m = 4, which had been treated much earlier
by Ljunggren [8]), who showed that its only integer solution (zg,u) is
(zo,u) = (0,1). However, this leads to z = 0, which we are excluding.

From now on, we shall assume that x > 0, that p # ¢, and that ¢ is
odd.
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2.1. The proof of Theorem 1. Since z and y are coprime,
we deduce easily that ¢ does not divide z (otherwise, ¢* divides py?;
therefore, g divides both z and y, which is a contradiction). We write
the left-hand side of equation (1) as (22 — ¢%)(2% + ¢?). At this stage,
the proof splits naturally into two cases.

The easy case. p{ z? + ¢%. Note that this is the case say when
p = 3 (mod 4), since such primes cannot divide a sum of two coprime
squares. In this case, p will divide one of x — ¢ and = + q.

If z is odd, then 2||z?+¢?*. Further, one of x—q and z+q is congruent
to 2 modulo 4 and the other one is also even. From this analysis and
unique factorization, it follows easily that the relations z+nq = 2u® and
22 4 q? = 2v3 hold with some divisors u and v of y and some 1 € {£1}.
Multiplying these two relations we get (z + nq)(z? + ¢%) = 4(uv)3.
With X := nz/q and Y := nuv/q, we get the Diophantine equation
(X +1)(X?+1) = 4Y?3 in rational numbers X and Y. Straightforward
algebraic manipulations show that this equation can be rewritten as

9 2 3
2y (2
X+1 X+1

Thus, with U :=2/(X +1) — 1 and V := 2Y/(X + 1), we get that our
equation is birationally equivalent to

U?=v3-1.

This elliptic curve is curve 144A1 in Cremona’s table which has rank 0
and torsion group consisting of only two points, namely (U, V) = (0, 1),
and the point at infinity. These correspond to X = +1, so ¢ = +q and
y = 0, and such solutions are not convenient for us.

If x is even, then & — ¢, z + ¢ and 22 4 ¢? are coprime any two, so we
deduce that the relations x +nq = u® and 22 + ¢*> = v hold with some
divisors u and v of y and some n € {£1}. The same argument as above
leads to the Diophantine equation U? = V3 —4 with U := 4/(X +1) -2,
V :=2Y/(X +1), where again X :=nz/q, Y := nuv/q, but this elliptic
curve is 432B1 and has rank 1; in particular, infinitely many rational
points on it.

So, we continue by invoking a divisibility argument in Z[i]. Write
22 + ¢®> = (r + iq)(z — iq). Since x and q are coprime, z is even and
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q is odd, one checks easily that = + iq and = — iq are coprime in Z[i].
Since their product is a cube, each one is associated to a cube. Since
the only units of Z[i] are +1, +i of orders dividing 4, which is coprime
to 3, it follows that we may assume that an issue about units does not
occur so  +iq = (a+1ib)>. Identifying real and imaginary parts in this
last relation, we get that z = a® — 3ab? and q = b(3a? — b?). Since q is
prime, we get that either b = £1, or 3a® — b? = £1.

We first treat the case b = +1. Then ¢ = F(3a® — 1). Since ¢ > 1,
we get that ¢ = 3a% — 1; thus, b = 1. Hence, = a® — 3a. Then

z+ng = d® —3a+n(3a® — 1) = n(af + 3a7 — 3a; — 1),

where a; := na. Writing u; := nu, we get that
al +3a3 —3a; — 1 =n(z+q) = nu® = ud.

Thus,
(a1 +1)3 —6a; — 2 = u?.

Considerations modulo 2 show that u; = a; + 1 (mod 2). Certainly,
uy # a1 + 1 because this would lead to a; = —1/3, which is impossible.
Thus, |u; — (a3 + 1)| > 2. In particular,

|6a; + 2| = |u} — (a3 +1)°]
= |uy — (a1 + 1)[Juf +ui (a1 +1) + (a1 +1)?|
= |u1 — (a1 + 1)||(u1 + (a1 +1)/2)% + 3(ar + 1)*/4]
> 3+ 12
2
Writing 2z := |a; + 1|, we have

322
7§|6(a1+1)—4|§6z+4,

which leads to z < 4; therefore, a; € {—5,—4,...,3}. A quick check
reveals that the only acceptable values are a1 = —3, u; =2 and a; = 1,
u1 = 0, none of which is convenient since our value for y is odd (because
x is even and ¢ is odd), so it cannot have an even divisor u.

In the second case, we have that 3a®—b? = £1. The case of the sign +
is impossible by considerations modulo 3 because —1 is not a quadratic
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residue modulo 3. Thus, 3a? — b? = —1, and since g = b(3a? — b?), we
must have that b = —¢. This leads to ¢ — 3a%® = 1, so ¢ = V/3a2 + 1.
Now z = a® — 3ab? = a® — 3a(3a® + 1) = —8a® — 3a. Thus,

u =z 4+ng=—8a®—3a+3a% +1,

leading to

13a + v/3a2 + 1| = |u® + 8a®|
= |u + 2a||u® — 2ua + 4a?|
= |u+ 2al|(u — a)? + 3a?|
> 3q2.

In the above, we used the fact that u + 2a # 0 (because u is odd), so
|u+ 2a| > 1. Thus,

3a* < |3a £ v/3a? + 1| < 5|al,

so |a| < 2, giving a € {£1,0}. However, none of these values for a gives
an odd prime value for ¢ in the relation ¢? = 3a2 + 1.

This completes the argument for the easy case.

The hard case. p | 22 + ¢%. In this case, 2% + ¢*> = pdu?, where
§ =1 or 2 according to whether x is even or odd. Further, z — ¢ = §v>
and = + ¢ = 6w>. Here, u, v and w are integers such that y = duvw.
From the above equations, we get that

P S N R 2
q—2(w v)—z(w v)(w® 4+ wv + v°).
Furthermore, since z and ¢ are positive, it follows that v and w are
positive and w > v. Moreover, w > ((z 4 ¢)/2)'/% > ((1 +3)/2)'/3 =
21/3 > 1, s0 w > 2. Thus, w? + vw 4+ v? = (v + w/2)? + 3w?/4 > 3.
Since ¢ is prime, we conclude that w —v =1if § = 2. If § = 1, then
since w? + vw + v? > 3 is odd, we must have w — v = 2. Thus,

g=(v+1)? 0> =30 +3v+1;

3
(3) = (v+1)24+0°=20%+3v> +3v+ 1,
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when ¢ = 2, and

23_ 3
(Gl P S
(4)
=03 4+ 30 +6v+4,

when ¢ = 1.

Let us first treat the case § = 2. In this case
2 +¢* = ((v+1)° +0°)° + ((v+1)° = v*)® = 2((v + 1)° + 0°),

therefore
(v+1)% 4+ = pu?.

Note that the left-hand side above factors as
(5)  (H+D°+0° = ((v+1)* +0*)((v + 1) = v (v + 1)* + o).

Furthermore, the two factors above are coprime, since if r is a prime
dividing both of them, we then get that (v + 1)> = —v? (mod 7);
therefore,

(w+1)* = ?*(w+ 1) +vt=vt + 0+ 0 (modr) =30 (modr).

Since in fact r divides the left-hand side of the above congruence, but
not v (otherwise it will also divide v + 1, which is impossible), we get
that r | 3; so, r = 3. However, 3 cannot divide the number (v+1)%+v®
which is a sum of two coprime squares. Since the two factors appearing
in the righthand side of the formula (5) are coprime and their product
is p times a cube, we get, by unique factorization, then either the first
factor or the second factor is a cube. In case the first factor is a cube, we
get (v+1)?+v? = t3; therefore, 202 +2v+1 = t3 or (2v+1)2+1 = 2¢3.
By Cohn’s result from [3] mentioned previously, the only solutions are
v = —1,0 and ¢t = 1, giving ¢ = 1, which is not prime. Thus, we
conclude that p divides the first factor in (5), so

(6) (w+1)* —v?*(v+ 1) +o* =53
holds with some integer s. This equation can be rewritten as

(7) (v +v+2)*=5°+3.
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With Y = v?+v+2 and X = s, we have the elliptic curve Y2 = X343.
MAGMA (see [1]) found that the only integer point on the above elliptic
curve is (X,Y) = (1, 2), for which v = 0 or —2. None of these produces
any convenient solution (z, y, p, q) of our original Diophantine equation
(1).

We now return to the instance when 6 = 1. In this case, formulas (4)
give us

(v+2;3+v3>2+ ((v+2;3v3>2

pu3—w2+q2—<

(8) _ (U + 2)6 + ’U6
v+ 2)2 4+ 02
= <% (v +2)* — (v+2)%°% +0%).
The previous analysis shows that the two factors appearing in the
righthand side above are coprime. If p does not divide the smaller one,
then this factor must be a cube. Certainly, this is also v? + 2v +2 =
(v+1)2 41 and this cannot be a cube by a very old result of Lebesgue
[7]. Hence, the prime p divides the smaller factor and we get that

(9) (v+2)* —v* (v +2)* +ov* =53

holds with some positive integer s. This last equation can be rewritten
as

(10) (v? + 20 + 8)% = % + 48.

Putting ¥ = v?> + 2v + 8 and X = s we get the elliptic curve
Y? = X*® +48. MAGMA [1] found that its only integer point is
(X,Y) =(1,7), leading to v = —1, which does not produce a convenient
solution (z,y, p,q) of our Diophantine equation (1).

This completes the proof of Theorem 1. ]

3. The proof of Theorem 2. Again, we can assume that p # g,
that x > 0, and that ¢ is odd since the other cases have been treated
in Section 2. The righthand side of equation (2) then factors as
(x —1)(x + 1)(z% + 1). Since p £ 1 (mod 4), it follows that p cannot
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divide the last factor. If ¢ does not divide the last factor, then either
224+ 1 = u? or 22 + 1 = 2u® must hold with some divisor u of y, and
these are impossible by the results of Lebesgue and Cohn, respectively.
So, q | 22 +1. Tt is clear that either x — 1, z+1 and 2% +1 are mutually
coprime or they are all even but 2||z? + 1 and one of z — 1 and = + 1
is congruent to 2 modulo 4. Thus, 2% + 1 = §¢?u3, = — n = 6v> and
x +n = dpw?, where § € {1,2} and n € {£1}. From the last two
relations, we get 2n = §(pw® — v®). We write vy := nv, w; := nw and
ry = nz. Thus, 2 = §(pw3 — v}).

Assume that § = 2. Then 1 = pw} — v3; therefore, pw; = v +1 =
(v1 +1)(v? — vy +1). The congruence X2 — X +1 =0 (mod p) when
p is odd is equivalent to (2X — 1)2> = —3 (mod p), and this has a
solution modulo p if and only if —3 is a quadratic residue modulo p.
By quadratic reciprocity, this happens if and only if p = 1 (mod 3).
But our prime p is not congruent to 1 (mod 3). Thus, p cannot divide
v? — v; + 1. Furthermore, one can easily check that the only prime r
that might divide both v; + 1 and v% —wv; +1is r = 3, and if this
actually happens then 3|[v? — v; + 1. Armed with these facts, the
above Diophantine equation pw$ = (v; +1)(v? — vy + 1) leads to either
v —v1+1=1¢or v} —v; +1 =3t for some positive integer ¢, where
for the first equation 3 1 ¢t. The first equation can be regrouped as

(201 — 1)® + 3 = 4¢3
Thus, with z; := 2v; — 1, we get

(259 (259) -

and the two factors above are coprime in Z[(1 + iv/3)/2], which is
Euclidean. The only units of this ring are +w®, where w is a primitive
root of unity of order 3 and ¢ € {0,1,2}. Thus, we get that there exist
c € {0,1,2} and integers a and b of the same parity such that

21 +1V3 _wc<a+i\/§b>3

2 2
Taking w = (—1 4 iv/3)/2, and ¢ = 0, 1,2, and identifying imaginary
parts from both sides of the above equation, we get the Thue equations
4 = 3a®b — 3b3 (c=0);
8 =a® — 3a%b — 9ab® + 3>  (c=1);
8 = —a® — 3a%b + 9ab® + 3b° (c = 2).
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We used Kash [5] to compute all the solutions of each of these three
Diophantine equations. None of these solutions leads to any convenient
solution (z,y,p, q) of our Diophantine equation (2), although some of

them gave us an interesting near miss. Namely, (a,b) = (5,1) is a
solution to the above Thue equation when ¢ = —1. This leads to
t =7 s0ov? v +1 = 7% giving vy = —18,19. The case when

vy = —18 gives p = —1, p = 17, w = 7 and * = 11663. However,
(2 4+ 1)/2 = 68012785 = 5 - 13602557 is a product of two primes and
so is not of the form ¢?u? for some prime ¢ and integer u. The case
v1 = 19 gives v? + 1 =225 73 which is not of the form pw? for some
prime p and integer w;.

The case when v? — v; + 1 = 3t? can be dealt with analogously.
Namely, here we note that the equation can be rewritten as (2v;
—1)2+3 = 12¢2. Thus, 3 | 2v; — 1. Writing 23 = (2v; — 1)/3,
we get 327 + 1 = 4¢3, which can be rewritten as

<1+i2\/§z1>(1—i2\/§z1> sy

The two numbers appearing above are coprime in Z[(1 + i1/3)/2], so
we get again an equation of the form

1+iv3z c<a+i\/§b>3
N WY B A
2 2

with ¢ € {0, 1,2} and a and b integers of the same parity. Writing again
w = (—1+1iv/3)/2 and identifying real parts, we are led again to three
Thue equations, which we solved with Kash [5]. None of the resulting
solutions (a, b, ¢) leads to any solution (z,y,p,q) of our initial equation
(2).

We now assume that § = 1. Then z; = pw}—1 and z; = v3+1. Thus,
pw} = v3+2. Now ¢?u® = 22 +1 = (pw?—1)2+1 = pwi(pwi —2)+2 =
p(viwy)® + 2. Thus, ¢?u® = p(viwy)® + 2. This shows that p2~! is a
cubic residue modulo g (note that ¢ =1 (mod 3), so it makes sense to
talk about cubic residues modulo ¢). Since 2 is a cubic residue modulo
q, so is p. This contradicts the fact that p was a primitive root modulo
g. Note that in fact from condition (v) the only information that we
used is the fact that p is not a cubic residue modulo ¢, and not the full
information that p is a primitive root modulo q.
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4. Heuristics on equation (2). Here, we give heuristics which
seem to support Conjecture 1. Throughout this section, we use the
Vinogradov symbols > and < and the Landau symbol O with their
usual meanings. Recall that if f and g are functions, then f < g and
f = O(g) are both equivalent to the fact that there exists a constant
K such that the inequality |f(z)| < Kg(z) holds for all sufficiently
large values of x, and g > f is equivalent to f < g. If the constants
implied by the above symbols depend on other parameters like A or p,
we shall write f <y g or f = O,(g) to indicate such a dependence.
For a nonzero integer m, let N(m) := ][, ,, p be the algebraic radical
of m. We start by recalling the ABC conjecture formulated by Masser
and Oesterlé in 1985.

Conjecture 2. For all € > 0 the inequality
max{|A], |B|,|C|} <. N(ABC)'*¢

holds for all triples of coprime nonzero integers A, B, C with A+B = C'.

Elkies [6] used a theorem of Belyi to deduce that the above ABC
conjecture 2 implies the following more general version of itself.

Conjecture 3. Let f(X,Y) be a homogeneous form of degree d > 1
with integer coefficients without repeated factors over C|X,Y]. Then
the ABC' conjecture implies that for every £, the inequality

IN(f(m,n))| >c s (max{m,n})* 2*

holds.

Of course, the ABC conjecture 2 is just the above statement for the
form f(X,Y)=XY (X +Y).

We now start our arguments. We assume as before that xy > 0, that
p # q and that ¢ is odd. The left-hand side of equation (2) factors as
(z? — 1)(2? + 1). We distinguish the following cases.

Case 1. Both p and ¢ divide the same factor z? 4+ n for some
n € {£1}.
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In this case, since ged (22 — 1,22 + 1) is either 1 or 2 it follows, by
unique factorization, that 2% —n = du® for some ¢ € {1,2,4} and some
positive integer u. But such Diophantine equations have only finitely
many positive integer solutions (z,u).

From now on, we assume that p divides one of the factors z? 1 and
¢? divides the other factor.

Case 2. ¢? divides 2% — 1.

In this case we get, again by unique factorization and the fact that
ged (2% — 1,22 +1) is either 1 or 2, that 22 — 1 = §¢*u?® for some positive
integer u and some § € {1,2,4}. We apply the ABC Conjecture 2 to
the above equation to deduce that for any fixed ¢ > 0 we have

22179 <« N(0z2qu®) <. z qu.
Since ¢?w® < 22, we get that w < £%/3/¢*/3. Thus, we get
22079 < 2qe®3 1?3 <. /3qV3,

leading to ¢ >, x'7%. Choosing € := 1/20, we get that ¢ > z2/3,
Thus, ¢° > z*/3. But ¢* divides > — 1 = (z — 1)(z + 1) and the
greatest common divisor of (z — 1) and (x + 1) is at most 2. Thus, ¢*
divides one of z + 1, leading to 2 =1 > ¢ > 2%/, Hence, z = O(1) in
this case also.

Case 3. ¢? divides 22 + 1.

Then p | (2?2 —1) = (z+1)(x—1). In this case we get, again by unique
factorization, that there exists § € {1,2}, n € {£1} and divisors v and
v of y such that £2 41 = §¢?u® and x+n = 6v3. Let 21 := nzx, w1 := nu
and vy ;= nu. Let f(X,Y):=(X —Y)2X - YV)( X2+ (X - Y)?). It
is easy to see that f(X,Y) is a form of degree d = 4 without repeated
factors. Note that

flzr,m — 1) = (31 + 1) (2] + 1) = nd°u’v®;

therefore,
N(f(x1,21 — 1)) < 2quv.



ON THE DIOPHANTINE EQUATION z* — ¢* = py® 1007

Since v < (Jz1| + 1)/% and u < ((x% + 1)/¢%)/3, we get that
N(f(zr,21 = 1)) < quo < glaa|(J21*/¢*)'V* = ¢ /%]

However, Conjecture 3 implies that if |z1] > 1, then N(f(z1,21—1)) >.
|1)>~¢. Combining these inequalities, we get that ¢'/% >_ |z1|'~¢, so
q > \ml\?’(l_s). However, since x2 + 1 = dq®u®, we certainly have that
¢? < a2 +1 < 2|z )% Thus, |20 <, ¢ < |z1|. Choosing ¢ = 1/2,
we get that = |z1| = O(1).

To summarize, we infer that only finitely many positive integer
solutions (z,p, q,y) of the Diophantine equation (2) are possible under
the ABC Conjecture.
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