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EXISTENCE OF NONSTATIONARY PERIODIC
SOLUTIONS OF I'-SYMMETRIC ASYMPTOTICALLY
LINEAR AUTONOMOUS NEWTONIAN
SYSTEMS WITH DEGENERACY

JUSTYNA FURA, ANNA GOLEBIEWSKA AND HAIBO RUAN

ABSTRACT. For a finite group I', we consider a I' symmet-
ric autonomous Newtonian system, which is asymptotically
linear at co and has 0 and oo as isolated degenerate criti-
cal points of the corresponding energy function. By means
of the equivariant degree theory for gradient G-maps with
G =T x S1, we associate to the system a topological invari-
ant deg oo — deggo, which is computable up to an unknown
factor due to the degeneracy of the system. Under certain
assumptions, this invariant still contains enough information
about the symmetric structure of the set of periodic solutions,
including the existence, multiplicity and symmetric classifica-
tion. Numerical examples are provided for I' being the dihe-
dral groups Dg, Dg, D19, D12.

1. Introduction. Consider a finite group I', which is a symmetry
group of certain regular polygon or polyhedron in R™, and define a
I-action on V := R™ by permuting the coordinates of the vectors
x € V. In particular, V is an orthogonal I'-representation with respect
to the usual Euclidean metric. The goal of this paper is to study, in
the presence of I'-symmetry, the existence of nonstationary periodic
solutions z : R — V of the following autonomous Newtonian system

T = —Vgo(a:),
(1.1) {x(O) =z(27), (0)=#(27),

where ¢ : V — R is a C2-differentiable I'-invariant function such that
(V) 1(0) = {0} and Vy is asymptotically linear at infinity, i.e., there

Research of the first author partially sponsored by the Doctoral Program in
Mathematics at the Nicolaus Copernicus University, Toruni, Poland and by the
Ministry of Education and Science, Poland, under grant N N201 385534. Research
of the second author partially supported by the Ministry of Education and Science,
Poland, under grant N N201 385534 and by Nicolaus Copernicus University, Torun,
Poland, under grant 384-M. Research of the third author supported by Izaak Walton

Killam Memorial Scholarship, University of Alberta, Canada.
Received by the editors on October 19, 2007, and in revised form on February 10,

2008.
DOI:10.1216/RMJ-2010-40-3-873 Copyright (©2010 Rocky Mountain Mathematics Consortium

873



874 J. FURA, A. GOLEBIEWSKA AND H. RUAN

exists a symmetric I'-equivariant linear map B : V' — V such that
V(z) = Bz + o(||]]) as ||z]| — .

Moreover, we assume that system (1.1) satisfies the following degener-
acy assumption

(c(V2p(0))Uo(B)) N{l*:1=0,1,2,...} # @.

In the nonsymmetric case, i.e., I' = {1}, problem (1.1) has been
investigated by many authors (cf. [1, 3, 6, 10], for example. More
precisely, the existence problem of nonstationary T-periodic solutions
of the system

(1.2) i = —Ve(a),

has been studied for some 7' > 0 and a C?-differentiable function
¢ : R™ = R. A nonstationary T-periodic solution of (1.2) was treated
as a critical point of a certain associated S'-invariant functional, which
was defined on an appropriate functional space admitting a natural
Sl.action given by the shift in time. Under the assumption that ¢
has only finitely many critical points with possibly a degenerate one at
oo (having zero as its Hesse matrix), using a Morse index argument,
Benci and Fortunato proved the existence of nonstationary T-periodic
solutions and provided a lower estimate on the number of solutions for
T large enough, cf. [3]. The existence result for system (1.1), allowing
finitely many degenerate critical points with possibly at co, was also
proved in [6] by means of the S!-equivariant degree for gradient maps.

In the symmetric case, system (1.1) was studied in [11], where ¢ was
assumed to have only nondegenerate critical points at 0 and co. The
problem (1.1) was reformulated as a variational problem in a I' x S!-
invariant functional space. By associating topological invariants (using
the T' x S'-degree for gradient maps) to the potential functional at
0 and oo, respectively, the result was the existence of nonstationary
periodic solutions of (1.1), as well as a lower estimate of the number
of nonstationary periodic solutions with their different symmetries.
The main computational tool was based on the usage of a specially
developed Maple® package.’

The goal of this paper is to obtain similar results as obtained in [11],
for system (1.1) allowing 0 and oo to be isolated degenerate critical
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points of ¢. We apply the same scheme as in [11] and associate to
the system (1.1) a topological invariant deg., — degp. Due to the
degeneracy assumption, the value of deg,, for p € {0,00}, can be
only computed up to an unknown factor. However, with additional
assumptions on the kernel subspaces, by analyzing the appearances of
certain mazimal orbit types (H#"') in deg ,, the invariant deg -, —degg
can still provide a sufficient amount of information about the symmetric
structure of the set of nonstationary periodic solutions, including the
existence, multiplicity and symmetric classification.

The rest of this paper is organized as follows. In Section 2, we in-
clude several notions and results from the equivariant topology, which
are needed later (in Section 3) to describe the main properties of the
equivariant gradient degree and the computational formulae for the
degree of ' x S'-equivariant gradient linear maps, based upon the mul-
tiplicativity property and the notion of the so-called basic degree (cf.
[2, 7, 8]). In Section 3 we also formulate the so-called splitting lemma
(cf. [6]), which is essential for our study of the degenerate system (1.1).
In Section 4, we study the existence problem in autonomous Newto-
nian systems with I'-symmetries, which allows certain degeneracy at the
origin and the infinity. By means of the equivariant gradient degree,
we associate to the system (1.1) a topological invariant deg ., — dego
and compute its value up to an unknown factor. The main result is
obtained in subsection 4.2, cf. Theorem 4.2, where we discuss the ex-
istence and nonexistence of certain maximal orbit types appearing in
deg ,, in several degenerate cases, which help us to achieve a symmetric
classification of the periodic solution set including the existence, mul-
tiplicity and symmetry results. Finally, computational examples are
provided with I" being the dihedral groups Dg, Dg, D1y and D1s.

2. Preliminaries. In this section, we collect several basic notions
and facts from equivariant topology and introduce a few notations used
later.

2.1. Notations. Hereafter, I' stands for a finite group (endowed
with discrete topology). The group S* := {z € C: |z| = 1} is consid-
ered here as the unit circle with the standard complex multiplication.
Let G stand for (if not otherwise specified as I' x S!) a general compact
Lie group.
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We write H C G to indicate that H is a closed subgroup of G. Two
closed subgroups H and K of G are called conjugate if there exists a
g € G such that K = gHg™!. Denote by (H) the conjugacy class of H
in G, by N(H) the normalizer of H in G, and by W(H) = N(H)/H
the Weyl group of H in G. The set ®(G) := {(H) : H C G} admits
a partial order given by: (L) < (H) if and only if L is conjugate to a
subgroup of H.

Let X be a G-invariant set and z € X. We adopt the following
notations:

G, :={g9€G:gzx=uzx},
G(z):={gz: g € G},
X" .={recX:HCG,}
Xpi={reX:H=G,}
X" =a(x?), Xwm =G(Xn),

where G, is called the isotropy subgroup of x and G(z) is the orbit of
z. For z € X, the conjugacy class (G;) is called the orbit type of .
Note that (Gz,) = (G4,) for every z1,z2 € G(x). Roughly speaking,
(G) can be considered as the symmetry of the orbit G(z). We denote
by J(X) the set of all orbit types occurring in X, i.e.,

J(X):={(H) € ®(G) : 3z € X such that H = G,}.

Let V be an orthogonal G-representation. For r > 0, denote by
B.(V):={veV:|v| <r}

and write B(V) := By(V) for the unit ball in V. For an infinite-
dimensional isometric Hilbert G-representation W, similar notations
B(W) and B, (W) will also be used.

2.2. Euler ring U(G). As the equivariant degree defined for
gradient G-maps takes values in the so-called Euler ring U(G), we recall
its definition and basic properties (cf. [5]). Motivated by applications,
in particular, to study the existence problem of periodic solutions for
the I'-symmetric systems, we also present the general structure of the
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multiplication tables for U(I' x S') with I' being a finite group (cf.
[11]).

Definition 2.1. Given a compact Lie group G, the Euler ring U(G)
is the free Z-module generated by ®(G), i.e., U(G) = Z[®(G)], with
the multiplication x : U(G) x U(G) — U(G) defined on generators (H),
(K) € ®(G) by the formula

(2.3) (H)*(K)=Y_ nz-(L),

(L)e2(G)

where n;, = X.((G/H x G/K)/W (L)), and X, stands for the Euler
characteristic in Alexander-Spanier cohomology with compact support
(ct. [5, 9, 13]).

Let n := dimG. For k = 0,1,...,n, denote by ®,(G) := {(H) €
®(G) : dim W (H) = k} and Ag(G) := Z[®,(G)]. Then, the Euler ring
U(G), as a Z-module, can be expressed by

U(G) = ) An(G),

where each A (G) is viewed as a Z-submodule of U(G).

For a general compact Lie group G, the structure of the Euler
ring U(G) may be difficult to compute. However, being interested in
studying I'-symmetric problems, we consider a particular type of group
G, namely G =T x S! for I being a finite group. In this case, we have

®y(G)={(K xS") : KCT}.

Notice that Ag(G) can be identified with the Burnside ring A(T') of T
It can be verified (cf. [2]) that the elements of ®1(G) are the conjugacy
classes (H) of the so-called ¢ twisted l-folded subgroups of I x S* (with
1=0,1,...) given by

H=H" = {(v,2) e Hx S': () = zl},

where H is a subgroup of I' and ¢ : H — S! is a homomorphism. A
¢ twisted one-folded subgroup H¥'! is denoted by H¥ and is called a
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TABLE 1. Multiplication table for U(G), G =T x S?.

Ao(G) A1(G)
Ao(G) Ao (G)-multiplication multiplication in Ao (G)-
module A1(G)
A1(G) | multiplication in Ag(G)-module A;(G) 0

twisted subgroup of I' x S'. Moreover, it was shown in [2] that there
exists an Ap(G)-module structure on A;(G).

The following U(G)-multiplication result was proved in [11].

Theorem 2.1. Let G =T x St with T being a finite group. Then the
multiplication table for the Euler ring U(T x S') is given by Table 1.

Remark 2.1. For G =T x S! with I being finite, both the Ay(G)-
multiplication and the multiplication in the Ay(G)-module A;(G), as
referred to in Theorem 2.1, can be effectively computed using explicit
formulae and specially developed Maple® routines (cf. [2, 11] for
example).

3. Equivariant degree for gradient G-maps. In this section,
we recall several properties of the equivariant degree for gradient
G-maps defined in [7]. Based on these properties, we present a
simplified derivation of explicit computational formulae for gradient
G-isomorphisms in the case G = I' x S! with I" being finite (for more
detailed derivation, we refer to [11]). In preparation for studying
problems with degeneracy conditions, we include a result called the
splitting lemma (cf. [6]). We also extend the computational formulae for
G-equivariant gradient compact fields with degenerate critical points.

3.1. Definition and properties. Let G be a compact Lie group
and V an orthogonal G-representation.

Definition 3.1. (i) A map f:V — V is called a gradient G-map
if there exists a G-invariant function ¢ : V — R of class C* such that
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f = V. Similarly, a map h : [0,1] Xx V — V is called a gradient G-
homotopy if there exists a G-invariant C!'-function ¢ : [0,1] x V — R
such that hy = V1, where hy(x) := h(t,z) and ¢ (z) := ¥ (¢, z) for all
(t,z) € 10,1] x V (here, V, stands for the gradient with respect to z).

(ii) Let € C V be an open bounded G-invariant set. A gradient
G-map f : V — V is called Q-admissible if f(x) # 0 for all z € 01,
and the pair (f,Q) is called a Vg-admissible pair. Two V g-admissible
pairs (fo,Q) and (f1,Q) are said to be Vg-homotopic, if there exists
a gradient G-homotopy h : [0,1] x V' — V such that h(0,-) = fo,
h(1,-) = f1 with (h¢, Q) being Vg-admissible for all ¢ € (0, 1).

It was established in [7] that to each Vg-admissible pair (f, ), one
can associate an element Vg-deg (f,Q) in U(G). This function Vg-deg
satisfies all the properties expected from a reasonable degree theory
and, in fact, it classifies the Vg-homotopy classes of gradient G-maps
(cf. [4]). The important properties of this degree are listed in the
following theorem.

Theorem 3.1 (cf. [7]). Let G be a compact Lie group, V an
orthogonal G-representation, @ C V an open bounded G-invariant
subset and f : V. — V an Q-admissible gradient G-map. There exists
a function Vg-deg associating to each Vg-admissible pair (f,Q) an
element Vg-deg(f,Q) € U(G) such that the following properties are
satisfied:

(P1) (Existence). If Vg-deg(f,Q) = > g)nu - (H) 1s such that
ng, # 0 for some (Hp) € ®(G), then there exists an xp € Q with
f(zo) =0 and Hy C Gy, -

(P2) (Additivity). Suppose that Q1 and Qg are two disjoint open
G-invariant subsets of Q such that f=1(0) N Q C Q; UQy. Then,

VG'deg (fa Q) = VG'deg (fa Ql) + VG'deg (fa Q2)

(P3) (Homotopy invariance). If h:[0,1]xXV — V is a Vg-admissible
homotopy, then

Vg-deg (ht, ) = constant,

with respect to t.
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(P4) (Multiplicativity). Let W be another orthogonal G-representa-
tion, and let (f,9Q) be a Vg-admissible pair with Q@ C W an open
bounded G-invartant subset and f : W — W a gradient G-map. Then,

Va-deg (f x f,Q X ﬁ) = Vg-deg (f,Q) *Vg-deg(f, ﬁ),

where the multiplication %’ is taken in U(QG).

(P5) (Suspension). Suppose that X is another orthogonal G-represen-
tation, and let O be an open bounded G-invariant neighborhood of 0 in
X. Then

VG"deg (f X Id7 2 x O) = VG'deg (fa Q)a

where Id is the identity map on X.

Remark 3.1. In the infinite-dimensional case, this gradient degree
V -deg can be extended to the class of G-equivariant gradient compact
fields, and all the properties listed above remain valid (cf. [12]). We
apply the same notations for such an extension.

The simplest examples of gradient G-maps, which provide us with
nontrivial gradient degrees, are the negative identity maps defined on
irreducible G-representations.

Definition 3.2. Let G be a compact Lie group, and let V be an
irreducible G-orthogonal representation. Consider the map —Id : V —
V given by z — —x. We call the element

(3.3) Degy := Vg-deg (—1d, B(V)) € U(G)

the gradient basic degree of V, where B()) is the unit ball in V.

The concept of the gradient basic degree plays an important role
in the computations of general gradient degrees. In many cases, it is
possible to reduce the computations of gradient degrees for an arbitrary
gradient G-map to the computations of gradient basic degrees. Though
the values of gradient basic degrees are not completely clear for a
general compact Lie group G, it turns out that, in the case G = I' x S*
for a finite group I, they can be fully computed via the so-called twisted
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basic degrees in the language of twisted primary equivariant degree (cf.
[2]). To avoid confusion of notation, we use degy to denote the twisted
basic degree of V. The following identities describe the relation between
Degy and degy, in the case G = I' x S with I being a finite group (cf.
2, 11))
(3.4) { Degy, = degy if S* acts trivially on V,
Degy = (G) — degy if S* acts nontrivially on V.

3.2. Computational formulae. Throughout this subsection, G =
I' x S! with T being finite, and V is an orthogonal G-representation.

Viewed as an S'-representation, V allows the following (G-invariant)
decomposition

(3.5) V=vSaVv,

where V' is the orthogonal complement of the closed subrepresentation
VS in V. Let Q :V — V be a symmetric G-equivariant isomorphism.
Consider the restricted maps with respect to the decomposition (3.5),
ie., Q= Qlyst : vS' 5 VS and Q' = Q|y : V' — V', which are
clearly symmetric G-equivariant isomorphisms. By the multiplicativity
property (P4) of the gradient degree, we have

V-deg (Q, B(V)) = Vg-deg (Q, B(VS")) x Vg-deg (Q', B(V")).

To compute V-deg (Q, B(VS")), we find the maximal subrepresenta-
tion Emax of V5" on which Q is negative definite. To this end, let o (Q)
be the negative spectrum of (. Then, the subrepresentation Epax is

precisely the direct sum of all the eigenspaces E(u), for p € o_(Q). By
the suspension property (P5) of the gradient degree, we have

Ve-deg (@, B(VS")) = Vg-deg (Q, B(Emax))
(36) = JI Vedes(-1d B(E()),

pEo_(Q)

where the second equality uses the multiplicativity property (P4).
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Let {Vo,V1,...,V:} be a complete list of the real irreducible I'-
representations.? Considered as a real D-representation, each E(u)
admits the following so-called isotypical decomposition

where E;(p) is modeled on V;, meaning that F;(u) is isomorphic to
the direct sum of k copies of V; for some nonnegative integer k. The
integer k is called the V;-multiplicity of p and will be denoted from
now on by m;(u). Therefore, by (3.6) and the multiplicativity property
(P4), we have

Ve-deg (Q,B(VS)) = [] Vo-deg(-1d, B(E(n)))
p€T_(Q)

~ TI TIVo-deg(-1d, B(E:(x)

n€o_(Q) =0

II II(Ve-deg(-1q, B(V)))™®

p€o_(Q) =0

H ﬁ (Degyi ) miln),

peo_(Q) =0

Similarly, one can derive a computational formula for Vg-deg (Q’,
B(V')). More precisely, since (V')S" = {0}, the space V' admits
a complex structure induced by the S'-action, so it is a complex I'-
representation. Assume that {Uo, U1, ... ,Us} is a complete list of the
complex irreducible I'-representations. Then, V' admits the following
complex I'-isotypical decomposition

Vi=UaU & ---®Us,,

where each U; is modeled on ;. Since each subspace Uj is also S'-
invariant, we have the S!-isotypical decomposition of Uj,

Ui=Vj1@Vj2®---&Vjy,

for some integer [, where the S1-action on the component V;; is defined
by the [-folded complex multiplication

(7, 2)w := 2" - (yw), for (v,2) €T x S, we Vj,.
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Consequently, we obtain the following G-isotypical decomposition of
V‘/
V' = @ Vit
gl

Now, by applying the multiplicativity property (P4) of the gradient
degree we have

Vg-deg (Q', B(V")) ch deg (@', B(V;,1))

(3.8) —H H (Vg-deg ( Q B( )))mj’l(g)
gl é€o_(Q")
- 11 H Dey, )19
§€0_(Q') J

where m;;(€) is called the V;;-multiplicity of £ given by m;;(§) =
dim (E(§) NV;,;)/dimU;.

Therefore, by combining (3.7)—(3.8) with the identities (3.4), we have

Proposition 3.1 (cf. [11]). Let G =T x S* for a finite group I, and
let V' be an orthogonal G-representation. Suppose that Q : V —V is a
linear symmetric G-equivariant isomorphism. Then,

Vg-deg (Q, B(V)) = Vg-deg (@, B(VS"))
— Vg-deg (@, B(VS"))

Z ij,l(f)degvj,la

£€0_(Q") 4l

where Vg-deg (Q, B(VS")) is given by

Vg-deg(G,B(Vsl)): H lll(degvi)m(u)7

p€o_(Q) =0

and degy,, degy,, denote the twisted basic degrees of V; and Vj,
respectively.

3.3. Splitting lemma. In order to be able to study the existence
of nonstationary periodic solutions of a variational problem allowing
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certain degeneracy at critical points, we need the so-called splitting
lemma, which was established in [6]. We also extend the computa-
tional formulae in Proposition 3.1 to the class of equivariant gradient
compact fields defined on an (infinite-dimensional) isometric Hilbert
G-representation.

Let G be a compact Lie group and W an (infinite-dimensional)
isometric Hilbert G-representation. Consider a C?-differentiable G-
invariant map ¢ : W — R, which has the following form

(39) @) = 3 (r,2), — 9(a),

where (-, )1 denotes the G-invariant inner product on Wand g : W —
R is a G-invariant function satisfying

(A1) Vg : W — W is a G-equivariant compact map.
Moreover, we assume that

(A2) For p € {0, 00}, there exists a G-equivariant symmetric compact
operator L, : W — W and a G-invariant  : W — R such that
®(z) = (1/2)((Id — Lp)z,z)w + np(x) with Vi, : W — W being a
compact map and

V205 ()] — 0, as [|z[| — p.

(A3) 0 € o(Id — L), i.e., p € {0,000} is a degenerate critical point of
® and

(A4) p € {0, 00} is isolated as critical point of ®.

Notice that (A3) implies that p = 0 is a critical point of ®. We also
treat p = oo as a critical point, with Hesse matrix Id — Lo,. We call co
an isolated critical point if V®1(0) is bounded.

Notation 3.1. Denote by Z, := Ker (Id — L,) and W,, := Im (Id —
L,). Since L, is a compact operator, we have that Id — L, is a
Fredholm operator of index zero. Thus, Z, and W, are finite and
infinite dimensional orthogonal G-representations, respectively. Also,
Id — L, being a symmetric linear operator implies that W = Z, @ W,
and the operator Q) := (Id — L,)|, is a G-isomorphism.
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The following splitting lemma, which is a simplified version of the
theorem proved in [6], is essential for computations of the equivariant
degree of V& at 0 and oo.

Lemma 3.1 (Splitting lemma). Suppose ® is of the form (3.9)
satisfying (A1)—(A4). Then, for each p € {0,000}, there exist ¢, > 0
and a G-equivariant gradient homotopy VHy : [0,1] x W — W such
that

(i) VHy *(0) N (cl(B., (W)) x [0,1]) = {0} x [0,1], and VHZ(0) C
cl(B.(W)) x [0,1].

(i) VH,(t,-) =1d — Vg,(t,-) fort €[0,1], where Vg, : [0,1] x W —
W is a compact map.

(i) VH,L(0,-) = V®, and

(iv) there exists a G-equivariant gradient mapping Vo, @ Zp, — Z,
such that VHy(1, (v,w)) = (Vep(v), Qp(w)), for (v,w) € Z, & W,.

Therefore, by the multiplicativity property of the gradient degree, we
have (cf. Remark 3.1)

Corollary 3.1. Suppose ® is of the form (3.9) satisfying (A1)—(A4).
Then, for p € {0,00}, there exist €, > 0 and a G-equivariant gradient
map Vo, : Z, = Zy, such that

Vg-deg(V®, B, ,(W)) = Vg-deg(Vy, Be,(Z,))xVa-deg(Qp, BOV,)),

where Zy,, Wy and Q) are given by Notation 3.1.

Remark 3.2. Notice that in the case G = T' x S (as usual, we
assume I' is finite), the computational formulae in Proposition 3.1 can
be easily extended to the class of G-equivariant gradient compact fields.
Indeed, it is well known that each compact operator has a spectrum
either composed of 0 and a finite number of eigenvalues, or it is an
infinite sequence of eigenvalues convergent to 0 (which is also in the
spectrum). Moreover, every nonzero eigenvalue has a finite multiplicity.
Consequently, by compactness assumption (A2), there are only finitely
many eigenvalues p of L, such that p > 1, which implies that the
negative spectrum of Q, = Id — L, consists of only finitely many
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eigenvalues, each of which has a finite multiplicity. Therefore, by the
suspension property of the gradient degree in the infinite-dimensional
case, we have the following analog of Proposition 3.1, which can be
used for the computations of Vg-deg (Q,, BOW,,p)).

Proposition 3.2. Let G = T' x S! for a finite group T, and let W
be an isometric Hilbert G-representation. Suppose that Q : W — W is
a linear isomorphic G-equivariant gradient compact field. Then,

Vg-deg (Q, B(W))

= Vg-deg (G, BOW?"))
— 1
- VG_deg (Q7 B(Ws )) * Z Z m;ja (g)deng,“
feo_(Q') il

where Vg-deg (Q, BOWS")) is given by

Va-deg(Q, BOVS ) = [ [](degv.) ™.

p€o_(Q) =0

4. I'-symmetric autonomous Newtonian systems. Let V be
an orthogonal I'-representation. We are interested in studying non-
stationary periodic solutions x : R — V of the following autonomous
Newtonian system:

&= —Vo(z),
(4.10) { 2(0) = 2(21), #(0) = &(2r),

where ¢ : V — R is a C%-differentiable I'-invariant function satisfying
the following assumptions:

(HO) p € {0,000} are the only possible critical points of ¢,

(H1) Vo is asymptotically linear at oo, i.e., there exists a symmetric

I'-equivariant linear map B : V' — V such that

Ve(z) = Bz + of|[]) as ||z]| — oo.

Let A := V2p(0). By (H1), A and B are linearizations of V¢ at 0
and at oo, respectively.



I-SYMMETRIC SYSTEMS WITH DEGENERACY 887

Remark 4.1. Notice that if (c(A)Ua(B))N{l?:1=0,1,2,...} = &,
then the linearizations of (4.10) at p = 0 and p = co have no nonzero
solutions. This nondegenerate case was studied in [11]. In this paper,

we are interested in the degenerate situations, i.e., (c(A)Ua(B))N{I*:
1 =01,2,...} # @. For simplicity, assume that o(A), respectively
o(B), has a nontrivial intersection with {I? : [ = 0,1,2,...}, which

contains only one element, namely,

(D)
o(A)N{12:1=0,1,2,...} = {12},
{U(B)m{ﬂ:z:o,l,z,...}:{zgo}.

4.1. Reformulation in functional spaces. We use the stan-
dard identification R/27Z ~ S. Consider the Sobolev space W :=
H(SY; V) equipped with the usual inner product

(2, 0) ::/0 " la(t), 5(0) + (u(t), o(0)) dt, w,v € W,

It is an isometric Hilbert G-representation (for G = I' x S') with the
G-action defined by

((v,e)u) (t) :=vyu(t+7), v€T, T€R, ueW.

Define & : W — R by

(411) o)~ | " (314012 - ptute) ) ar

where || - || stands for the I'-orthogonal norm in V. It can be easily
verified that

x is a solution of (4.10) <= V®(z) =0, ze€W.

To determine an explicit form of V®, define ¢ : V' — R by

(1.12) B) = oe) + 3ol weV,
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and introduce the following maps

L:H*(SYV) — LA(SH V), Lu = —ii + u,
j:H*(SYV) — HY(SYHV), ju = u,
Ngz: C(S%V) — L(S5V), Ngs(u) = V§(u).

Notice that j is a compact embedding. It follows that (cf. [11])
(4.13) V®(u)=u—joL 'o Ngg(u), weW,

is a G-equivariant gradient compact field. Moreover, by (H0)—(H1) and
(D), we are in the setting of subsection 3.3. Indeed,

2
b(u) = gl — [ Blule) d
satisfies (A1)—(A3) for

(4.14) Ly=joL o (A+1d),
(4.15) Lo =joL o (B+1d).

Also, by (HO), the functional ® satisfies (A4) in the case lp = loo =0
in (D) (see, for instance, [6, Lemma 5.2.1]). In the case [, # 0 for some
p € {0,000}, we assume that

(H2) p € {0, 00} is an isolated critical point of ® whenever [, # 0.

Remark 4.2. In general, it is possible that (H2) fails for some
p € {0,00} with I, # 0. However, by an equivariant implicit function
theorem argument, it is shown in [6] that in the case where (H2) fails,
there already exist infinitely many solutions of (4.10), and the minimal
period of any solution sufficiently close to the point p is equal to (27)/l,
(cf. [6, Theorem 5.2.2]). In particular, (4.10) allows infinitely many
nonstationary (27)/l,-periodic solutions automatically. In this paper,
we exclude such a possibility by assuming (H2).

Therefore, by (H0)—(H2) and (D), there exist a sufficiently small e > 0
and large R > 0 such that Vg-deg (V®, B.(W)) and Vg-deg(V®,
Bgr(W)) are well defined. Moreover, if

VG"deg (V(I)7 BR(W)) - VG'deg (V¢7 BE(W)) 7é 0,
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then there exists a solution of (4.10) in Br(W) \ B:(W). In order
to obtain a multiplicity and symmetric classification result for the
nonstationary periodic solution set of the problem (4.10), we need the
following important notion (cf. [2]).

Definition 4.1. An orbit type () in W is called dominating, if (#)
is maximal with respect to the usual order relation (see subsection 2.1)

in the class of all p-twisted one-folded orbit types in W (in particular,
H = H?).

The following theorem, which can be easily established following the
same idea as in Theorem 6.2.1 of [11], provides us with a sufficient
condition for the existence of a nonstationary periodic solution of
(4.10), as well as a lower estimate on the number of solutions with
their different symmetries.

Theorem 4.1. Let ¢ : V — R be a T'-invariant C*-differentiable
map satisfying (HO)—(H2), (D), and let ® : W — R be given by (4.11),
for W = HY(SY; V). Then, there exist ¢, R > 0 such that Vg-deg (V®,
Br(W)),Vg-deg (V®,B.(W)) € U(G) are well defined. Moreover,
suppose that

Vg-deg (V®, Bg(W)) — Vg-deg (V®, B(W)) = Y ny - (H) # 0.
(H)

Then,

(i) if ny, # O for some (Hy), then there exists a nonstationary
solution zo of (4.10) satisfying Gy, D Ho.

(ii) If such (Ho) = (H?') € ®1(G) for a dominating orbit type (H?)
in W, then there exist at least |I'/H| different nonstationary solutions
of (4.10) with the symmetries at least (H?'!).

For convenience, denote by

degy := Vg-deg (V®, BR(W)),
degg := Vg-deg (V®, B:(W)),

where R and ¢ are given by Theorem 4.1.
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4.2. Computations of deg,, — degy. This is the main section of
this paper. We extend here the computations of deg -, and deg under
degeneracy assumption (D), so to apply Theorem 4.1 to obtain the
existence and multiplicity result. Therefore, we analyze several possible
cases where a nontrivial (H*®"!)-term occurs in deg , — deg, for some
dominating orbit type (H¥). Note that, in general, the complete values
of dego and deg . are unknown due to degeneracy assumption (D).
Thus, the coefficients ny in deg ., — deg( cannot be determined with
precise values. However, to take advantage of Theorem 4.1 (ii), one
only needs to look for an (H¥"!')-term in deg -, — dego with a nonzero
coefficient. More precisely, we are interested in finding a nontrivial
(H#')-term in deg ., respectively deg ¢, which does not appear in deg o,
respectively deg .

Define the following two linear G-maps

AW — W, A:Id—joLflo(A—i—Id),
B:W — W, BZId—joL_lo(B—i—Id).

It follows that A and B are linearized maps of V® at 0 and at oo, re-
spectively (cf. (4.14)—(4.15)). Consider the S'-isotypical decomposition
of W,

wW=wSaw

(4.16) . —
_ S
=W @@tm@

where W5 ~ V is the subspace composed of all V-valued constant
functions in W, W' = (Wsl)J- is the orthogonal complement of WS"
and W, ~ et . V¢ is equivalent to the complexification V¢ of the I'-
representation V' (cf. [2]).

Recall the operator L is defined by L(u) = —ii + u, which is S-
equivariant. Moreover, we have L|,,s: = Id and L|w, = (I* + 1)Id.
Therefore, by the definitions of A and B, we have

1
A|W51 = —A, A|Wl == Id — m(A—f—Id),

(4.17) )
Blyst =B,  Blw, =Id— -——(B+1d).

Z2+1
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Remark 4.3. As it was pointed out in Remark 4.1, if (c(A)Uo(B))N
{I?:1=0,1,...} = @, then both A and B are isomorphisms. In this
case, the degrees deg and deg o, can be fully computed (cf. [11]). To
discuss the degenerate case under assumption (D), we distinguish two
cases when [, = 0 and when [, > 0. Thus, we consider the following
types of degeneracy

(H3p) o(A)N{I?:1=0,1,2,...} = {0},

(H3;) o(A)N{1?:1=0,1,2,...} = {I3 # 0},

(H4o) o(B)N{l*:1=0,1,2,...} = {0},

(H4;) o(B)N{I?:1=0,1,2,...} = {13 #0}.

Notice that (cf. (4.17))

{ A'is a G-isomorphism on W' <=0 ¢ o(A)
A is a G-isomorphism on W; <= [? ¢ o(A),

and a similar relation holds for B.

(4.18)

Since the computations of deg », and deg are completely analogous,
using the formulae stated in Corollary 3.1 and Proposition 3.2, we only
discuss in details the computations of deg(, under the assumptions
(H3p) and (H3;). A table summarizing the existence/nonexistence of
a nontrivial (H#!)-term in deg,, is presented in Theorem 4.2, for
p € {0,00}. For completeness, we also include the nondegeneracy
conditions:

(H3) oc(A)N{l*:1=0,1,2,...
(H4) o(B)N{l?:1=0,1,2,...

:@,
%]

By Corollary 3.1, there exist € > 0 and a G-equivariant gradient map
Vo : Zy — Zy such that

dego = Vg-deg (Vo, B=(Z))) x Vg-deg (Alw,, BOWo)),
where Vg-deg (Alw,, B(Ws)) can be computed by (cf. Proposition 3.2)
Vg-deg (Alw,, BOWy)) = IT  II(degy,)m™

peo (Al g1)i=0
0

= I IM@egw)™®@ s 30 > mju(€)degy,,

neo_ (Al g1)i=0 g€0—(Alyy) 7l
0
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To simplify the notations, put

(4.19) degy:= [ TI(degwi)™®,

nEo (Al 61) =0
0

(4.20) degy := deg% x Z Z myji(§)degy, .
o (Alwr) il

Then, we have

(4.21) degy = Vg-deg (Vpo, B:(Zp))  (deg’ — degy).

We simplify the formulae (4.19)—(4.21), under different assumptions
(H3p), (H3;) and (H3), respectively.

Case (H3(p). Under the assumption (H3p), Alw, is a linear G-
isomorphism of W for each I € {1,2,...}, and Zy = Ker A = KerA C

WS" (cf. (4.18)). Thus,
(4.22) Vg-deg (Vo, B:(Zy)) € Ao(G).
Therefore,

dego = Vg-deg (Vyo, B-(Zy)) * (deg& — deg}‘l)
= Vg-deg (Vo B-(Zy)) * deg® — Vg-deg (Vo, B-(Zy)) * deg

€40(G) €A1(G)

where —Vg-deg (Vo, B:(Zy)) x deg Y is the part that may contribute
a nontrivial (H®!)-term to degp.

Since W3 = Im (A), we have that o_ (A| ,s1) = 04 (4) (cf. (4.17)).

0

To interpret the formula (4.20), it is sufficient to observe that (cf. [11])
_prl

2+1’
p> 12, for p e o(A), 1€{1,2,...},

feo (Alwy) = £=1

and
mj (&) = mj(p),
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where m;(p) is the U;-multiplicity of u. More precisely, consider the
“complexified” operator A : V¢ — V¢, For u € o(A), the corresponding

eigenspace E’(,u) in V¢ is a complex I'-representation admitting the
isotypical decomposition

E(p) = Eo(u) ® Ev(p) & - & E,(p),

where E; (1) is modeled on ; and ; (1) is defined by dim E; () /dimU;.

Put ﬁzf(A) = D k2<p< (k)2 Mj(p). 1t can be directly verified that
(cf. [11])

s oo k
S Y mu(©)degy,, = 3OS Wb (A) Y degy, .
§eo_(A’) Jil =0 k=1 -1

Therefore, the formulae (4.19)—(4.20) reduce to

r

degh = [ JI(degv)™,

”€U+ (A) =0
s oo k
degly = deg? * Z Z ﬁzf (A) Z degy, ,.
§=0 k=1 1=1

Let (H*?') be such that (H¥) is a dominating orbit type in W. We
introduce the following conditions:

(Y1) deg contains a nontrivial (H*!)-term, and Z, = Ker 4 is such
that

(@ - ~ ~
(H x S ¢ J(2Z) for any (H) such that (H) < (H) < (I).

(N1) degly does not contain a nontrivial (H%'')-term.

Proposition 4.1. Let ¢ : V — R be a I'-invariant C?-differentiable
map satisfying (HO), (H1) and (H3). Let (H®') be such that (H?) is
a domanating orbit type in W. Then,
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(i) Under assumption (Y1), there exists a (H%')-term with a
nonzero coefficient in degy;

(ii) Under assumption (N1), there is no (H?')-term with nonzero
coefficient in degy.

Proof. (i) By (Zo)" = {0} and Zy C W5, we have that (Z,)¢ = {0},
and

(4.23) Va-deg (Vo, B-(Zp)) = (G) + ap € Ao(G),

for some ayp € Ap(G) which does not contain nontrivial (G)-term.
Substituting (4.23) in (4.21), we obtain
deg o = Vg-deg (Vo, Be(Z0)) * Vg-deg (Alw,, BOWy))
= ((G) + ag) * (deg’ — degy)
= deggl — degi‘ + ag * deg& —ag * degi‘
= deg’y + ap » deg’ —degy — ag * degy .

€Ao(G) €A1(G)

Since degl; contains a nontrivial (H#')-term, to conclude that degy
also contains this (H%"!)-term (with an opposite sign), it suffices to
eliminate the possibility that

ag x degly = —(H?') + rest.

By the maximality of (H¥), this would only happen if a¢ contains
a nontrivial (H x S')-term for some (H) > (H). Also notice that
(H) < ('), since ag does not contain the (G)-term. By the assumption
that such a (H x S1) does not occur in J(Z), it is impossible for ag
to contain such a nontrivial (H x S')-term, so the statement follows.

(ii) It is clear that if degl, has no nontrivial (H*!)-term, degy does
not permit one. ]

Case (H3;). Under the assumption (H3;), A is a linear G-
isomorphism when restricted to the S'-isotypical components W9 " and
each Wy, for I # 1y (cf. (4.16)). Indeed,

Zy = Ker A C W,,.
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In particular, (ZO)S1 = {0} and
(4.24) Ve-deg (Vo, B:(Zo)) = (G) + a1, for a; € A;1(G).

Substituting (4.24) in (4.21), we obtain
degy = Vg-deg (Vo, B:(Zy)) x Vg-deg (A|lw,, B(Wo))
= ((G) + a1) * (deg’ — degk)
= deg’ — degl + a; xdeg’ — a; x degly
= degOA fdegit +a * deg&,
N——r’

er(G) €A1(G)

where the last equality uses the fact that a; *degi‘ = 0, since aq, degi‘ €
A1(G) (cf. Theorem 2.1).

Moreover, we have

degh = deggl * Z Z Z mji(§)degy, ,

£€o_(A’) j=0 =1

s oo k
(4.25) _ deg”, * ( S EA)Y degy,,
§=0 k=1 1=1
S lofl
+ T?LJ (Zg) Z degv] l>,
7=0 =1
where it is clear that
(4.26) degh = [ [I(degy,)™.

pEoy (A)i=0

We introduce the following conditions:
(Y2) degy contains a nontrivial (H#"!)-term, and (H*') ¢ J(Zp).

(N2) deg!; does not contain a nontrivial (H#!)-term and (H®!) ¢
T (Zo)-

Proposition 4.2. Let ¢ : V — R be a I'-invariant C?-differentiable
map satisfying (HO)—(H2) and (H3;). Let (H®') be such that (H¥) is
a domanating orbit type in W.
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(i) Under assumption (Y2), there exists a (H¥"')-term with nonzero
coefficient in degy;

(ii) Under assumption (N2), there is no (H?')-term with nonzero
coefficient in degy.

Proof. (i) By (Y2), degly contains a nontrivial (H®!)-term. It is
sufficient to show that a; xdeg % does not contain any —(H*!)-term so
that a cancelation does not occur. But (H%') ¢ J(Z,), which implies
that a; has no nontrivial (H%"!)-term. Thus, by maximality of (H*!),
a1 x deg’ contains no (H¥')-term. Therefore, it follows that there
exists a (H?!)-term with a nonzero coefficient in deg .

(ii) Similar proof as in (i). By (N2), deg!; contains no nontrivial
(H#')-term. It is sufficient to show that a; * deg% does not contain
any —(H%!)-term, which is again the case by the condition (H?'!) ¢
J(Z). O

Case (H3). Under nondegeneracy assumption (H3), A is a linear G-
isomorphism of W. Thus, the complete value of degy can be obtained
(cf. [11]). Then, it makes sense to formulate the following conditions:

(Y) degy contains a nontrivial (H*"')-term,

(N) degg does not contain any nontrivial (H#*!)-term.

Theorem 4.2. Let ¢ : V — R be a I-invariant C%-differentiable
map satisfying (HO)—(H2). Let (H¥') be such that (H¥) is a dominat-
ing orbit type in W. Then, we have Table 2 summarizing the sufficient
conditions of existence and nonexistence of a nontrivial (H?!)-term in
degy, for p € {0,00} (where the conditions (Y1), (Y'), (N1'), (N2
and (N') of B are the counterparts of those of A).

Proof. Immediate consequence of Propositions 4.1-4.2. u]

Corollary 4.1. Let ¢ : V — R be a T-invariant C?-differentiable
map satisfying (HO)—-(H2). Let (H®') be such that (H¥) is a domi-
nating orbit type in W. Then, we have a nontrivial (H?')-term in
deg., — degy, if the conditions in Table 2 are satisfied diagonally, i.e.,
one of the existence conditions for degy with one of the nonexistence
conditions for deg., or vice versa.
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TABLE 2. Existence/nonexistence of (H#!)-term in degy,.

dego degoo
existence | (H3¢)+(Y1) | (H4o)+(Y1")
of (H#') or or
(H3:)+(Y2) | (H4)+(Y2)
or or

(H3)+(Y) | (HH)+(Y)
nonexistence | (H3)+(N1) | (H4y)+(N1')

of (H#') or or
(H3,)+(N2) | (H4;)+(N2')

(H3)+(N) | (H4)+(N)

4.3. Computational examples. We present computational exam-
plesforI' = D,, and V = R" for n = 6, 8,10, 12. Consider the potential
¢ : V — R satisfying (HO)—(H1) with matrices A and B being of the
type

c 0 0 0 d
d c 0 00
c—10 d ¢ d 00
d 00 0 d c

To obtain ¢ satisfying the above properties, one can define for example
¢ :V = R by p(z) = (1/2)(Bz,z) — (1/1/((A - B)z,z) + a), for
certain @ > 0. A similar computational example can be found in [6]. We
also assume (H2) in all the computational examples. The degeneracy
assumptions are listed in Table 3. For the notations used here, including
complete lists of irreducible I'-representations, computational data and
usage of the Maple®© routines, we refer to [2].
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TABLE 3. Summary of the assumptions in the computational examples.

r degyp degoo

Ds | (H30)+(Y1) | (H4o)+(NL')
Dy | (H30) (Y1) | (Hd))+(N)
Dyo | (H3;)+(N2) | (Hd)+(Y1')
Dyp | (H3))+(N2) | (H4y)+(Y2')

TABLE 4. Eigenvalues of A and B, I' = Dg.

c | d | po | B | p2 | pa
A|88|44|176(132 (44| 0

B|11|11| 33|22 | 0 |-11

Dihedral symmetry Dg. Let ' = Dgand V =V, ® Vi & Vo & V4.
Consider the potential ¢ : V — R satisfying (H0)—(H2) with the
matrices A and B being of the type

d

QU O O O a0
S oo a0

S o a0 o
S0 OO
QO & O O O
QO QO O O Al

It can easily be obtained that o(C) = {up = ¢+ 2d,p1 = c+d, 2 =
¢ —d, ps = ¢ — 2d}, where each p; has its eigenspace F(u;) ~ V;. Take
c=8.8and d =4.4 for A and ¢ =d = 1.1 for B, and list eigenvalues
of A and B in Table 4. Notice that assumptions (H3p) and (H4) are
satisfied in this case. The dominating orbit types in W are (Ds), (Dg),

(%), (Zt), (D4) and (Dj).

Using Table 4, we compute the numbers

The value of degly is
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s oo k
degA = H H (degy,)™ (1) 4 Zﬁlf(A) Zdegvj’l
§=0 k=0 =1

HEU+(A)

= Hdegvi * <1 . (Zdegvo’,)
i=0 =1
3 2
1 <ZdegV1,t> +1- <Zdeg\72,l>>
1=1 =1
2

= H degy, * <degvo)1 +degy, , + degv2,1>
i=0

2
+ H degVi * <degV0,2 + degV1,2 + degV2,2>
=0

2 2
+ H degy, * (degyo,3 + degvlys) + H degy, x deg vy, ,
i=0 1=0

= O, [showdegree [D6] (1,1,1,0,0,0,1,1,1,0,0,0)]

+ ©5 [showdegree[D6] (1,1,1,0,0,0,1,1,1,0,0,0)]

+ O3 [showdegree[D6] (1,1,1,0,0,0,1,1,0,0,0,0)]

+ ©4 [showdegree[D6] (1,1,1,0,0,0,1,0,0,0,0,0)]

= (DY) - (28) — (Z&) + (D3) + 3(Dg) + (D) + (D2)

—3(Df) —2(D1) — 2(Df) = 3(D1) — 2(Z3) — (Z2) + 5(Z1)

~ (DY) - (B~ (28) + (D) + 3(D§*) + (DF?)
+(D3) - 3(D*) —2(Df) — 2(D7?) — 3(D}) — 2(Z3 )
- (Z 3) 5(Z ) — (DF®) - (28) +3(D4%) + (DF*)
—2(D{®) — (D) — (D7) — 2(D}) — 2(2Z, %) + 3(23)

(Dd4) 2(D5*) — (D}*) — (DY) — (Z5) + (Z1).

Since Zy = KerA ~ V,, we have the set of all orbit types is
JWVs) = {(Ds x SY), (D3 x S')}. By (Y1) and Proposition 4.1 (i),
there exist the following nontrivial (H#"')-terms in dego:
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(D), (2§), (Z), (D), (D3), (D§2), (Z%), (2 ?),

(4.27) 2 d,2 d d d4
(D;’ )7(1)27 )7(D6’3)7(Z3173)7(D273)7(DG’ )

On the other hand,

r s o k
deg}; = H H(degyi)m"(") * Z 7%;“ (B) Z degy,
pEo4 (B) =0 j=0k=0 =1
= H degy, * (1 -degy,, +1- degvl’l)

i=0,1

©; [showdegree[D6] (1,1,0,0,0,0,1,1,0,0,0,0)]
—(D§) - (Z§') — (D§) — (Dg) + 2(Dj) + (D1)
+ (D7) +2(D1) + (Zy) — 3(Zy).

By (N1') and a similar statement as Proposition 4.1 (ii) for ¢ satis-
fying (HO), (H1) and (H4y), we have that deg., does not contain any
nontrivial terms as listed in (4.27) except possibly for (Dg), (Z§') and
(Dg). Therefore, the following orbit types will appear in the value
dego, — dego:

(D§?),(Dg*), (Dg*), (Z57), (Z5"), (28), (257%),
(D3), (D37), (D5?), (Dy®).

Conclusion. Under the assumptions (HO0), (H1), (H3p) and (H4y),
by Theorem 4.1, there exist at least 11 nonstationary solutions of (4.10).
To be more specific, there are: 1 nonstationary solution with least sym-
metry (D&*), 2 nonstationary solutions with least symmetries (Z&%), 2
nonstationary solutions with least symmetries (ZZF’Z), 3 nonstationary
solutions with least symmetries (D3?) and 3 nonstationary solutions

with least symmetries (D$?).

Dihedral symmetry Dg. Let ' = Dg and V = Vy®V; Vo DV3BVs.
Consider the potential ¢ : V — R satisfying (HO0)—(H2) with matrices
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A and B being of the type

oo ococoa o
O O O O a0 K
S o oo a0 o
SO0 Q OO0
SO0 Q0 oo
OO QOO oo
QU O QU OO O OO
lﬁ&.ooooo&.

Ld 0

o

It can easily be obtained that o(C) = {uo = ¢+ 2d,u1 = ¢ + v/2d,
po = ¢, 3 = ¢ —\/2d, us = ¢ — 2d}, where each p; has its eigenspace
E(p;) ~V;. Take ¢ = 4v/2, d = 4, for A and ¢ = 3, d = /2, for B, and
list eigenvalues of A and B in Table 5.2 Notice that the assumptions
(H3p) and (H4;) (for I, = 1) are satisfied in this case. The dominating
orbit types in W are (Dsg), (D), (Z%), (2), (Z%), (D).

TABLE 5. Eigenvalues of A and B, I' = Dsg.

c | d | po | B | p2 | B3| s
Al4v2| 4 | 187|113 ]5.7| 0 | -2.3

B| 3 |v2|58| 5 | 3]1]02

Using Table 5, we compute the numbers
m(A) =1, mi(4) =1, m3(4)=1,
Compute the value of degi‘ by

degly = H ﬁ(degyi)m"(“)*

pEos (A)i=0 i=

2 3
= HdegVi * (1 : <ZdegV0,l>
i=0 1=1
3 2
+1- <Zdegvu> +1- (Zdeng))
I=1 =1

k

Z ﬁL_I; (A) Z degvj,z
0 k=0 1

1=

S
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= H degyi * (degvo,l + degvl,l + degvz,l)

2

+ H degy, * (degvo’2 +degy, , + degvm)
i=0

H degvl degVo s T degvl 3)

= @1 [showdegree (81 (1,1,1,0,0,0,0,1,1,1,0,0,0,0)]

+ ©5 [showdegree[D8] (1,1,1,0,0,0,0,1,1,1,0,0,0,0)]

+ ©; [showdegree[D8] (1,1,1,0,0,0,0,1,1,0,0,0,0,0)]
= —(Ds) — (Df) — (DY) — (Z¢') — (2§)

+(D3) +2(Dg) + 2(D2) + (D3) +2(D5)

+2(D2) + (25) — 2(Df) - 3(D1) — 2(D5)

=3(D1) = (Zy) - 3(Z2) + 5(Z1) (D3)

— (D§?) - (D§?) — (2g"%) - (2g7)
+(D3?) +2(D3?) +2(D3) + (D5?)
+2(Dy%) +2(D3) + (21*) — 2(D}?)
- 3(D?) - 2(D}?) — 3(D3) - (Z, %)
—3(23) + 5(Z) — (D) — (2g"°) + (Dy”)
+(D3) + (D3?) + (D3) — (D}?)
—2(D}) — (D7?) —2(D}) — (25°) — (Z3) + 3(ZY).

Since Zy = KerA ~ V3, we have the set of all orbit types is
J(V3) = {(Dg x SY),(Dy x SY),(Dy x §Y),(Zy x SY)}. By (Y1) and
Proposition 4.1 (i), there exist the following nontrivial (H*#"')-terms in
dego:

(4.28)
(Ds), (D), (Z§), (Z¢), (D3), (DY), (Zg%), (Zg?), (D§), (Zg).

On the other hand,

degé:deg%*(ZZm Zdegvﬂ—l—Zm]

=0 k=1

loo—1

Z degy, l>
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(ee=h) H degy, * (1 (degy, , + degy, ,)
i=0,1,2,3,5
1-(degy, , +degy,,) + 1-degy,,)
= O, [showdegree[D8] (1,1,1,1,0,1,0,1,1,1,0,0,0,0)]
+ ©5 [showdegree[D8] (1,1,1,1,0,1,0,1,1,0,0,0,0,0)]
—(Ds) - (D) + (Df) — (2§) — (Z¢)
+ (D3) + (D) + 2(D2) — (D3) — (D) — 2(D2)
+(23) +(23) - (D3) + (D) — (Zg?)
+(D3?) — (D3) — (D3*) — (D3) + (Z).

By (N2') and a similar statement as Proposition 4.2 (ii) for ¢ satisfy-
ing (HO)—(H2) and (H4;), we have that deg,, does not contain any non-
trivial terms as listed in (4.29) except possibly for (Ds), (D%), (Z%),
(Z%2), (D?) and (Z5?). Moreover, since Z, ~ V31, we have that
J(Zs) = {(Ds x SY),(Z¥), (DI), (D9), (Z4)}. Therefore, the follow-
ing orbit types (H*') will appear in the value deg., — deg:

(4.29) (DR), (D), (Zg%), (2%).

Conclusion. Under the assumptions (H0)-(H2), (H3,) and (H4;)
(with o, = 1), by Theorem 4.1, there exist at least 7 nonstationary
solutions of (4.10). To be more specific, there are: 1 nonstationary
solution with least symmetry (D3), 2 nonstationary solutions with least
symmetries (D$?), 2 nonstationary solutions with least symmetries
(Z%?) and 2 nonstationary solutions with least symmetries (Zg"%).

TABLE 6. Eigenvalues of A and B, I' = D1yp.

c d Ko | K1 | P2 | M3 | M4 | Me
A|-2 3 4 129 (-01(-39|-69| -8

B 4 |2(cos(2r/5))~t | 17 |14.5| 8 | 0 |-6.5|-8.9

Dihedral symmetry Dyg. Let ' = Dijgand V=V, V; & V2 &
Vs @ V4 @ V. Consider the potential ¢ : V — R satisfying (H0)—(H2)
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with the matrices A and B being of the type

[en)
[en)
o
o

0O QUL OO O OO OO

O OO OO OO a0 &
(=Rl enlienien B e Ml e i SR S =
O QAU O U OO O o OO
QUL O UL OO OO o OO

QLOOODODODODOO AU D
S OO OoOoO A0 Qo
S oo A0 oo
S oo Qa0 QL0 oo
SO QA Q0o oo

It can easily be obtained that o(C) = {uo = ¢+2d, p; = c+2d cos(w/5),
p2 = ¢+ 2dcos(2m/5), us = ¢ + 2dcos(3n/5), ua = ¢ + 2dcos(4n/5),
ue = c¢ — 2d}, where each p; has its eigenspace E(u;) ~ V;. Take
c=-2and d =3 for A and ¢ =4 and d = 2(cos(27/5)) ! for B, and
list eigenvalues of A and B in Table 6. Notice that the assumptions
(H3;) and (H4) are satisfied in this case (for l[j = 2). The dominating

orbit types in W are (D1o), (D), (Zh), (Z%), (Z%), (Z), (D$) and
(D3).
Using Table 6, we compute the numbers

mo(lg) =1, mi(A)=1, my(B)=1, mi(B)=1, my(B)=1

Compute the value of degh

degy = H ﬁ(degvi)mi(“)*

nEoy (B)i=0 7j=0k=0 =1

2 4
Hdegvi * (1 . <Zdegvo,l>
i=0 =1
3
+1- <Zdegvu> +1- (Zdegm»
=1
2

= H degy, * (degvo’1 +degy, , + degvm)
i=0
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2
+ H degvi * (degvo,z + degvl,z + degyz_z)
=0

2

+ H degy, * (degvo,3 + degvl,s)
i=0

2
+ Hdegvi *degy, ,
=0
= O, [showdegree[D10] (1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0)]
+ O [showdegree[D10] (1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0)]
+ @3 [showdegree [D10] (1,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0)]
+ 04 [showdegree[D10] (1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0)]
= —(Dio) — (Z%) — (Z3) + (DY) + (DY) + (DF)
+3(Dy) — 2(D5) — 3(Dy) — 2(D3)
—3(D1) — (Z3) — 2(Z2) + 5(Z1) — (D3y) — (Z3h7)
—(Z5?) + (D3?) + (DF?) + (D5?)
+3(D3) - 2(D;?) - 3(D?) — 2(Di?) - 3(D?) — (2, %)
— 2(Z3) +5(23) — (D},) — (Z15°)
+(D$?) + (D§*) + 2(D3) — (D}*)
—2(D}) - (D}®) - 2D?) — (Z,°) — (23) + 3(2Z))
— (Diy) +2(D) — (DY) — (DY) — (z3) + (Z3).

Since Z,, = Ker B ~ V3, we have the set of all orbit types is
j(Vg) = {(DIO X Sl),(Dl X Sl),(Dl X Sl),(Zl X Sl)} By (Yll)
and a similar statement as Proposition 4.1 (i), there exist the following
nontrivial (H#'!)-terms in deg,:

(4.30)

(Do), (Zih), (Z55), (D3), (D), (Do), (235%), (245",
(D3%),(D3%), (DY), (235°), (DF°), (D).

On the other hand,

s oo k s lo—1
dogh = degx (305 deg, + Do) 3 deg,
I=1 j=0 I=1

j=0 k=1
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1
(10::2) H degVi * (1 : degV1,1 +1- degVO,l)

i=0
= O, [showdegree [D10] (1, 1,0,0,0,0,0,0,1,1,0,0,0,0,0,0)]
= —(D1o) — (Z}) — (D§) — (Dg) + (D}) +2(D1) + (D5)
+2(D1) 4+ (Zy) — 3(Zy).

Since Zy ~ Vg2, we have that J(Zo) = {(D1o x S'),(D%,)}. By
(N2), except for possibly (Dyo), (Z%h), (Dg) and (D?%;), every orbit
type listed in (4.30) will appear in the value of deg,, — degp, namely:

2 2 12 d,2
(ZiZ())v(DZ)a(Zib )7(Z§% )7(D2 )7
2,2 )3 d,3
(D57%), (Do), (Z15°), (D), (Diy)-

Conclusion. Under assumptions (H0)—-(H2), (H3;) (with lp = 2) and
(H4g), by Theorem 4.1, there exist altogether at least 15 nonstationary
solutions of (4.10). To be more specific, there are: 2 nonstationary
solutions with least symmetries (Zt120’2), 5 nonstationary solutions with
least symmetries (D§’2), 2 nonstationary solutions with least symme-

tries (Z!5%), 5 nonstationary solutions with least symmetries (D)
and 1 nonstationary solution with least symmetry (Df).

TABLE 7. Eigenvalues of A and B, I' = D1».

c | d | po | B1 | p2 | p3| Ba | Bs | BT
A|-1]25 4 3.3 1.5 |-1|-35|-53| -6
B|9 (37164 (154|127 9 | 53 | 2.6 | 1.6

Dihedral symmetry Dy5. Let I' = Disand V = Vg ®V, Vo D V3B
Vi ® Vs @ Vy;. Consider the potential ¢ : V — R satisfying (H0)—(H2)
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with the matrices A and B being of the type

1

ISH

o
1

S oo O A OO0 0 OO
QUL O QUL OO OO OO O OO
0O UL OO O OO OO OO

(vl e R en e e M e en e B S NS R S M)
(vl e R en e e M e e SO S i e o)
S OO OO OoOAUn /O OO
S OO OO QAN QOO0 OO0
O OO QL OODODODODO O OO
OO R ODODODODOD OO O OO

QLO OO OO OODOO A O
OO oD OO oo OoOo AN
o oCcaAa O A 000 OO

It can easily be obtained that o(C) = {uo = ¢+ 2d,u; = ¢ + V/3d,
po =c+d, pus =c g =c—d,pus = c — \/3d, py = ¢ — 2d}, where each
pi has its eigenspace E(y;) ~ V;. Take ¢ = —2 and d = 2/3 for A
and ¢ = 3, d = /3 for B, and list eigenvalues of A and B in Table 7.
Notice that the assumptions (H3;) (for lo = 2) and (H4;) (for . = 3)
are satisfied in this case. The dominating orbit types in W are (D12),

(D1,), (Z1), (Z13), (Z13), (Z1), (Z13), (DE), (D7), (D).

Using Table 7, we compute the numbers

mo(l§) =1, mi(A) =1, mi(A) =1, my(B)=1, mi(B)=1,
m3(B) =1, ms(i3,) =1, mi(B)=1, my(B)=1, iz(B)=
Compute the value of degk

s o k s loo—1
deg%; = degOA * (Z Z ﬁlf (4) Z degy,, + Z m; (lgo) Z deng,l)
=1 j=0 =1

=0 k=1

4
loo=3 H degy, * <1. (Zdegvo,l>

i€{0,... 5,7} =1

3 2
+1- <Zdegv1,z> +1- ( degvz,z) +1- (Zdegvs,z>
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2
+1- <Z degv4,l> +1-degy,, +1- degy7_1>

=1

= H degy, * (degvo)1 + degy, , + degy, ,
ic{0,... 5,7}

+ degv3,1 + degV4,1 + deng,l + degv7,1)

+ H degVi * (degVO,z + degV1,2
i€{0,... 5,7}

+ degV2,2 + degv:a,z + degV4,2)

+ H degy, * (degvo,3 + degvl,3 + degym)
1€{0,...,5,7}

+ H degy, x degy, ,
1€{0,...,5,7}

= O, [showdegree [D12] (1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,0,1,0)]
+ O, [showdegree [D12] (1,1,1,1,1,1,0,1,0,1,1,1,1,1,0,0,0,0)]
+ ©3 [showdegree[D12] (1,1,1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0)]
+ ©4 [showdegree[D12] (1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0)]
= —(D13) — (Df,) — (Z1y) — (Z13) — (Z13) — (Z13) — (Z%3)
— (D) + (DY) + 2(Dg) + (Z2) + 2(ZE) + 2(Z%2) + 3(Dy)
+3(DF) + (D5) + (D9) + 2(Ds) — 3(Ds) — (D3)
+2(Dj) — 2(24) — 2(Z4) — 2(DF) — 2(Ds) + 2(D§) — 2(Ds)
—3(D3) + 4(D1) — 4(D1) + 4(D5) — 4(DF) + 4(Zy) — (D3,)
- (Z%) - (23%) - (23%) - (255%) - (Dg?) + (Dg?)
+(D2) + (D?) +3(D3) + (DF?) + (D;?) + (Z4?) + (28 2)
+2(Z%) +2(D2) - 2(D3) + (D5?) — (D5?) - (24?) - 2(22)
— (D$?) - 3(D3) + (D§2) — (D3) — 2AD3?) + 3(D?) — 3(D3)
+3(D7?) — 3(DF?) + 3(23) — (D) + (DF) — (Zi57)
—(23%°) + (DE?) + (DF?) + 2(D3) + (D3) — (D3) + (24°)
+(2¢°) — (D3°) — (D§®) + (D§®) — 2(D3) — (D3) — (25°)
Z3) +2(D;?) — 2(D7?) + 2(D3) — 2(DY) + 2(Z3) — (D)

—_ o~
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+(D§) +2(D}) + (D3) — (D3) — (D3) — (D3) — (23) + (Z3).

Since Zy, = V33 ~ Us, we have the set of all orbit types is J(Us) =
{(Z2%3), (D), (DE), (Z&)}. By (Y2') and Proposition 4.2 (i), there exist
the following nontrivial terms in degeo:

(D12), fDi‘z), (Z), (), (%), (2%), (Z33), (D§), (DJ),
(4.31) (Dfif), (D1a), (Z1y°), (215°), (2157), (Ztl“z’f)v (Dg),
(Dg’Q)a (DZ’Q)v (D%Q)v (Zt11273)7 (Zt12273)7 (Dflhg)v (DZILQ)

On the other hand,

s oo k

S lg*l
degly = deg® » (Z TS degy,, + 3 (1) 3 degvj,l)
1 j=0 1=1

i=0k =1

2
ho=2 H degy, * (1-degy,, +1-degy, , +1-degy, ,)
i=0
— O, [showdegree [D12] (1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0)]

= —(D12) — (Z%) — (Z13) — (D) — (DY) + (D) + (D3) + (D3)
+ (D) + 2(D2) + 2(Ds) + (Z$) — 2(D7) — 2(D?) — 3(Dy)
=3(D1) = (Z3) — 3(Z2) + 5(Zy).
Since Zy = Vp2, we have the set of all orbit types is J(Zp) =
{(D12 x S%),(D12)}. By (N2) and Proposition 4.2 (ii), except for

possibly (D12), (Z%), (Z%3) and (fo), every orbit type listed in (4.31)
will appear in deg., — degp, namely,

(DL,), (Zty), (28), (Z%,), (D), (D7), (D%,), (Z457),
(Z3%%), (Z357), (Z45%), (D&?), (DF?), (D),
(D3y), (Z35%), (Z1%%), (D), (D).

Conclusion. Under assumptions (H0)-(H2), (H3;) (with lp = 2)
and (H4;) (with loc = 3), by Theorem 4.1, there exist altogether at
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least 20 nonstationary solutions of (4.10). To be more specific, there
are: 1 nonstationary solution with least symmetry (D%,), 1 nonstation-
ary solution with least symmetry (D%,), 2 nonstationary solutions with
least symmetries (Zt112’3), 2 nonstationary solutions with least symme-
tries (Z%3°), 2 nonstationary solutions with least symmetries (Z%3?%), 2
nonstationary solutions with least symmetries (Zi‘f)’Z), 2 nonstationary
solutions with least symmetries (Z%3), 2 nonstationary solutions with
least symmetries (52’2), 3 nonstationary solutions with least symme-

tries (D) and 3 nonstationary solutions with least symmetries (D?'?).
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of this paper. Also, the authors wish to express their gratitude to
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ENDNOTES

1. The equivariant degree Maple®© Library package is available at
http://krawcewicz.net/degree or http://www.math.ualberta.ca/
~wkrawcew/degree.

2. For the conventions used in this article, especially for complete
lists of real (or complex) irreducible I'-representations (for example,
with I' being the dihedral groups Dy as used for the computational
examples), we refer to [2].

3. The eigenvalues are evaluated only up to 10~!, which is sufficient
for determining the numbers fﬁf for the computations of degree.
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