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REGULAR FUNCTIONS ON
THE SPACE OF CAYLEY NUMBERS

GRAZIANO GENTILI AND DANIELE C. STRUPPA

ABSTRACT. In this paper we present a new definition of
regularity on the space O of Cayley numbers (often referred
to as octonions), based on a Gateaux-like notion of deriva-
tive. We study the main properties of regular functions, and
we develop the basic elements of a function theory on O. Par-
ticular attention is given to the structure of the zero sets of
such functions.

1. Introduction. Let O denote the nonassociative, alternative,
division algebra of real Cayley numbers (also known as octonions). We
refer the reader to the excellent survey [2] for a thorough discussion of
the importance and interest of this object. A simple way to describe
the construction of this algebra is to consider a basis £ = {ey =
l,e1,...,es 7} of R® and relations

€a€p = _5aﬁ+¢aﬁ'ye'ya a75a7:1727"' a77

where d,p is the Kronecker delta, and ¢,z is totally antisymmetric
in «, 3,7, nonzero and equal to 1 on the seven combinations in the
following set

oc=1{(1,2,3),(1,4,5),(2,4,6),(3,4,7),(2,5,7),(1,6,7), (5,3,6)},

. . 7
so that every element in O can be written as w = o+, _; Trex. One
. . . . — 7
can then define in a natural fashion its conjugate w = zg — > k=1 TkCk,
. _ 7
and its square norm |w|? = ww = Y, _, z7.

The basic elements of O can be written (see e.g. [16]) as

eo = 1, e1,e2,e1€2, €4, €164, €264, (6162)64-
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One can use this representation, together with the property of the
algebra being alternative (i.e., the subalgebra generated by any two el-
ements is associative), to construct the multiplication table for O with
which one can verify all the subsequent computations. In particular,
one sees that (1,e1, ea, e1e2) form a basis for a subalgebra of O isomor-
phic to the algebra H of quaternions. It is easy to prove the following
technically important decomposition.

Proposition 1.1. A generic element of O can be written as

7
w = kaek = (xo + z1€1) + (22 + x3€71)E2
k=0
+ [(z4 + zse1) + (z6 + z7e1)es]ey.

This proposition shows that every Cayley number can be thought
of as four complex numbers (each one in C = R + Re;) or as two
quaternions (each one in C+Ces). We have therefore the decomposition

O=(R+Re;)+ (R+Rej)es + [(R+Rey) + (R + Rey)esles

(1) = C+C€2 +(C+C€2)€4 :H+H€4.

Since differential operators in the spirit of Dirac can be defined on
functions on O, in the last few years many papers have appeared
to study regular functions on O, defined as null-solutions of such
operators. We refer the reader to [5, 7, 14-16, 18] for more details on
these functions. The study of null-solutions of Dirac-like operators is
akin to attempting to extend the theory of Fueter-regular functions on
quaternions (see for example [8, 9] as well as [4]) to the case of Cayley
numbers.

Quite recently, the authors have offered an alternative definition and
theory of regularity for functions of quaternionic variables, inspired by
an idea of Cullen [6]. This alternative theory is intriguing because it
allows the study of power series with quaternionic coefficients, which is
otherwise excluded when the Fueter approach is followed. A description
of this theory can be found in [11, 12], but the interested reader can
find the most recent developments in [3, 10].
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In this paper we show how the ideas contained in [12] can be used
to construct a similar theory for functions defined on Cayley numbers.
We refer to [13] for some interesting extensions and applications of our
results.

Let us denote by S the unit sphere of purely imaginary Cayley
numbers, i.e., S = {w = Y ;_, @ye; such that Y, _ 22 = 1}. Notice
that if I € S, then I? = —1; for this reason the elements of S are called
imaginary units.

Definition 1.2. Let  be a domain in O. A real differentiable
function f : € — O is said to be regular if, for every I € S, its
restriction f; to the complex line L; = R 4+ RI passing through the
origin and containing 1 and I is holomorphic on 2N L;. With an abuse
of notation, we will also call regular those functions defined on an open
subset of a quaternionic subspace H of O, and whose restriction to Ly
is holomorphic for every I € SN H.

Remark 1.3. The requirement that f : 2 — O is regular is equivalent
to require that, for every I in S,

0ufta+ o) = 5 55+ 00 ) sita+ 1) =0,

on 2N Lj.

Remark 1.4. Notice that, just like in [12], this definition of regularity
can be interpreted in the spirit of the Gateaux derivative.

We can define a notion of I-derivative as follows:

Definition 1.5. Let Q be a domain in O, and let f : Q@ — O be a
real differentiable function. For any I € S and any point w = = + yI
in Q (x and y are real numbers here) we define the I—derivative of f
in w by

Orf(z+yl) :== %(% —I(%)f;(:c—l—y[).
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In this paper we prove that regular functions can be expressed in
power series of the form

—+o0
E w"an,
n=0

with a,, € O. Note that such power series are well defined because
the algebra O is alternative and therefore power-associative (see for
example [2]).

The crux of the paper is Section 2, where we study the complex ge-
ometry of vectors in O (Proposition 2.5), we show how to build suitable
bases for O (Proposition 2.6), and we use these bases to represent regu-
lar functions on O as four-tuples of holomorphic functions. This result
(Lemma 2.7) will then allow us to mimic the proofs in [12] to build a
theory for these regular functions, including the identity principle, the
maximum modulus principle, the Cauchy representation formula and
corresponding estimates, the Liouville theorem, the Morera theorem,
the Schwarz lemma and the biregularity of the unit ball to the eight-
dimensional analog of the Siegel right-half plane. Finally, we are able
to describe the zeros of regular functions, with a result inspired by [17].
In particular, we show that, for a class of regular functions, the zero
set consists of the union of isolated points and isolated six-spheres.

2. Power series and series expansions for regular functions
of Cayley numbers. In order to study polynomials and power series
in w € O, we first note that the basic polynomial w"a, with a an
octonion, is regular according to Definition 1.2. Since the sum of regular
functions is clearly regular, we immediately have that polynomials with
octonionic coefficients on the right are regular. Classical arguments
(see, e.g., [1]) yield the analog of the Abel’s theorem.

Theorem 2.1. For every power series » .. w™a, there exists a
number R, 0 < R < oo, called the radius of convergence, such that
the series converges absolutely for every w with |w| < R and uniformly
for every w with |w| < p < R. Moreover, if lw| > R, the series is
divergent.
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Since convergence of power series is uniform on compact sets, it turns
out that power series are regular in their domain of convergence. Note
that every power series is also real analytic.

The first important consequence of our definition of regularity is that,
for regular functions, we can introduce a notion of derivative.

Definition 2.2. Let (2 be a domain in O, and let f : Q@ — O be a
regular function. The derivative of f, 3f, is defined as follows:

a(f)(w) = { g((i))(w) if w=a+yl withy # 0

3 if w = x is real.
xT

This definition of derivative is well posed because it is applied only
to regular functions.

Let f be a regular function. Since for every I in S it is 8;(9(f)) =
9(01(f)) = 0 we obtain that the derivative of a regular function is still
regular.

Note also that the derivative of a power series can be done term by
term because of the uniform convergence, so that

oo oo
8< g w"an> = E w" na,,
n=0 n=1

has the same radius of convergence of the original series.

In what follows, we will always restrict our attention to functions
which are regular on an open ball B(0, R) centered in the origin and of
radius R.

In order for us to study regular functions, we will need a simple rep-
resentation of the restriction of a regular function as four holomorphic
functions. To do so, we need a few preliminary results on the set S.

First we consider two elements I = 22:1 zrer and J = 22:1 Y€k
in S. Construct the 3 x 7 matrix

ry X2 I3 X4 I5 g X7

M=MUIJ)=|y v2 ¥3 va ¥ ¥ y7 |,
€1 ez €3 €4 €5 € €7
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and let M(r, s,t) be the 3 x 3 minor of M formed by columns r, s, and
t. Then we define the vector product I x J as:

IxJ= Y det(M(rs,t)).

(rs,t)€o

Note that I x J is always orthogonal to both I and J just as in the
classical case of three dimensions.

Proposition 2.3. Let I and J be two elements in S, and let (I,J)
denote their Fuclidean scalar product. Then their product IJ can be
computed through the following formula:

IJ=—(I,J)+IxJ

Proof. The result follows immediately from the direct computation
of the product I.J. a

The previous proposition shows, in particular, that the product of two
orthogonal elements of S is purely imaginary (in particular it lies in S
as well, as we will show in a moment). In fact, there is an interesting
consequence of this result, which allows a speedy computation for mixed
products of vectors in S. Let I = ZZ=1 Treg, J = ZZ=1 yrer and
K = 22:1 zrer be three vectors in S. We define the 3 x 7 matrix

r1 T2 X3 T4 Tz Te X7

N=N,JK)=|y1 ¥ yYs va Y5 Y Y7 |,
Z1 z9 z3 zZa z5 zZ6 z7

and let N(r, s,t) be the 3 x 3 minor of N formed by columus r, s and ¢.
Since the determinant of each such minor changes its sign if two rows
are exchanged, and in view of the previous proposition, applied in the
case of orthogonal vectors, we immediately have

Proposition 2.4. If I is orthogonal both to J and K, we have that

(ILK)=—(IK,J)= > det(N(r,s,t)).
(rys,t)€0
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We will use these facts to build orthogonal bases in S.

Proposition 2.5. Let I and Iy be two orthogonal elements in S,
and let I3 = 11]2. Then:

1. 1I, = —I>1; is an element of S,
2. I3 is orthogonal to both I, and I,
3. 1213 == —1312 == I]_ and 1311 = —11]3 == IQ.

In particular the basis (1,11, I, I3) spans a subalgebra H of O isomor-
phic to H.

Proof. We will prove the three statements independently.

1. First note that since I; and Is are orthogonal,
11]2 = I]_ X Iz = —IQ X I]_ = —IQI]_.

To prove that |I3] = 1, we note that I;Is = I; x I is orthogonal to I.
Therefore,

(InIz, 1 Ir) = —(I,(I112), Is) = (I, I2) = 1.

2. This follows immediately from the orthogonality of I; and I5.

3. We will prove just the first equality, since the technique is always
the same.
1213 = IQ(IlIQ) = —Ig(IgIl) = Il. O

We now note that I;, I, and I3 generate a 2-sphere inside the six-
dimensional sphere S. There is therefore room for four additional
orthogonal vectors.

Proposition 2.6. Let I, € S be orthogonal to Iy, Is and Is. Then

1. The vectors 14, Is = I114, I = Is14 and I7; = 1314 are orthonormal
and lie in H*.

2. The vectors 1,14, ... , 17 are a basis B for the algebra O. Moreover,
it 1s possible to choose I, Iy and Iy oriented in such a way that the
resulting basis B has the same values for the coefficients ¥, g~ given
for the original basis €, and therefore has the same multiplication table.
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Proof. We will prove the two statements independently.

1. We need to show three kinds of perpendicularity: that I,. is perpen-
dicular to I, with r =1,2,3 and s = 5,6, 7, that I is perpendicular to
I, with r,s = 5,6, 7, and that I, is perpendicular to I, with r,s = 5,6, 7,
r # s. We also need to show that |I.|> = 1 for r = 5,6,7. As to the
perpendicularity, we will use the previous proposition to show that I5
is perpendicular to I, I, and Ig, since all the other verifications are
essentially the same. In fact,

(Is, Io) = (I114,Iz) = — (112, I4) = (I3,14) = 0,
(Is, Is) = (I114,14) = 0,

and since I4 and I51; are perpendicular, and O is alternative,
(Is, Is) = (I114, Io1y) = —(I41y, Ip14) = (Iyl214, Iy) = (I3, I1) = 0.
To prove normality, we simply show that |I5|> = 1. Indeed

|Is|* = (Ii1a, 1 L) = —(Li L1 Iy, In) = (Is, La) = 1.

2. To begin with, we write the multiplication table as much as we
can by using the definitions of the elements of the new base. As shown
below, this gives the following table, where a few multiplications cannot
yet be determined.

L | L | I | Iy | I | I§ | I
I, | -1 Is | =L | Is | —14
L|-I| -1| 1, | I _I,
Is| I, | -1, | —1 I; -1
L|-L|-I|-L| 1| 6| L | L
I | I 5| -1
I n -1, -1
I, I, | -1 1

To attempt the completion of this table, we note that it is possible to
determine that all the products I,.I; are, up to a sign, other elements
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of B. In fact, for example, for any r # 1,6, 7, one has (using the table
above)

<IlI7aIr> = _<IlIraI7> = :t<It7I7> = Oa

since t # 7. Similarly, it is obvious to see that (I I, I} = (I I, I;) = 0.
This implies that I;I7 must be a multiple of Is. Since |[I1I7| = 1, it
is obvious that I I; = £Ig. Note however that we have no indication
as to which sign one needs to use to complete the multiplication table.
Indeed, different choices of Iy, I5, I, will yield different signs. We keep
this in mind and assume, at this point, that we have the negative sign,
so that we assume Iy I; = —Ig to be consistent with the table associated
to the initial choice of ¢, g . Using this choice, we can easily add more
entries to the table and obtain

L | L | I | Iy | I | I§ | I
I, | -1 Iy | L | Is | -1y I; | —1Is
L, | —I3| —1 I, Iy —1Iy
L| L |-1| -1]| I _I,
L|-L|-IL|-L|-1|5n| L | L
I | I 5| -1
I |- | L 1, 1
| I L | I 1

We can now argue as before and determine that IoI; = £I5 and,
for consistency with the choice of ¢, g, we select IypI; = —I5. Once
again, this choice allows us to further complete the table and get

L | L | I | I, | I | Is | I
L| 1| L |-L| I |-L| I |-I
L|-L| 1|50 |I| I | -L|-I
L| L |-I| -1| I, |-I| I, | -I4
L | -Is|-Is| - | =1 | L | I | I
Li| I |-I; | Is | -1, | -1
I| I | I | Is| Iy -1
L | Is | I, | I, |-I4 -1
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We need to remark that at this point we are using the so-called
Moufang identities (see, e.g., [16 and references therein]). Specifically,
we use the fact that for any three octonions u, v, z, one has (uvu)z =
u(v(uz)). In our case, for example, we can compute I3 by observing
that

Ir = I31y = —(I21213)(1a) = (I21312)1s = I>(I3(1214)) = I2(I316),

and therefore that
I3l = — L I; = Is.

We can finally complete the multiplication table with one more choice,
namely the sign of I5I7; which we take as I3. The full table is now:

L | L | I | I, | I | Is | I
L| 1| L |-L| I |-L| I |-I
L|-L| 1|50 |I| I | -L|-I
L| L |-I| -1| I, |-Is| I, | -I4
L | -Is|-Is| - | =1 | L | I | I
Li| I |-I| Is |- | -1 | -1;| I
Ii| I L | | - L| L |-1|1n
L | Is | I, | I, |-L|-L|-I| -1

To conclude the proof we simply note that the table we have con-
structed depends on three arbitrary choices of signs. However, we
have enough freedom to make such choices, because we can choose
the signs of Iy, I, and I in 23 different ways. In the proof we have
arbitrarily selected SigIIS for 11[7 = 11(13[4), 1217 = 12(1314) and
Is1; = (I114)(I314). It is immediate to verify that all possible cases
are covered. O

The result we have just proved shows that we can use Iy,...,I7,
as a basis for S; moreover, given any element I; in S, we can always
construct such a basis (though not in a unique way, as the basis will
ultimately depend on the choices of I and I).

The following splitting lemma plays a key role throughout the paper.
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Lemma 2.7. If f is a regular function on B = B(0, R), then for
every Iy € S, we can find I, and Iy in S such that there are four
holomorphic functions Fi,F,G1,G2 from B N Ly, to Ly, such that,
for any z = x + yly, it is

fri(2) = Fi(z) + F2(2) 2 + (G1(2) + G2(2)12) L.

Proof. With the vectors Iy, I and I4, we can proceed as in Proposi-
tion 2.6 and construct a basis 1, I3,... ,I; for O, whose table of mul-
tiplication is also given in the proof of Proposition 2.6. We can write

fr(z+yh) = f(z+yl) as
f=fo+Lifi+Lfe+I3f3+ Isafs + Isfs + Is fo + I7 f7.

Since f is regular, we know that

0 0
<% + I16_y>f11 (x+ylL) =0,

ie.,

%+I1%+"'+I7%+I1<%—J;J+I1aa—];l+'--+I788—];7> =0.
The expression above yields (taking advantage of the properties of the
imaginary units) that the functions fo + I1f1 = Fi, fo + L1 f3 = Fa,
fa+ LIifs = Gy and fg + 1 fr = G4 all satisfy the standard Cauchy-
Riemann system and therefore they are holomorphic. This concludes
the proof. i

The following corollary will be useful in the sequel.

Corollary 2.8. If f is a regular function on B = B(0,R), then
for every I € S, we can find Iy and Iy in S, such that if H is the
subspace of O generated by (1,11, I, I1I5), then there are two functions
F:BNH — H and G : BNH — Hls, regular on BN H as in
Definition 1.2 such that for any g € BNH, it is

fla) = F(q) + G(q).
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Proof. One clearly sets F = Fy + F3Iy and G = (G; + Gal2)I4 on
the complex plane Ly,. The function F is holomorphic where defined
and quaternionic valued; thus, by [12], it uniquely extends to a regular
function on ‘H N B. The function G, on the other hand, is holomorphic
with values in HI;. An immediate variation of the argument in [12]
shows also that GG uniquely extends to a regular function on H N B.
This concludes the proof. a

Remark 2.9. Note that, because of the lack of associativity in O, the
function G + G215 is not, by itself, regular.

Remark 2.10. This last result shows that one can represent regular
functions on O either as pairs of regular functions, or as four-tuples of
holomorphic functions, consistently with decomposition (1).

Given that the functions F; and G; (i = 1,2) are holomorphic on the
plane R + R1I;, and since the derivative of regular functions is defined
in the sense of Gateaux, and only involves complex planes, the proof
of the following proposition can be found in [12].

Proposition 2.11. Let f : B — O be a regular function. Then it
is C*° and, moreover, for any n € N, its derivative 9"f : B — O is
regular and it is

n

o (et yh) = 5 L@t yn).

It is now possible to deduce the following important result.

Theorem 2.12. If f : B — O is regular, then it has a series
expansion of the form

o~ a1 0f

flw) =) w'—

n! Ox™

(0)-

n=0

Proof. Consider, in the complex plane Lp,, the disc A centered in
the origin and with radius a > 0, where @ < R. Then we can use
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the representation from the splitting Lemma 2.7 to find an integral
representation for fr, inside A. Specifically, using the fact that Fy, Fb,
G and G are holomorphic, we obtain that for any z in A we have:

1 F1(¢)
fn(z) = 2rly /{:)A ¢(—z dc

1 F>(Q)
* (ﬁ/ —c—zd<>f2

1 G1(¢) ( 1 G2(¢) > ]
+ [2#]1 /aA (—z d¢ + ol /M (—z dC ) Iz | La-

Each of these four integrals may now be transformed into a power
series as in classical complex analysis, and the rest of the proof therefore
follows as in [12]. O

3. Identity principle and Cauchy integral formulas. We begin
this section with the proof of the identity principle.

Theorem 3.1. Let f : B — O be a regular function. Denote by
Z; = {w € B: f(w) = 0} the zero-set of f. If there exists an I € S
such that Lt N Zy has an accumulation point, then f =0 on B.

Proof. By choosing the basis (1,I; = I,I,...,I7), Corollary 2.8
allows us to write on L; N B
fle+yl)=F(z+yl)+ Gz +yl).
Now, we can conclude the theorem by applying the identity principle
for regular functions of a quaternionic variable. i

As a consequence, we obtain

Corollary 3.2. Let f and g be regular functions on the ball B. If
there exists an I € S such that f = g on LN B, then f = g everywhere
on B.

The next few results are proved with the techniques used in [12],
taking into account Corollary 2.8.
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Proposition 3.3. If f : B — O is a regular function, and if [ € S,
then fr: Ly N B — O has the mean value property.

Theorem 3.4. Let f : B — O be a regular function. If |f| has a
relative mazximum at a point a € B, then f is constant on B.

In order to state the analog, for regular functions, of the Cauchy
representation formula we set, for w € B,

Im (w)
I, = Mmcy €8
any element of S otherwise.

if Tm (w) # 0

Theorem 3.5. Let f : B — O be a regular function, and let w € B.
Then

) =g [ 2o

Aw(0r) §—W
where ¢ € L1, N B, and where r > 0 s such that

Ay(0,7) = {z+yl, : 2” +y*> < r?}
is contained in B and contains w.
Proof. The result follows from the splitting lemma, or its corollary. O

As a consequence we obtain:

Theorem 3.6 (Cauchy estimates). Let f : B(0,R) — O be a regular

function, let r < R, I € S and 0A[(0,7) = {(z +yI) : 22 + y? = r?}.
If My = max{|f(w)] :

cw € 0A[(0,7)} and if M = inf{M; : I € S},
then L lonf v
— < — > 0.
n! 33:"(0)‘ = pn’ n=z0

The power series representation, and the arguments from the theory

of one complex variable as they appear in [12] allow us to state the
following two results (analog to the Liouville and the Morera theorems).
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Theorem 3.7. Let f : O — O be an entire reqular map, i.e., a
reqular map defined and regular everywhere on O. If f is bounded, i.e.,
there exists a positive number M such that |f(w)| < M on all of O,
then f is constant.

Theorem 3.8. Let f: B — O be a differentiable function. If, for
every I € S, the differential form f(2)dz, z = x+yl, z,y € R, defined
on Ly N B is closed, then the function f is regular.

We conclude this section with a couple of results on the geometry of
the open unit ball B = {w € O : |w| < 1} in O. First we note that,
with the modifications pointed out in [12], the Schwarz lemma holds
due to the power series representation of regular functions.

Theorem 3.9. Let f : B — B, f(w) = Z+°° w"ay,, be a reqular

n=1

function such that f(0) = 0. Then, for every w € B,

[f(w)] < |w|

and

0f(0) < 1.

Moreover, equality holds in the formulas above, at a point w # 0, if
and only if f(w) = wu for some u € O, |u| = 1.

If we define OF = {w = zq + z1e; + -+ + z7e7 € O : kg > 0}, and if
we set Y(w) = (1 —w) (1 + w), we can prove

Theorem 3.10. The octonionic right half space O is diffeomorphic
to the open unit ball B via the biregular transformation 1.

4. Zeroes of power series. In this last section, we study the zero
sets of octonionic power series. We begin with a result whose proof
follows the one given for Theorem 5.1 in [12].

Theorem 4.1. Let Z::ioo w"a, be a given octonionic power series

with radius of convergence R. Suppose that there exist xg,yo € R and
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1,J €8S with I # J such that

“+o0

(2) > (w0 +yoI)"an =0
n=0

and
+oo

(3) > (@0 +yoJ)"an = 0.
n=0

Then for all L € S we have

+o00
Z(I‘O + yOL)nan =0.

n=0

The next few results describe the nature of the zero sets of octonionic
power series. For the sake of clarity, we will say that an octonion
wy = o + Yol is a spherical zero for a regular function f if every point
of the six-sphere zg + yoS is a zero for f.

Proposition 4.2. If f has a series representation f(w) =Y w"ay,
with real coefficients a,, then every real zero x¢ is isolated, and if
xo + yol is a nonreal zero (i.e., yo # 0) then it is a spherical zero.
In particular, if f # 0, the zero set of f consists of isolated zeroes
(lying on R) or isolated siz-spheres.

Proposition 4.3. Let f be a regular function on a ball B centered in
the origin, and suppose that there exists an imaginary unit I in S such
that f(Ly) C L. If there exists an imaginary unit J in S such that
J & Ly and f(xo+ yoJ) =0, then f(zo+yoL) =0 for all L € S. In
particular, if f £ 0, the zero set of f consists of isolated zeroes (lying
on BN Ly) or isolated siz-spheres in B.
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