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PERTURBED DISCRETE STURM-LIOUVILLE
PROBLEMS AND ASSOCIATED SAMPLING THEOREMS

M.H. ANNABY, H.A. HASSAN AND O.H. EL-HADDAD

ABSTRACT. We derive sampling expansions for discrete
transforms whose kernels arise from perturbed discrete Sturm-
Liouville problems with rank one perturbations. The kernels
may be either solutions or Green’s function of the problem.
Due to perturbation, the multiplicities of the eigenvalues will
be different from the classical case. We study the spectral
analysis of the perturbed problem and derive sampling theo-
rems. We follow the techniques established by Catchpole [8]
and Stakgold [16]. The results are exhibited via illustrative
examples.

1. Introduction. The connection between difference operators and
sampling theory of signal processing has been established in [2, 3,
5, 10, 11, 12]. In sampling theory, analog signals are transformed
into digital ones via interpolation formulae, cf., e.g., [1, 15]. This
leads to several applications in communication theory, especially in
the transmission of information. The sampling theorem of discrete
transforms whose kernels arise from second order difference operators
gives a generalized sampling principle. This principle also has been
applied to derive general representations of some mathematical forms
as those of [7], which have been generalized in [4]. Now let us mention
some of the results of [3]. Let N be a fixed positive integer, and consider
the eigenvalue problem

(1.1)r~H(n) {V [p(n)Ay(n)] + q¢(n)y(n)} = Ay(n), n=1,...,N,
(1.2) Ur(y) = y(0) +ay(l) =0,
(1.3) Ua(y) =y(N +1) +by(N) =0,

where A is the forward difference operator, Ay(n) := y(n + 1) — y(n),
and V is the backward one, Vy(n) := y(n) — y(n — 1), a, b are real
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numbers and A € C is the eigenvalue parameter. The coefficients
of (1.1) are assumed to be finite real-valued functions, p(n) > 0 for
n>0and r(n) >0 forn > 0. Let I := {1,2,... ,N}, (*(Zy,r) :=
?2(I,r) be the space of all complex-valued functlons y = y(n) =
(y(1),...,y(N)) with the inner product (y, z) := 22[217“( ) (n)z(n),
and ¢?(Zy) := ¢*(I,1). This eigenvalue problem defines a self-adjoint
operator in ¢?(Zy,r), and it has been extensively studied, see e.g.,
[6, 14]. Let X1(-,A), X2(-,A) be nontrivial solutions of equation (1.1)
such that Ui(Xi(-,A)) = 0, Ua(X2(-,A)) = 0. The eigenvalues of
the problem are N distinct real numbers which will be denoted by
{ur}_,. All eigenvalues are simple from algebraic and geometric
points of view. The corresponding sequence of eigenfunctions is either
{x1 (5 i)}, or {Xa2(+, k) }HY_,. These two sequences are sets of real-
valued functions, and there are nonzero real constants vy such that
Xa(, k) = veX1(pk), & = 1,...,N. The set of eigenfunctions
{X1(-, px) }r_, is an orthogonal basis of ¢*(Zy,r), cf. [6, 14]. Green’s
function of the problem (1.1)—(1.3) which is similar to that constructed
in the case of differential operators, see e.g., [14, page 23], takes the
form

A A 1<n<m<N
(14) g(n,m,)\): 1 {X1(7’L, )XZ(ma ) <n<<m<IN,

W) Lxa(m, Mxa(m,A) 1<m<n<N,
where

W(A) := p(N)[X1(N,A) X2(N + 1, A) — X1 (N + 1, A) Xa(V, A)].
Let G(n, A) be the function

G(n, \) = TN G(n, mo, V),
where mg € I is fixed and
HkN:1 (1 —(A/pg))  if zero is not an eigenvalue,

SR { )‘Hszz (1= (M puk)) p1=0is an eigenvalue.

The main results of [3] may be summarized as follows.

Theorem 1.1. If f(n) € (*(Zy,r) and

(1.6) < > i < A))>7“(n), \eC,
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o (6) =2 (6 ot

k=1

The aim of this paper is to investigate the sampling theory associ-
ated with perturbed second order difference operators. In the following
section we define the second order perturbed discrete eigenvalue prob-
lem. In this problem, the difference equation (1.1) will have a rank one
perturbation, see (2.1) below. As we will see, the properties of the per-
turbed problem will differ from those of the classical one, (1.1)—(1.3).
For example, the eigenvalues are not necessarily simple, and the same
initial conditions lead to an uncountable number of solutions. These
changes will affect the sampling results since the derivation of (1.7) is
based on the properties of (1.1)—(1.3). We will briefly study the spectral
analysis of the perturbed problem in the next two sections. Section 4
contains the sampling analysis associated with the problem introduced
in Section 2. The last section contains some illustrative examples.

2. Fundamental solutions. Consider the boundary-value problem
which consists of the perturbed difference equation

(2.1) t(y) = Vip(n)Ay(n)] + q(n)y(n) + Z r(n)r(1)y(i) = Ay(n),
n=1,...,N,

together with conditions (1.2)—(1.3). The coefficients of the difference
expression £ are assumed to be as in the previous section. Let Dj, be
the subspace of ¢?(Zy) defined by

(22) Dp={yel?(Zn):Ly) € *(Zn), Ui(y) = Uz(y) = 0}.

We define the operator L : Dy, — (*(Zy) to be Ly = ¢(y), y € Dr.
To prove that this operator is self-adjoint, it is sufficient to show that
(Ly,z) = (y,Lz) for y, z € Dr. In the following lemma we will use
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summation by parts which may have the forms, cf. e.g., [9],

b

(2.3) Z(Ayk)zk = [yrr12e]} Zykvzka
k=a
b
(2.4) > (Vyr)zk = [yezealh ZykAZk:
k=a

Lemma 2.1. Problem (2.1), (1.2)—(1.3) is self-adjoint.

Proof. Let y and z be in Df,. We show that (ly,z) = (y,£z). Indeed,

(Ly,2) = (ty,z) = > _ V[p(n)Ay(n)|z(n) + Y a(n)y(n)z(n)
(2.5) n=t n=t

Using summation by parts, we obtain
(2.6)
N

3 9 p(m)Ay(n)]2(m) = [pn) [yl + 1)2(n) — y(m)z(n + 1]

N
+ Y y(n)Vip(n)Az(n)).

Since y and z satisfy (1.2)—(1.3), then we deduce that

N

[p<n> y(n + 1)z(n) - y(n)Z(n + 1)1] 0.

Substituting in (2.6), we obtain
(2.7) > VIp(n)Ay(n)]|z(n) = Y y(n)Vip(n)AZ(n)].

n=1

Combining (2.7) and (2.5), the lemma is proved. o
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From the proof of the previous lemma, it is concluded that for any y
and z in ¢*(Zy), we have the following Green’s formula,

N
(28)  (5,2) = (1, €2) = [p()ly(n + )z(n) —y(n)z(n +1)]] .
Now let us find the general solution of the difference equation (2.1).
Here we use the method of [8] established for integro-differential equa-
tions. Let y(-,A) and z(-,\) be any two solutions of

(2.9) VIp(n)Ay(n)] + q(n)y(n) = Ay(n), AeC.
Then, cf. [14],
(2.10) Wiy, 2J(n) = p(n — 1) [V LA 2(n —1,2)

y(n, >‘) Z(na >‘) ’

is independent of n. The Wronskian (Casoratian) Wy, z](n) does not
vanish if y, z are linearly independent; otherwise, it equals zero for all
n. Let P(-,\) be the unique solution of the inhomogeneous problem

(2.11)  Vip(n)Ay(n)] + [g(n) = Aly(n) = r(n), y(1) =y(0) =0.

Using the method of variation of parameters, cf. e.g., [9], we can show
that if y(-,\) and z(+,\) are any two linearly independent solutions of
(2.9), then

n

212 P03 = 3 3 (4000 = 26 () ).

j=1

For convenience, we will set Z;”:n A; = 0 whenever n > m. Let
v1(n, A), pa(n, A) denote the solutions of (2.9) determined by

(2'13) ‘Pl(ov )‘) =1, ‘Pl(lv )‘) =0,
(2.14) ea(0,0) =0,  oa(1,A) = 1.

Lemma 2.2. A function (-, \) is a solution of (2.1) determined by
the initial conditions ¢(0,\) = c1, (1, A) = c2 if and only if o(-,\) is
a solution of the following equation
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(2.15) ¢ =c1p1+ c2p2 — (@, 1) P,

for arbitrary constants c; and cs.

Proof. Let ¢(-,A) be a solution of (2.15). Since ¢1, g2 and P are
solutions of (2.9) and (2.11), respectively. Then

Vip(n)Ap(n)] + q(n)e(n) + r{p,r)
= Acrpr + Aeapr — (o, ) (AP + 1) +r(p,7)

= A (c1p1 + ez — (9, 7) P)
= dp.

It is clear that ¢(0,A) = ¢; and p(1,\) = ¢a. Conversely, any solution
of (2.1) has the form ¢ = c¢1p; + c2ppa + u, where u is a particular
solution. Since ¢ satisfies (2.1), then

Vp(n)Ap(n)] +[g(n) = Alp(n) = —r(n)o, o= (p,r).

Putting —r(n) o instead of r(n) in (2.11) and using (2.12), we get
- r(J)
uU=-—0)y ———t—
; Wlet, ¢2](1)

X <<P1(j, Np2(n, A) = 924, \)p1(n, )\)>

= _<4P,7'> Pa

which completes the proof. ]

Lemma 2.3. If C(\) = 14+ (P,r) # 0, for some A\, then any solution
of (2.1), according to that X\, has the form

(2.16) o =ci1p1+capa — %(@hﬂp - %@2,7‘)13,

where c1 and cy are arbitrary constants.
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Proof. If ¢ is a solution of (2.15), then
<‘P7T> = cl<90137'> + C2<<1027T> - <(,0,T‘><P, T’>
= c1{p1,m) + c2(pa,7) — (0, T)(C(A) — 1).

Therefore,
C()‘)<907 T> = Cl<‘1017 T> + 62<9027 T’)-
If C(X\) # 0, then

C1 C2

<(,0,7"> - C()\) <‘P177n> + C()\) <9027r>‘

Substituting in (2.15), the required is obtained. mi

Lemma 2.4. Assume that C(\) =0 for some X. Then:
1. P is a solution of (2.1).
2. If

(217) <¢1,r> = <(p2,r> = 0,
then any solution of (2.1) has the form
(218) QOZCl()O—FCQ(,D—F’YP, 6176277607

with the initial conditions ¢(0) = c1, p(1) = c2, and y € C is arbitrary.
3. If (2.17) does not hold, then (2.1) has the solution

(2.19) ¢=av+~P, vi= (p2,m)p1 — (#1,7)92, a,7€C,

which satisfies the initial conditions p(0) = a(p2, 1), (1) = —a(p1,r).

Proof. 1. Since C(\) =1+ (P,r) =0, then P satisfies (2.1).

2. Because of (2.17), ¢1, o satisfy (2.1). Thus, (2.1) has three
linearly independent solutions; namely, ¢, @2, P, i.e., ¢ has the form
(2.18).

3. Clearly every solution u of (2.9) is also a solution of (2.1) if and
only if (u,r) = 0. If (2.17) is not true, then the only solution, up to a
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multiplicative constant, of both (2.9) and (2.1) is v. Thus, any solution
of (2.1) has the form (2.19) with the indicated initial conditions. o

Remark 2.5. As we see in the previous lemmas, if C(\) # 0, equation
(2.1) has two linearly independent solutions. If C(A) = 0, then for the
same initial conditions there are uncountably many solutions of (2.1)
since @ and « of (2.18) and (2.19) can be chosen arbitrarily.

3. Green’s function and an expansion theorem. In this section
we investigate the eigenvalues of problem (2.1), (1.2)—(1.3) and their
multiplicities. First we have the following result which is easy to prove.

Lemma 3.1. The eigenvalues of problem (2.1), (1.2)—(1.3) are real,
and eigenfunctions corresponding to different eigenvalues are orthogo-
nal.

Since equation (2.1) has, in some cases, three linearly independent
solutions, the multiplicity of every eigenvalue is expected not to exceed
three. We will see that, in the case under consideration, separate type
boundary conditions, the multiplicity is at most two. We distinguish
between two cases.

Case I. When C(\) # 0. In this case we define the following
fundamental set of solutions of (2.1) by

<§01a T>

_ <§027 r)
6y 02 P

P’ _902_ C(}\)

(3-1) b1 =1 —

This fundamental set satisfies the same initial conditions that {¢1, @2}
satisfies. Using a technique similar to that of [14], we can show also
that W¢1, ¢2](n) is independent of n, and any two solutions y and z of
(2.1) are linearly independent if and only if Wy, z](n) does not vanish.

Theorem 3.2. The real number X is an eigenvalue of problem (2.1),
(1.2)—(1.3) when C(A) # 0, if and only if
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(3.2) A(N) : Un(é1) Un(e2) | _

Moreover, if such a X is an eigenvalue, then it is simple.

Proof. Let C'(\) # 0. Then any solution of (2.1) corresponding to
A has the form ¢ = c1¢1 + ca2¢2, where ¢; and ¢y are constants. This
solution will be an eigenfunction if it satisfies the boundary conditions
(1.2) and (1.3). Thus, A is an eigenvalue if the following linear system
of the unknowns ¢; and ¢ has a nontrivial solution.

(33) ClUi(¢1) + CzUi(¢2) =0, =1,2.

This will happen when and only when equation (3.2) is fulfilled. Now
let A be an eigenvalue of problem (2.1), (1.2)—(1.3), where C(\) # 0.
We prove that A cannot have more than one linearly independent eigen-
function. Indeed, let ¢§ and @3 be two eigenfunctions corresponding to
A. Then there are constants c11, 12, C21, c22 such that

Ci1<90177'> Ci2<‘{72:7’> .
P — P. =1,2.
o0y cny T

(3.4) % = ci1p1 t+ Ciap2 —

Let ¥; 1= cj101 + ciapa, © = 1,2; then the functions ¥; and ¥ are
solutions of the classical Sturm-Liouville problem (1.1)—(1.3) and

cii(p1,7) cia(p2,7)
coy Tt Tom

Since problem (1.1)—(1.3) has only simple eigenvalues and (;(0), 1;(1))
= (¢i1, ¢i2), then the vectors (c11, c12), (c21, c22) are linearly dependent.
Consequently, ¢} and ¢2 are linearly dependent, proving the simplicity
of A. ]

Y = dh +

P, i=1,2.

Now when C(X) # 0, A € C, we seek a solution which generates
all eigenfunctions. Let ©1(-,A) and ©2(+, A) be the solutions of (2.1)
determined by the initial conditions

(35) @1(0, )\) =a, @1(1, )\) = 71,
(3.6) ©2(0,\) = b, ©y(1,\) = —1.
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Then
_ | Ui(en) U (¢2)
(3.7) Or(n,X) = —| ;1O ‘
=az¢1(n,\) — a1 ¢2(n, A);
_ | 91(mA) p2(n, A)
(3.8) O2(n,\) = Us(é1)  Us(ds)

= Us(¢2) p1(n, A) — Ua2(¢1) pa(n, ).

Hence, from (3.2), the eigenvalues of problem (2.1), (1.2)—(1.3) are the
zeros of either

(39) wl()\) = U2(®1) = @1(N + 1,)\) + b(‘)l(N, )\) = —A()\) =0,
(310) LUQ(/\) = U1(®2) = @2(0,/\) + (I@Q(l,)\) = A()\) =0.

Since any solution of (2.1) has the form ¢; ©1(-, A) + c202(+, A), we get
the following lemma.

Lemma 3.3. Either ©1(-,A) or ©3(-, \) generates all eigenfunctions
of the problem (2.1), (1.2)—(1.3) when C'()\) # 0.

Proof. Using (3.7) and (3.8), it is not hard to see that
(3.11) W[01,0:](n) = AN)W (g1, d2](n).
Since W g1, ¢2](n) = W(g1, ¢2](1) = p(0), we have
(3.12) W[©1,0:](n) = A(X) p(0).
Thus, if A = Ay is an eigenvalue, then W[Oy, 82](n) = 0, and therefore
(3.13) O1(n, A\k) = ¢k O2(n,Ar), 0#c, € C.

This means that any eigenfunction of (2.1), (1.2)—(1.3), can be gener-
ated by only one of ©1(-,A) and O2(+, \). u]
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Case II. When C()\) = 0. In this case, according to the next
lemma, we see that any real zero of C'()) is either not an eigenvalue or
an eigenvalue with multiplicity less than or equals two.

Lemma 3.4. Let C(\) = 0 for some real A\. Then we have the
following cases:

1. if (2.17) holds, then X is a simple eigenvalue of (2.1), (1.2)—(1.3)
if it is mot an eigenvalue of the classical Sturm-Liouville problem
(1.1)—(1.3). Otherwise it is a double eigenvalue.

2. If (2.17) is not true, then X will be

(a) a double eigenvalue of (2.1), (1.2)—(1.3) if v satisfies the boundary
conditions, i.e., Uy (v) = Uz(v) =0,

(b) a simple eigenvalue if v satisfies one and only one of the boundary
conditions,

(c) mot an eigenvalue if v does not satisfy any of the boundary
conditions.

Proof. 1. Let C(\) = 0 for some A and (2.17) hold. We will see that
P is an eigenfunction according to this A. Since P(0,)\) = P(1,\) =0,
then Uy(P) = 0. Moreover, {(p1,7) = (pa,7) = 0, W[p1,p2](1) = 1,
which, using (2.12), imply

Us(P) = Us(p1){p2,7) — Ui(p2)(p1,7) = 0.

Thus, P satisfies the boundary conditions (1.2) and (1.3) in addition
to equation (2.1). Hence, P is an eigenfunction of problem (2.1),
(1.2)—(1.3). The eigenvalue A will have another linearly independent
eigenfunction ¢ if there are nonzero constants c¢; and cs such that
@ = c1p1 + c22 + 7P and the following equations are satisfied.

0 =U;(p) = crUi(p1) + c2U;(p2) + YU (P)

3.14 .
( ) = ClUi(ﬁpl) + CQUZ'((,D2), 1=1,2.

The above system will have a nontrivial solution if and only if A is
an eigenvalue of the classical Sturm-Liouville problem and it cannot
have more than one linearly independent solution, since the classical
Sturm-Liouville problem has only simple eigenvalues.
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2. In this case any solution of (2.1) has the form ¢ = v+~ P. Thus,
¢ is an eigenfunction of (2.1), (1.2)—(1.3) if and only if

o Ul(v) 0

-ﬂ%@)%@):m

(3.15) Ae(N) = ‘ Ur(v) Ur(P)

Uz(v) UQ(P)

because Uy (P) = 0, Uz(P) = Uz (v).

(a) Hence if v satisfies U (v) = Uz(v) = 0, the rank of the matrix
corresponding to A, is zero. Thus, there are two eigenfunctions which
are v, P.

(b) If v(n, ) satisfies only one of the boundary conditions, then
the rank will be one, i.e., there is only one linearly independent
eigenfunction. If Uj(v) = 0, ¢ is an eigenfunction only if o = —~,
i.e., the eigenfunction is a(v — P). If Uz(v) = 0, the corresponding
eigenfunction is P.

(c) If Uy (v) # 0 # Uz (v), from (3.15), A is not an eigenvalue of (2.1),
(1.2)—(1.3). o

In the following we derive Green’s function of the problem (2.1),
(1.2)-(1.3). Thus, the equivalence between problem (2.1), (1.2)—(1.3)
and a Fredholm-type difference operator with a symmetric kernel will
be proved. This leads to the fact that the eigenfunctions of problem
(2.1), (1.2)—(1.3) is a complete orthogonal set of ¢*(Zy). Here we use
the technique of Stakgold [16]. First we want to find a solution of (L —
A)y(n) = f(n) when X is not an eigenvalue of (2.1), (1.2)—(1.3), where
I is the identity operator and f(n) € ¢?(Zy) is given. Equivalently, we
seek the solution of the problem

N

Vp(n)Ay(n)] + (a(n) = Ny(n) + Y r(n)r(i)y(i) = f(n),

Us(y) = Us(y) = 0.

(3.16)

Let g(n, m, \) be Green’s function corresponding to (L—AI)y(n) = f(n)
in the unperturbed case, i.e., any solution of

Vip(n)Ay(n)] + (g(n) = A)y(n) = f(n),

(3.17) U(y) = Ua(y) = 0;
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A is not an eigenvalue of (1.1)—(1.3) and has the form

N
n) =Y g(n,m,\)f(m).

m=1

From (1.4), we can get

(3.18)
( A = 1 p1(m, N)pa(n,\) 1<m<n<N,
T A= N0 p(0) Ler (1, \)pa(m,A) 1< n <m< N,

where

In [3], it is shown that

al ¥
3.19 g(n,m,\) it , A F# i,
(3.19) ; Mk -

where {px(n)}_, is an orthonormal basis of eigenfunctions of (1.1)—
(1.3).

Lemma 3.5. If A is not an eigenvalue of (2.1), (1.2)—(1.3), then

(3.20) 1+ ((Axr),r) #0, (Axr)(n Z g(n,m, \)r(m).

Proof. Assume that (3.20) does not hold. Since

X(n,A) = > g(n,m, \yr(m)

uniquely solves the problem

VIp(n)Ay(n)] + (g(n) = Ny(n) =r(n), Ui(y) =Ua(y) =0,

and (X,r) = —1. Then, X(-,A) is an eigenfunction of (2.1), (1.2)—(1.3)
corresponding to the eigenvalue A, contradicting the assumption. ]
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Theorem 3.6. Assume that A is not an eigenvalue of L. Problem
(3.16) has a unique solution y(n) which is given by

(3.21) i G(n,m, ) f(m),

where

(Axr)(n)(Axr)(m)

G(n,m, ) := g(n,m,\) — L+ ((Aar)r)

A% A

Proof. We first write (3.16) as

(3.22) Vip(n)Ay(n)] +q(n)y(n) = f(n) —or(n), o= Zr(i)y(l)

Since g(n, m, ) is the Green’s function of (3.17), then the solution of
(3.22) is given by

N

y(n) = gn,m,\)f —aZgnmA

NE

(3.23) ]

Af)(n) —o(Axr)(n).

3
Il

N

From (3.23), we have

N N N
(3.24) > r(m)y(n) = EZ(AAfX )r(n) — o> (Axr)(n)r(n)
<(A,\f) r) — o (((Axr),T).
Hence,
_ _(Af)yr)
(3.25) = T A

Substituting from (3.25) in (3.23), we obtain

(A (). 1)

(3.26) y(m) = (ANA)n) = =0
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But

(Axf)()r(n) =Y > g(n,m, A) f(m)r(n).

n=1m=1

NE

(3.27) ((Axf),r) =

Il
-

n

Then equation (3.26) can be rewritten as

(3.28)
Z g(n,m, A) f(m)
(g m Nr(m) (T, Sy gl m. ) f(m)r(n)

+((Axr),7)

N @A)
Z[ N T A }f( )

and the function G(n, m, A) is unique by construction. Since g(n,m, \)
has simple poles at {u;}4_,, it remains to show that G(n,m,\) is
defined, as a limit, at the eigenvalues of (1.1)—(1.3) which are not
eigenvalues of (2.1), (1.2)—(1.3). Assume that p is an eigenvalue of the
problem (1.1)—(1.3) and po is not an eigenvalue of (2.1), (1.2)—(1.3).
Then from (3.19) we can find a neighborhood of pg, Dy say, such that
(3.29)

_yo(n)yo(m)
A= ko

where g¢;(n,m, ) is regular in Dy and yo(n) is a normalized eigen-

function corresponding to po. Substituting in G(n,m, ), we get for

g(n,m,)\): +gl(n7m7)‘)7 )‘EDS :DO_{.U’O}v

A€ Dg,
(3.30) (m)ga(m)
__ Yon)yo(m
G(”a m, )‘) =0 )\ — 1o
921 — (/A — po) goz + (2%/(X = 110)?) yo(n)yo (m)
14 g11 — (22/A — po) ’
where
N 2
gl—gl(nm)‘ 911—22917“ 921—(2917" )

n=1m=1 m=1

922 = [yo(n) + yo(m Z gir(m Q= Z Yo(m)r(m)
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Hence, we have for A € D,

_ (A= po)g21 — 2g22 — yo(n)yo(m)[1 + g11]
(331) G(nv m, )‘) =4g1 ()\ — /JzO)[l + 911] —02 )

which could be defined at pg if Q # 0. If

Q:

WE

yo(m)r(m) = <y0,r> =0,

m=1
then yo(n) is an eigenfunction of the problem (2.1), (1.2)—(1.3) and uo

is a simple pole of G(n,m, \). O

The function G(n,m, \) is called a Green’s function of the operator
L — I

Theorem 3.7. The problem (2.1), (1.2)—(1.3) has ezactly N eigen-
values, and the set of eigenfunctions is a complete orthogonal set in
*(Zy).

Proof. Assume first that A = 0 is not an eigenvalue of L. Let
G(n,m) = G(n,m,0). The problem Ly(n) = f(n) has the solution

(3-32) y(n) =Y Gn,m) f(m), fe*(Zn).

m=1

If we let f(m) = Ay(m), the eigenvalue problem (L — AI)y(n) = 0 is
equivalent to the system

(3.33) y(n) =X Z G(n,m)y(m).

The geometric multiplicity of an eigenvalue cannot be higher than two.
Equation (3.33) can be written as

(3.34) Gy'=py', p=-<,
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where G = (G(n,m))1<n,m<n, y € £*(Zy) and y ' is the transpose of
y. Hence, the two problems (L — AI)y,, = 0, and (3.34) are equivalent.
Since G(n, m) = G(m,n), then the transformation G is Hermitian, see
[13, page 135]. From [13, pages 154-155], the algebraic multiplicity
of each eigenvalue equals its geometric multiplicity; hence, problem
(2.1), (1.2)—(1.3) has exactly N eigenvalues [13, page 105]. Therefore,
we have a complete set of eigenfunctions. For the case A = 0 is an
eigenvalue, we replace the eigenvalue parameter A\ by A — ¢, where c is
a constant different from all eigenvalues of L. The eigenvalue problem
(L — (A —¢)I)y = 0, has the same eigenfunctions of L but zero is not
an eigenvalue of it. o

The function G(n,m) is called a Green’s function of the operator L.

Lemma 3.8. G(n,m, ) has the eigenfunction expansion

N
(3.35) G(n,m,\) §:¢kA m, A% Ak,
Y
k=1

where {¢r (")}, is a complete orthonormal set of eigenfunctions of

(2.1), (1.2)—(1.3).
Proof. Since ¢y(+) is an eigenfunction, for A # Ay, the equation

(L = A ¢r(n) = (A — A)¢k(n),

has the solution
N
=3 G(n,m,\) (A — A)gi(m).
m=1

Thus,

(3.36) (G(n,m, \), ¢ (m)) = —

A # k.

Since G(n,m, \) € £2(Zy) for all A, then G(n, m, \) has the eigenfunc-
tion expansion (3.35). O
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Since an eigenvalue Ay may have more than one linearly independent
eigenfunction, then expansion (3.35) may have the form

(3.37) G(n,m,\) = iz"ﬁ’”A Dreas(m ), A # A,
Y

k=1v=1

where vy, is the multiplicity of Ax, and {A};_, is the set of all different
eigenvalues of (2.1), (1.2)—(1.3).

4. Sampling theorems. In the following we derive the sampling
theorems of this paper. A discrete transform whose kernel is either
©1(-,A) or O5(+,A), A € C, will be sampled at the eigenvalues of (2.1),
(1.2)-(1.3) via Lagrange-type interpolation expansion provided that
C(M\) # 0. Let C(\) # 0, and assume that the set of eigenvalues is
denoted by {\;}Y_,.

Theorem 4.1. Let g(-) € (*(Zy). Set
N
F(A) =) §(n)01(n,N),
N
F*(\) =) _g(n)Os(n,)), AeC.

Hence, F(X), F*()\) can be reconstructed from their values at {\g}_,
via the interpolation erpansions

N w1 A
FO) =2 FOw) 3 Ak(w)mk)

(4.2) o A
FO) =2 F 0wy uiigw)gw)

Proof. We prove the theorem for the first transform in (4.1); the
other is similar. Since {O;(-, \x)}i_, forms a complete orthogonal set
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on (%(Zy), then applying Parseval’s equality to the first transform in
(4.1), we obtain

N
01 (k, \)
4.3 7, AeC,
(43) =290 6 o
where
(449)

N N
Z 1(n, M), Z (n, A)O1(n, A\g).

From the definition of F'(A), g(k) = F(Ax). Thus,

N

(45) =3 R aIE

In Green’s formula (2.8), if we let y = ©1(n, ) and z = ©1(n, \g), then
N J—
(A=) > 01(n, )01 (n, Ar)
n=1

= [pm)[©1(n+ 1,81, M) — 01, N8+ 1, M)

Since both ©1(-,A) and ©1(-, Ax) satisfy (1.2) and O1(, \x) satisfies
(1.3), then

(4.6)
N
_ B _ [©1(N +1,)) +b01(N, \)]
n;@l(n,k)@l(n,m = p(N)©1(N, Ar) (A=)

Letting A — A, in (4.6), we obtain

@7) (|0 )% = Z|@1mk 12 = p(N)O1 (N, M) wh (Ar).-
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Equation (4.7) also proves the simplicity of the zeros of w;(A) since
otherwise [|©1(:, \¢)||> = 0, which implies ©1 (-, \x) = 0, contradicting
the fact that ©1(-, \) is an eigenfunction. Combining (4.6), (4.7) and
(4.5), one obtains the first expansion in (4.2). o

Since there is no one single function that generates all eigenfunctions
when C'()\) = 0, we will derive another theorem for transforms whose
kernels are expressed in terms of Green’s function. Let mg € [1, N] be
such that ¢ (mg) # 0 for all k. Define the function Go(n, \) € £?(Zy)
to be

(4.8) Go(n, ) := G(n, mg, A).

From Lemma 3.8 above, since {¢x(n)}Y_, is a complete orthonormal
set of 2(Zy), (3.37) can be viewed as the Fourier expansion of Gy(n, \)
with the Fourier coefficients @ (mg)/(Ax — A), A # Ag. The function

Go(n, A) is a meromorphic function with simple poles at the eigenvalues.
The residue at each pole A\ is

(4.9) P =3 Ghu(n) by (mo).

Define the entire function w(\) to be

S

(4.10) wA) =] (= ).

k=1

The function
(4.11) ®(n, ) :=w(A) Go(n,N),

is an entire function of X\ for each fixed n.

Theorem 4.2. Let g € (*(Zy) and

(4.12) F(A\) =) _g(n)®(n,)), AeC.
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Then F(X) admits the sampling representation

N w(})
(4.13) F(\) = ;F(Ak) PSRBT AeC.

Proof. Since both g and ® are ¢?(Zy)-functions, then

N N
(4.14)  g(n)=>_ (g, k) dr(n => (2, ¢%) di(n
k=1 k=1
Using Parseval’s identity, we get
N s Vg
(415) Z g, ¢k = Z Z <ga ¢k,V> <(}7 ¢k,1/> .
k=1 k=1v=1
From (3.37) and (4.11), we have
w(A
(4.16) (@ 600) = 26, mo)
Ak — A

From (4.12) and (4.11), we obtain

Therefore, using (4.9), we get

N
F(\) = Jim /\ )\k: Z:: (A = Ae)g(n)Go(n, )
Vi N
(4.17) = ') o, Z 1)k, (1

k=1

= —w,()\k)zk(ﬁk V(m0)<g ¢k V>
k=1

Substituting (4.16), (4.17) in (4.15), we arrive at (4.13). o
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5. Examples. In this section we give three worked examples
exhibiting the results of the previous section. The cases C(\) # 0
and C'(\) = 0 are both considered.

Example 5.1. Consider the eigenvalue problem

(5.1) Vip(n)Ay(n)] + 2y(n) + r(n) Z r(i)y(i) = My(n),
(5.2) Ui(y) =y(0) =0, Ux(y) =y(N+1)=0,

where n = 1,...,N, (r(n)) = (1,0,...,0). After some computations
we can see that

sin(n — 1)8
‘pl(n’ >‘) = .
sin 0
(5.3) _ sinnf
a(n, A) = sinf ’

W(p1,2)(n) = —1,

(5.4) P(n,)) = {(()Sin(”‘l)e)/smf’ n=1,...,N,

n=0.

Hence,

(5'5) <P7 T> =0, <‘101:7'> =0, <‘102:7'> =1, C()‘) =1,

(5.6)
_ sin(n —1)8
d1(m,A) = — sinf ’
_ sinnf  sin(n —1)0  cos(n — 1/2)0
92(n, A) = sinf  sinf  cos(8/2)
(5.7)
_ sinnf _ sin(N —n+1)0
NN =" SmN=TTR
where cosf = A\/2. Thus,
in(NV+1
(5.8) wi(\) = _sin(N+1)§ —ws(N),

sin 6
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which gives
(5.9)
km / (_l)k(N+1)
_ Ckm N)= YT N
Ar = 2cos (N+l>, wl( k) QSin(kW/N+1)’ ) )

Then the transform
N
(5.10) Zg (n,)), A€C, gel*(Zy),

has the representation

N sin? (kr/N + 1) sin ((N+1)0 — kn)
(5.11) Z (Ar) (N +1)((A\/2) — cos (kn/N +1))sin’

Example 5.2. Consider the problem (5.1)—(5.2) with (r(n)) =

(1,—1,...,0). We have p;, @2 as in the previous example and
sin(n —1)8 —sin(n — 2)#)/sinf n=2,...,N,
P(n,)\)—{( (n—1) (n—2)0)/ .
(5.12) 0 nES
{(cos(n—3/2)9)/cos(0/2) n=2,...,N,
o n=0,1,

(65.13) (P,r)y=-1, {(p1,7) =1, (p2,7)=1—2cosh, C(A\)=0,

_ sinnf sin(n —1)0  cos(n — 3/2)0
(5:14) v(n,A) = snd (1 =2cos6) sinf  cos(6/2)

Any solution of (5.1) has the form ¢ = av + v P, and the eigenvalues
are the zeros of

(5.15) ( )
—(1—2cos@ 0
e =1 cos(n — 1/2)0/(cos(8/2))  cos(n — 1/2)6/(cos(6/2))
cos(n — 1/2)6.

=—(1—2cosb) cos(8/2)
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Hence, the eigenvalues are

(2k+ D7
Ak cos< oSN 1 ) k=0, , ,

AN_1 = 2cos <§) =1.

Green’s function of the unperturbed problem is
(5.17) g(n,m, )

(5.16)

1 sin(m —1)fsinnd 1<m<n<N,
~ sinfsin(N + 1)6 sin(n —1)f#sinmf 1<n<m<N.
and
(—sin @ sinnf)/(sin 6 sin(N + 1))
2<n<N,
(Arr)(n) = , , .
(5.18) (—sin(n — 1)8sin 20)/(sin O sin(N + 1)6)

1<n<2<N,
=—g(n,2, ).
Taking mg = 2, we get
(5.19) Go(n,A\) = G(n,2,N)
sin 6 sinnﬁ/(sin@(sin(N +1)0+ sin29)) 2<n<N,
a { sin(n — 1)0sin 20/(sin 6 (sin(N + 1)8 +sin26)) 1<n <2< N.

We distinguish between two cases.

Case 1. If N — 2, is not divisible by 3, i.e., Any_1 # g, k =
1

0,1,... ,N — 2, then all eigenvalues are simple. Thus, the zeros of
A(A) and w(A) are the same and have the same multiplicity. So
w(A) = epAc(N), cp is a nonzero constant. Hence, we can replace
w(A) by A.(A) in the sampling expansion. Simple calculations yield

(5.20)  AL(Ax)
B (1) YN —1/2)(2cosb — 1) /(cos(0x/2)) k=0,1,...,N —2.
_{—2005 ({N —1/2}7/3)Q k=N-1,

where 0, = 2k +1)7/(2N +1),k=0,...,N =2, 0y_1 =7/3.



SAMPLING AND DISCRETE PROBLEMS 1805

In this case the sampling representation of the transform

N
(5.21) F(\) = Zﬁ(n) ®(n,N), ®(n,\) =w(A)Go(n,A),
takes the form
(5.22)
F(\) = F(1) ~(2cosf — 1) cos ({N — 1/2}6)

2(A —2cosfy_1) cos ({N —1/2}m/3) cos(6/2)
2 (=1)k+1(2cos 6 — 1) cos ({N — 1/2}8) cos(6/2)
(N —1/2)(X —2cosb) (2cos b — 1) cos(6/2)

N—
+ > F(Xk)
k=0

Case 2. If N — 2, is divisible by 3, i.e., the eigenvalue Ay_; =
A(n—2)/3 is double, and the other eigenvalues are simple. Hence, the

term —(1 — 2cosf) = —(1 — \) is repeated in A., so there is some
constant 3 such that
(5.23)

(D 1/2)
cos(0x/2) ’

cos(n — 1/2)8
cos(6/2) ’
k=0,1,...,N 2.

w(A) =8 thus w'(A\;) =8

Therefore, we have the sampling formula

N-2

(5.24)  F(\) =) F()\k)(

k=0

—1)**tcos ({N — 1/2}8) cos(6/2)
(N —1/2)(X — 2cosby) cos(6/2)

for the associated transform of the type (4.12).

Example 5.3. Consider the problem (5.1)—(5.2) with (r(n)) =
(1,1,...,1). We have @1, ¢y as in the previous examples and

sin(n — 1)0 — sinnb + sin 6
4sin*(0/2) sin 6

N sinf —sin N6

4sin*(0/2)sinf

(5.25) P(n,\) =

)

(5.26) C(\) =1+
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It is easy to see that when 8 = 0 or =, i.e., A =2 or —2, C(\) # 0. For
0 < 0 < m, equating (5.25) to zero, one gets

sin(n + 1)0

(5.27) Un_1+U; =N +2, U, = -
sin 6

Since |U,| < n+ 1, for 0 < 6 < 7w, we deduce that C(\) # 0 for any
real A\. Here we have

sin(n — 1)0 cos(0/2) — cos(N —1/2)6
b1(m,A) = — sin 6 4sin*(#/2) sinf + N sin f — sin N@
sin(n — 1)@ — sinnf + sin §
2sin(0/2) sin b
sin nf cos(6/2) — cos(N +1/2)6
¢2(n A) = sinf 4sin*(0/2)sinf + N sin § — sin N6
sin(n — 1)0 — sinnf + sin @
2sin(6/2) sin 6
Since ©1(n,\) = —¢2(n, A), the eigenvalues are the zeros of
wr(N) = _sin(NV +1)¢ cos(0/2) — cos(N +1/2)6
(5.28) sin 4sin®(/2)sinf + N sinf — sin N6
sin NO —sin(N +1)0 +sinf
2sin(6/2) sin 6 N

Therefore, if g(-) € ¢*(Zy), and
N

(5.29) F(A\) =) _g(n)®(n,)), AeC,
n=1

where ® is given in (4.11) above, then F()\) has the sampling expansion

(5.30) F() = ZF(’\’C)%’

where {\;}_, are the zeros of (5.28).
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