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THE REFLEXIVE AND ANTI-REFLEXIVE SOLUTIONS
OF A LINEAR MATRIX EQUATION
AND SYSTEMS OF MATRIX EQUATIONS

MEHDI DEHGHAN AND MASOUD HAJARIAN

ABSTRACT. An n X n complex matrix P is said to be a
generalized reflection matrix if P* = P and P? = I (where
P* is the conjugate transpose of P). An m X m complex
matrix A is said to be a reflexive (anti-reflexive) matrix with
respect to the generalized reflection matrix P if A = PAP
(A = —PAP). The reflexive and anti-reflexive matrices have
wide applications in information theory, linear estimate theory
and numerical analysis. In this paper, we will consider the
matrix equations

@ A1XB, = Dy,
(1) A1X =C1, XBy = Co,

and
(III) A1 X =C1, XBy = (2, A3X =C(C3, XBsy = C4,

over reflexive and anti-reflexive matrices. We first introduce
several decompositions of Aj, B1,C1, B2,C2, As,C3, Bs and
Cl4, then by applying these decompositions, the necessary and
sufficient conditions for the solvability of matrix equations
(I), (II) and (III) over reflexive or anti-reflexive matrices are
proposed. Also some general expressions of the solutions for
solvable cases are obtained.

1. Introduction. Throughout the paper, the notation C™*™
represents the vector space of all m X m matrices over the complex
field. The conjugate transpose of a matrix A € C™*" is denoted
as A*. The unit matrix is denoted by I. We define a conditional
inverse of A € C™*"  denoted by A~, to be any matrix B € C"*™
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826 MEHDI DEHGHAN AND MASOUD HAJARIAN

satisfying ABA = A. We denote a reflexive inverse of a matrix A by
AT which satisfies simultaneously AATA = A and ATAAT = A*. For
two matrices A = (aij)an and B, their Kronecker product is defined
as:

auB algB e alnB
a21B aggB e aan
amlB amQB e amnB

We use vec (A) to represent the mn x 1 vector formed by the vertical
concatenation of the respective columns of matrix A. That is, if
A = (a1 a2 - an), where a;, i = 1,2,...,n, are column vectors with
dimension m, then
vec (4) = (a ol .- oT)T.

Given the mn x 1 vector w, we use Invec,, ,(w) to denote the m x n
matrix W € C™*™ such that vec (W) = w. In addition, given a matrix
A, define Ly =1 —ATAand Ry = I — AAT where AT is any arbitrary
but fixed reflexive inverse of the matrix A.

The reflexive and anti-reflexive matrices with respect to a generalized
reflection matrix P have applications in system and control theory, in
engineering, in scientific computations and various other fields [1, 2,
3, 44] which can be defined as follows:

Definition 1.1. A matrix P € C™*™ is said to be a generalized
reflection matrix if P satisfies that P* = P, P2 = 1. Let P € C"*" be
a given generalized reflection matrix. A matrix A € C"*" is said to be
an n X n reflexive (anti-reflexive) matrix with respect to P if A satisfies
A = PAP (A = —PAP). We denote the set of all n x n reflexive
(anti-reflexive) matrices by C**"(P) (C**™(P)).

We know that solving linear matrix equations is a topic of very active
research in computational mathematics and has been widely applied in
various areas, such as principal component analysis, biology, electricity,
solid mechanics, automatics control theory, vibration theory, and so on.
A large number of papers have presented several methods for solving
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matrix equations [4, 8, 9, 10, 19, 30, 32, 33, 42, 43]. Dai [7] and
Chu [5] studied the linear matrix equation

AXB = C,

with a symmetric condition on the solution. In [25] Li and Wu
gave symmetric and skew-antisymmetric solutions to certain matrix
equations

A1X:Ch XBgZC?,,

over the real quaternion algebra H. Mitra [26, 27| provided conditions
for the existence of a solution and a representation of a general com-
mon solution to the pair of individually consistent simultaneous linear
matrix equations A1 X By = C1, As X By = Cy where A;, B; and C; are
known matrices defined over the complex field. In [24], Jiang and Wei
studied the matrix equations

X-AXB=C, X-AXB=¢C,

by the method of characteristic polynomial, and derived explicit solu-
tions. In [16], Deng and Hu established necessary and sufficient con-
ditions for the existence of and expressions for the general solutions of
the linear matrix equation

AXAT + BYBT =C,

with the unknown X and Y. In [45] by applying the canonical
correlation decomposition (CCD) of matrix pairs, we obtain expressions
of the least-squares solutions of the matrix equation

AXB+CYD=E,

and sufficient and necessary conditions for the existence and uniqueness
of the solutions. Conditions for the existence of a common solution to
the pair of linear matrix equations A1 XB; = C;, A3 X By = C5 have
also been studied by Shinozki and Sibuya [34] and von der Woude
[35]. Chu [5] derived a numerical algorithm for the common solution
to equations A1 X By = Cy, A2 X By = (. Also, von Rosen [36] studied
common solutions to the matrix equations A; X By = C1, Ao X By = (s
for the special case of Cy = Cy =0 [29].
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Ding and Chen presented the hierarchical gradient iterative (HGI)
algorithms for general matrix equations [17, 22] and hierarchical least-
squares-iterative (HLSI) algorithms for generalized coupled Sylvester
matrix equation and general coupled matrix equations [18, 19]. The
HGI algorithms [17, 22] and HLSI algorithms [19, 20, 22] for solving
general (coupled) matrix equations are innovational and computation-
ally efficient numerical ones and were proposed based on the hierarchi-
cal identification principle [18, 19] which regards the unknown matrix
as the system parameter matrix to be identified. Recently Dehghan
and Hajarian [12] proposed an efficient iterative method for solving
the second-order Sylvester matrix equation

EVF? - AVF — CV = BW.

In [8, 11, 13-15], some iterative algorithms were proposed to solve
the generalized coupled Sylvester matrix equations and the Sylvester
matrix equation over reflexive and anti-reflexive matrices. In [39, 40,
41], the authors investigated symmetric, persymmetric and centrosym-
metric solutions to several systems of matrix equations.

In this article, we give the reflexive and anti-reflexive solutions of
three matrix equations

(1.1) A1 X By = Dy,
(1.2) A X =Ch, XBy = (s,
and

(1.3) A X=C,, XBy=Cy,  A3X=0Cs,  XBy=Cy,

where A; € C™*" B; € CnXl, D, € Cle, Cy € C™*" By € C™*5)
Co € C™"*5, A3 € Ckxn, Cs € Ckxn, B, € C™*t and Cy € Cnxt,

This paper is organized as follows. In Section 2, we first review
some properties of the generalized reflection matrix P and subsets
Crxm(P) and CI*™(P) of C™*™; then we introduce decompositions
of Ay, By, D,C4, Bg,Cs, A3, C3, By and Cy. By using these decompo-
sitions, the necessary and sufficient conditions for the existence and the
expressions of the general solutions to the matrix equations (1.1)—(1.3)
are proposed.
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2. Main results. In this section we first review some properties of
the generalized reflection matrix P and subsets C"*"(P) and C"*"(P)
of C"*", Then we give necessary and sufficient conditions for the
existence and the expression for the reflexive and anti-reflexive solutions
of (1.1)=(1.3). Now we state the following preliminary results and
lemmas. Their proofs can be found in [6, 31].

Let P € C™*™ be a generalized reflection matrix. We can express the
matrix P by the following form [6]:

I, 0 "
(2.1) P—U<0 —Inr>U'
where U = (Uy, Us) is a unitary matrix and U; € C**", U, € C**(n=7),

Lemma 2.1. The matric A € C!*"(P) if and only if A can be
expressed as

_ A 0 «
o2 acu(d 0o

where Ay € C™*", Ay € Cv=)X(=7) qnd U is as in (2.1).

Lemma 2.2. The matric A € C}*"(P) if and only if A can be
expressed as

_ O A2 *
a9 asu(D e

where Ay € CT*("=7) Ay € C"=")XT qnd U is as in (2.1).

Now, for the matrices 4, € C™*", B, € C"*, 0, € C™*",
B, € C"*5, Oy € C"*5, A3 € Ck*" (O3 € CF* B, € C™*t and
Cy € C™*t, we introduce the following decompositions

(24) AlU = (All,Alg) where A11 e Ccmxr
and A12 S me(n—r)’
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(2.5) U*B; = (BL, BL)T where By; € C™*!
and B, € C(nir)Xl,

(2.6) CiU = (011,012) where Cq1 € cmxr
and C1q € me(n—r)’

(2.7) U*B,y = (BY,, BL)T where By, € C™*°
and By € C(nfr)xs’

(2.8) U*Cz = (CQTDC;Q)T where Cy; € Ccrxs
and Coy € C(n_T)XS,

(29) AU = (A31, A32) where A3z € Cer
and A32 S Ckx(nir),

(2.10) C3U = (031,032) where C3; € Cer
and C3y € Ckx(n—r),

(2.11) U*B, = (BY,, BL,)T where By, € C™*!
and Bys € C(nir)Xt,

(2.12) U*C4 = (CIDCIZ)T where Cy; € Ccrxt
and Cyo € C(n_T)Xt.
In the rest of this paper, we will suppose without loss of generality,

that the matrices Ay, B1,C1, By, Cs, A3, C3, By and C4 have the above
decompositions.

e Solution to the matrix equation (1.1). First we consider the
matrix equation A; X By = D;.
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Theorem 2.1. Let A, € C™*", B; € C**!, D; ¢ C™*, For
the linear matriz equation A1 X By = D1, the following statements are
equivalent:

(1): The linear matriz equation A1 XBy = D; has a solution X €
Cr=n(p).

(2): RMRA11D1 - 0, RA11D1LB12 == 0, DlLBnLN == O, RA12D1L311
=0.

(3): MM+t R4, D1B,Bia = Ra,, D1, A12AT,Di1 L, NtN=D Lp,,.

(4): RyRa,,D1 =0, Ra,,D1Lp,, =0, Ra,,D1Lp,, =0, D1Lp,, Lo
=0.

(5): HHYR,,,D1B11 B, = Ra,,D1, A11A{,D1Lp,,QtQ = D;Lp,
where M = Ra,,A12, N = Bi2Lp,,, S = AisLy, T = Rp,N,
F=NLy,G=RgA12, H=Ry,,A11, Q = B11Lp,,.

In that case, the reflexive solution of the matriz equation A1 X By =
Dy can be expressed as the following

(2.13) X=U (ng ;4) U* € (P,

where

(2.14) X, = Af,(Dy — A19X4B12)B], + La,,J + ZRg,,,
(2.15)

Xy =M"Ra,,D1Bl5 + Lyy(V—-STSVNN™') Ly STALGWTN™T
+ (W - GTGWTT")Rp,,,

where J,V,W, Z are arbitrary matrices with appropriate sizes, or

X, = H'Ra,,D:1Byf;
+ Ly (Vi — 575:v1QQ™)
— LS AL, WiThQ™
+ (W) — GTGyW\ T\ T ) Rp,,,

(2.16)

(2.17) X4 = A}, (D) — A12 X1 B12)Bfy + La,,J1 + Z1Rp,,,
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where S; = A1 Ly, Ty = Rp,,Q, G1 = Rs, A1 and J1, Vi, W1, Zy
are arbitrary matrices with appropriate sizes.

Proof. We first give a general matrix equation equivalent to the
matrix equation A;XB; = D;. By substituting (2.4) and (2.5) in
the matrix equation A; X B; = D;, we can obtain

A1 XB, = D,

«r (X1 0 wrr ( Bi1) _
(218) R (A11 A12)U U< 0 X4> U (Bl2> =D

= AnXiBi1 + A9 X4 Bi2 = Dy

Hence the matrix equation (2.18) is equivalent to the matrix equation
(1.1). From the results in [37], we have

(1): The linear matrix equation Ay X;By1 + A12X4B12 = D; has
solutions X; € C™*" and X, € C(n—r)x(n=r)

(2): RyRa,, D1 =0,Rs,,D1Lp,, =0,D1Lg,,Ly =0, Ra,,D1Lp,,
=0.

(3): MM*Ry, D1Bj,Bys = Ra,, D1, AjpAl,D1 L, N*N=D;Lg,,.

(4): RguRa,,D1 =0, Ra,,D1Lp,, =0, Ra,,D1Lp,, =0, D.Lp,,Lq
=0.

(5) HH+RA12DlBllBl+1 = RA12D1, A11Af1D1L312Q+Q = D1L312'
In that case, the solution of the matrix equation Ay; X1 B11+A12X4B1o
= D4 can be expressed by (2.14)—(2.15) or (2.16)—(2.17); therefore, the

reflexive solution of the matrix equation A; X B; = D; can be expressed
by

X1 0

(2.19) X=U < 0 X,

) U* € Crn(P),

where X; and X4 are obtained from (2.14)—(2.15) or (2.16)—(2.17).
The proof is completed. O

Similarly to the proof of Theorem (2.1), we can prove the following
theorem.
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Theorem 2.2. Let Ay € C™*", B, € C**!, D; ¢ C™*, For
the linear matriz equation A1 X By = D1, the following statements are
equivalent:

(1): The linear matriz equation A1 XBy = D; has a solution X €
Co " (P).

(2): RMRA11D1 - 0, RA11D1L311 == 0, D1L312LN == O, RA12D1L312
=0.

(3): MMt R4, D1By Bi1 = Ra,, D1, A12AT,D1 L, ,NtN=D Lp,,.

(4): RHRA12D1 =0, RA12D1LB12 =0, RA11D1LB11 =0, DILBHLQ
=0.

(5): HHTR4,,D1B12B, = Ra,, D1, A11Af\D1Lp,,QtQ = D, Lp,,.
where M = Ra,,A12, N = BuLp,, S = AisLy, T = Rp,, N,
F=NLy, G=RgA12, H=Ry,,A11, Q = B12Lp,,.

In that case, the anti-reflexive solution of the matriz equation A1 X B,
= D; can be expressed as the following

(2.20) X-U ()?3 ?) U* € CM(P),
where
(2.21) X, = A1+1(D1 — A12X4B11)B1+2 + Lya,,J+ZRp,,,

X3 =M"Ra,,D1B}; + Lyy(V — STSVNNT)

2.22
( ) — Ly STARLGWTNY + (W — GTGWTT')Rp,,,
where J,V,W, Z are arbitrary matrices with appropriate sizes, or

Xy = H"Ra,,D1B;, + Ly(Vi — S{51v1QQ™)
(2.23) — LyS; AL, WiThQ*
+ (W1 — G GyW T T} ) Rp,,,

(2.24) X3 = Al,(Dy — A1aX1B11)B], + La,,J1 + Z1Rp,,,

where S; = Ay Ly, Ty = Rp,,Q, G1 = Rs, A1y and Jy, Vi, W1, Z;
are arbitrary matrices with appropriate sizes.
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e Solution to matrix equations (1.2). Now we consider the
matrix equations A3 X = C;, XBy = Cy over reflexive and anti-
reflexive matrices. In the following theorems, we give several necessary
and sufficient conditions for the solvability of these matrix equations
over reflexive or anti-reflexive matrices, and several general expressions
of the solutions of the matrix equations.

Theorem 2.3. Suppose that A; € C™*" (Cy € C™*" By € C"*3,
Cy € C™**, The matriz equations A1 X = Ci, XBy = Cs have a
solution X € CI'*"(P), if and only if

(2.25) A1 AT O = Cuy, C21B3; Bay = Ca,
(2.26) A12A7,C1p = Cha, Ca2 By Bay = Caa,
(2.27) W1 (Ca1 B3, — Af;C11)Ba1 = 0,
(2.28) Wa(Ca2Bgy — AfyC12)Bag = 0,

where S1 = Ly,,, S =La,,, W1 = Rs, and W2 = Rg,.
In that case, the reflexive solution of the matrix equations A1 X = Cy,

X By = (5 can be expressed by the following form:

X, 0

(2.29) X=U < 0 X,

) ccpie

where

X1 = Af,Cn + Lay, Sy L, (Ca1 By, — A{1C11) B By,

(2.30)
+ La,, (Y — 8§ 81Y By BS,)
and
(2.31) Xy = AfL,C1o + L4, Sy Lw, (Ca2 By, — Af,C12) Baa B,

+ La,,(Z — S5 827 ByyBS,)

andY, Z are any matrices with appropriate dimensions.
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Proof. We first prove the necessity. Assume that the matrix equations
A1 X = Cp, XBy = (3 have a solution X € CI*"(P). From
Lemma 2.1, X € C**"(P) can be expressed as

_ X1 0 .
(2.32) X_U<0 X4>U,

where X; € C™*", X, € C(»=7)x(n=7) " By applying (2.4)—(2.8), we
can write
(2.33)
" X, 0
{AlX =Cy, (A 4i2)U U( 0 Xy
<

X By = (s, X 0 > (B21> <021>
U UU U :
( 0 X4 By Ca
{A11X1 = Chi1, X1B21 = Cyy,
A1 Xy = Cha, Xy4Bgy = Cys.

) U* = (Cu Coa)U™,

Therefore, the matrix equations (2.33) are equivalent to the system
of matrix equations (1.2). From [37], we have A;;Af,C1; = Ciy,
C21By, Ba1 = Cay, A12AT,C13 = Cr2, C23 B, Bay = Cog, W1 (Ca1 By —
AECH)Bgl = 0, WQ(CQQBS_Q — ATQCIQ)BQQ = 0, and

X1 = A},C1 + La,, Sy Lw, (C21 By; — A},C11) B By,

(2.34)
+ L, (Y- SfSlYBng;l),
and
(2.35) Xy = A,Cr2 + Ly, Sy Lw, (C22Bg; — A{3C12) B2 By

+ La,,(Z — S S2ZByyBSy),

where Y and Z are any matrices with appropriate dimensions. Now
we substitute (2.34) and (2.35) in (2.32). The proof of the necessity is
completed.

Now we prove the sufficiency. Suppose that (2.25)—(2.28) hold. It is
well-known [37] that there exist X; € C™*" and X, € C(n~7)x(n=7)
such that

A11X1 =Cq1, X1Boy =C:
(2.36) { 1n1X1 11, X1B21 21,

A1 Xy = Chra, Xy4Bay = Cys.
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From previous results, (2.36) is equivalent to

X, 0\,.
A1U<O X4>U—Cl,

X;: O —
U<0 X4>UB2_C'2.
Hence,

_ Xl 0 * nxn
X_U< 0 X4>U e C*"(P)
(X; € C™", and Xy € C(n~7)x(n=1)) is the solution of the matrix
equations (1.2). The proof of the sufficiency is completed. i

Similarly to the proof of Theorem 2.3, we can prove the following
theorem.

Theorem 2.4. Suppose that A; € C™*" (Cy; € C™*" By € C"*3,
Cy € C™**, The matriz equations A1 X = Cy, XBy = Cs have a
solution X € CI*"(P), if and only if

(2.37) A AT Crz = Cho, C21By;Baz = Coy,
(2.38) A12Af,C11 = C11, CoeByi Bay = Caa,
(2.39) W1 (Ca1 B, — AT, C12)Baa = 0,
(2.40) Wo(CaoBi;, — Af,C11)Bay = 0,

where S1 = Ly,,, S2 = La,,, Wi = Rs, and Wy = Rg,.

In that case, the anti-reflexive solution of the matriz equations A1 X =
C1, XBy = C5 can be expressed by the following form:

(2.41) X=U <)? )62> U* € Cm"(P),
3

where

Xy = AfCi2 + La,, Sy Lw, (Co1 By — Af,C12) Ba2 B3,

(2.42)
+ La,, (Y — S 81Y By BSy),
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and

(2.43) X3 = A5,C11 + La,, S Lw,(CeBy; — Af,C11) B2y B,
' + La,,(Z — S5 827Z By BY,),

andY, Z are any matrices with appropriate dimensions.

In the following theorems, we introduce some other conditions for the
solvability of matrix equations A; X = C7, X By = (5 over reflexive and
anti-reflexive matrices and represent some other forms of the general
expression of the solution. We first define some matrices which are used
in next theorems. The following definitions can be found in [29].

Suppose that K; € C**4, K, € CP*4, H, € C™% H, € C"*!
Ry € C"** and Ry € CP*'. Let now (K) be the number of rows
in the matrix K and let ncol (K) be the number of columns in the
matrix K. For i,j = 1,2, i # j, define the following matrices. Let

K; = (ﬁ) if nrow (K ;) > nrow (K;) where, nrow (K;) = max(n,p),
and let K; = K;, otherwise. Let H; = (H; 0) if nrow (H;) > ncol (H;),
where nrow (H;) = max(s,t), and let H; = H;, otherwise. Also, let
R; = (}3" ), where nrow (R;) = max(n, p) if nrow (R;) > ncol (R;), and

nrow (R;) < nrow (R;). Let R; = (R; 0), where nrow (R;) = max(s,t)
if nrow (R;) > nrow(R;) and nrow (R;) < ncol(R;). Let R; =
R; 0
00 ~
nrow (R;) < nrow (R;) and ncol (R;) < ncol (R;), and let R; = R; if

ncol (R;) > ncol (R;), and nrow (R;) > nrow (R;), where nrow (R;) =

(nrow ), where nrow (R;) = max(n, p) and ncol (R;)=max(s, t) if

max(n,p) and ncol (R;) = max(s,t).

In the following theorem, we use the matrices introduced above.
We now present new necessary and sufficient conditions for the linear
matrix equations (1.2) to have a common solution. We also give a
new representation for the solution to the matrix equations, provided
a solution exists.

Theorem 2.5. Suppose that A; € C™*" Cy € C™*" By € C"*3,
Cy € C" %, Also we assume di = max(m,r), e = max(s,r),
dy = max(m,n —r) and e = max(s,n —r). The matriz equations
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A1 X = Cq, XBy = C5 have a solution X € C'*"(P), if and only if
‘anﬁénfifz 611, legfgélzfifz 512,
Invecy, e, (My M vec Ny) = Ny, Invecy, e, (MyM; vec Ny) = Ny,

where M1 = BQI®I+E1 ®D1, M2 = B22®I+E2 ®D2, D1 =
—IAHAH, Dy = —IA12A12, B, = I B21 E2 = I~ By, N

C IAHCHI Bgl and N2 022 - IA12012_[ ng

A representation of the reflexive solution to these matriz equations is

_ Xl 0 * nxn
(2.44) X = U( 0 X4> U* e C*"(P),
where
(2.45)

X, = A,Cnil + Invecm{vaecﬁl + (I - ]\71_]\71)vec Wi},
— lﬁﬁn{lnvecm(ﬂfvech +(I- Mfﬁl)vec Vl)}INT*,
and

(2.46)
Xy = AL,C12I ™ + Invecy_y pn—r{ My vec No + (I — My My)vec Va}

— Zﬁﬁu{Invecn,T’n,r(ﬂ{ vec Ny + (I — M{MQV% VZ)}TIN_,

and V3 € C™*7, Vo € C*"*"7" gre arbitrary matrices.

Proof. The necessity. Let the matrix equations A; X = Cy, XBy =
C5 has a solution X € C"*"(P) which can be expressed by

_ Xl 0 *
(2.47) X—U<0 X4>U,

where X; € C™*", X, € C(»=")x("=7)  We know the matrix equa-
tions (1.2) are equivalent to the matrix equations (2.33). It fol-
lows from [29] that A11A11011] I = Cll; A12A12512[ I = 012,
Invecy, el(MlM vech) Nl, and Invecy,, 82(MgM vecNg) = N2
and

(2.48)

X, = Zfléuf_ + Invecr,T{vaeC]\Nfl + (I - Mfﬂl)vec Vi}
- Zﬁgn{lnvecr,r(.]\/zfvech + (I - Mfﬂl)vec%)}ff_,
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and
(2.49)
X4 = ALCrol ™ + Invecy,_yn—r{ My vec Ny + (I — My My)vec Va}

— ﬁﬁglg{lnvecn,nn,T(M{vec Ny+ (I - M{Mg)vec Vz)}INT_,

where Vi3 € C™*", Vo, € C* "*™" are arbitrary matrices. By sub-
stituting (2.48) and (2.49) in (2.47), we can finish easily the proof of
necessity.

The sufficiency. Assume that gngﬁénf_f: 511, 12[12;[1—2512]'—]”:
512, Invecg, e, (Mlﬂfvec Nl) = Nl, and Invecg, e, (Mzﬁgvec ng) =
N,. From results in [29], we obtain that there exist X; € C™*",
X, € Cn=m)x(n=7) gych that

A Xy = O, XiBay = Can,
(250) { 11A1 11 1021 21

Ao Xy = Cha, XyBoy = Coa.

The above equation is equivalent to

X; 0 \,.
A1U<0 X4>U_01,

Xl 0 * _
U(O X4)UBQ—C2.

Hence

_ Xl 0 * nxn
X_U< 0 X4>U e CH*"(P)

(X; € C™*", and X, € C(n=7)x(n=r))

is the solution of the matrix equations (1.2). The proof of the sufficiency
is completed. ]

Similarly, from Lemma 2.1 and Equation (2.33), we deduce the
following results:

Theorem 2.6. Suppose that A; € C™*™, Cy € C™*", By € C"*5,
Cy € C"*%. Also we assume d; = max(m,r), e; = max(s,n — r),
dy = max(m,n — r) and es = max(s,r). The matriz equations
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A1 X = C1, XBy = C5 have the solution X € C*™(P), if and only if
Znﬁﬂélzfifz 512, Elzgﬁénfifz 611,
Invecdl,el(ﬁlﬁfvecﬁl) =Ny, Invecdz,ez(ﬁgﬁgvec]%) =N,

where M1 = B22 ®I+E* ® D1, M, = B21 ®~I—|— E* ®D2, D1 =
—IAHAH, Dy = —IA12A12, E1 = II- B22, E2 = II" By, Ny =
Coy — TAT,C121~ By and Ny = Cyy — TA7,C11 1~ By

A representation of the anti-reflexive solution to these matriz equa-
tions is

(2.51) X=U (;g ?) U* € Cr"(p),
3

where

(2.52)

Xy = A7, Crod + Invecnn_r{]\?fvec]ﬂ\fl + (- J\/Zf]\’zl)vec Vi}
— Zﬁﬁn{Invecr,n,T(vaec N+ (I - Mfﬂl)vec Vl)}ff*,

and

(2.53)
X3 = A,CiI™ + Invec,_, . { My vec Ny + (I — My Ms)vec Va}

— Zf2ﬁ12{1nvecn,T7T(M{vec Ny+ (I - M{MQV% VZ)}TT_,

and Vi € C™*"=" Vo € C*"*" are arbitrary matrices.

e Reflexive solution to matrix equations (1.3). Now we
consider the linear matrix equations (1.3). We give necessary and
sufficient conditions for the solvability of these matrix equations and
the expressions for the reflexive and anti-reflexive solutions with respect
to a generalized reflection matrix P solutions of (1.3).

Theorem 2.7. Assume that Ay € C™*" (Cy € C™*" By € C"*3,
Cs € Cnxs, As € Can’ Cs € Ckxn’ B, € CnXt, Cy € CnXt, and
Ky = A31Ly,,, N1 = Rp,, Ba1, Ky = A33L4,,, N2 = Rp,,Bao, E1 =
C31—A31Af,C11—K1C21 By, E = Ca1—Af,C11Ba1—L a,, Co1 By, Ba1 —
LA11K1+E1N1; and Fy = Csp — A32A1+2012 - K2022B;2; F = Cy —



LINEAR MATRIX EQUATION SOLUTIONS 841

AEClgB“ — LA12C22BS'ZB42 — LA12K2+F1N2. Then the matriz equa-
tions A1 X = Cy, XBy = Cs, A3 X = C3, XBy = C4 have a solution
X € C'*"(P), if and only if

(2.54)

KK E1Rp,, = E1, ELy, =0, Rp, g, B =0, A11C2 = C11Boy,

LKl

(2.55)
KyKf FiRp,, = Fi, FLy, =0, Rp, 1., F =0, A15Ca = C13Bas,

A A C1y = Ch1, As1AF,C31 = Csy,

2.56
(2.56) C21B3,Ba1 = Co1, Ca1Bf{Ba1 = Cu,
(2.57) A12Af,Cr2 = Cra2, A32A$,C3 = Csa,

C22B4y Bay = Cos, CaoBfyBas = Cuo.

In that case, the reflexive solution of the matriz equations A1 X = Cy,
XBy =05, A3X = C5, XBy = Cy can be expressed as follows:

(2.58) X=U <)gl ;4) U* € C*"(P),

where

(2.59) X0 = AROn + L, OBy + L K1 By R,
+ ENy Rp,, + La,, Lk, Z1Rn, Rp,,,

and

(2.60) Xy = A,Cr2 + Ly, CoaByfy + Ly, Ky FiRp,,

+ FN2+R322 + LAlzLKz ZQRNzRBzzv

where Z1 and Zo are arbitrary matrices with compatible dimension.

Proof. We show that matrix X in (2.58)—(2.60) is a solution of (1.3)
under the assumptions (2.54)—(2.57). Suppose that (2.54)—(2.57) hold.
From [38], there exist X; € C™*", Xy € C(»~7)x(=7) of the forms
(2.59) and (2.60) such that

{A11X1 = Chi1, Xi1B21 = Ca1, A1 X1 =C31, X1Ba1 = Cu,
A1 Xy = Cia, XyBgy = O, A32Xy = Csp, Xy4Byy = Cy,
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which are equivalent to

These, in turn, are equivalent to

AU <X1 0 >U* — 0,

0 X4
A3U<)(()1 )?4>U*:C?,,
U()g1 )?4)U*Bzzoz,
U(‘)g1 )?4>U*B4=C4,

This implies that

o Xl 0 * nxn
X_U( 0 X4>U e C*™(P)

(X1 € C™", and X4 € C("=")*("=")) ig the solution of (1.3).

Now we prove that any solution of (1.3) can be expressed in the form
of (2.58)—(2.60); then (2.54)—(2.57) hold. Assume (1.3) has a solution
X € C**"(P), where X can be expressed as

(X1 0),.
(2.61) X—U<0 X4>U,
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where X; € C™", and X4 € C(»~")*("=7) By using (2.4)-(2.12), we
can obtain

(2.62)
A1 X = Ch,
XB2 - 027
A3X = 03,
XBy=Cy,cr
0
(A1 Ap)UU < > U* = (Cy1 Cr2)U™,
X,y 0 B2 Cn
U U
(0 x)eo (i) -v(@):
<~
(As1 As2)U*U < > U* = (Cs1 C32)U™,

X,y 0 Bu Cu
U UU —U ,

A1 Xy = Cii, X1Boy = Ca1, A31X1 = Csy,

X1By = Cy1,
e
A12Xy = Ciay X4Bay = Caa, A32Xy = Cso,
X4Byo = Cyo.

By using (2.62) and the results in [37], we can see that (2.54)—(2.57)
hold and

Xy = Af,C11 + L4,,C1 B, + La,, K{ E1Rp,,

(2.63) N
+ ENl R321 + LAIILKlleNlRle7
and
X4 = A7,C1a+ La,,CoaB, + La,,KJFIR
(2.64) 4 = A0z + LAy, U2 by + Lay, Ky Filipy,

+ FN2+R322 + LAlzLKz ZQRNzRBzz .

By substituting (2.63) and (2.64) in (2.58), we obtain that the matrix
equations (1.3) have the solution by form (2.58)—(2.60). The proof is
complete. ]
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o Anti-reflexive solution to matrix equations (1.3). Similarly
to the proof of Theorem 2.7, we can prove the following theorem.

Theorem 2.8. Assume that A; € C™*", C; € C™*™, By € C™*%,
Cy € Cnxs, Ag S Ckxn’ 03 S Ckxn’ B, € CnXt, Cy € CnXt, and
Ky = A31L4,,, N1 = Rp,, Baz, K2 = A32La,,, No = Rp,, By1, E1 =
C32—A31 AT, C12—K1C2 B3y, E = Cy1— A, C12Bs2—La,,C21 B3, Bys —
LAlleLElNl, and Fl = 031 - A32AT2011 - KQCQQB;U F = 042 -
AECHBLH - LA12022B§LIB41 - LA12K2+F1N2. Then the system of
matriz equations A1 X = C1, XBy = (O3, A3X = C3, XBy = Cy
has a solution X € C"*™(P), if and only if

(2.65) K\K{ E\Rp,, = By, ELy, =0, R, 1, E=0,
A11C2 = C12Ba,

260 K>;K§ FyRp,, = Fi, FLy, =0, Ry, 1, F =0,
A12C22 = C11Ba1,

(2.67) A1 A C12 = Cra, A31A5,C30 = Cs2, Co1 By, Bag = O,
Cu BBz = Cuy,

(2.68) A12AT,C11 = Ch1, A32A3,C31 = Cs1, CoByBay = Caa,

Cu2BfByy = Ciyo.
In that case, the anti-reflexive solution of the matriz equations A1 X

=Cy, XBy =(C5, A3 X = (5, XBy = Cy can be expressed as follows:

(2.69) X=U <)? §2> U* € C"(P)
3

where

Xy = Af,C12 + La,,C21 By + La,, K{ E1Rp,, + EN{ Rg,,

(2.70)
+La,, Lk, Z1Rn, Rp,,,
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and

X3 = Af,C11 + La,,C22B3; + La, K FiRp,, + FN; Rp,,

(2.71)
+ LA12LK2Z2RN2R3217

where Z1 and Zs are arbitrary matrices with compatible dimensions.

Notice that we can use Theorems 2.7 and 2.8 for solving the matrix
equations AlX = Cl, X32 = Cg.

3. Conclusion. It is known that matrix equations have nice
applications in various branches of control and system theory; also
reflexive and anti-reflexive matrices have wide applications in many
fields. In this paper, we have considered the reflexive and anti-reflexive
(with respect to a generalized reflection P) solutions of the matrix
equation A3 XB; = D;, the system of matrix equations A; X =
C1,XBs = Cy and the system of matrix equations A; X = Cj,
XBy; =5, A3X = C3 and X B4 = C4. We have derived necessary and
sufficient conditions for the existence and the expression of reflexive
and anti-reflexive solutions to these matrix equations. The solvability
conditions and explicit formulae for the solutions were given.

Acknowledgments. The authors would like to express their heart-
felt thanks to the anonymous referee for his/her constructive comments
and suggestions which greatly improved the original manuscript of this
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