NORM-PRESERVING SURJECTIONS ON ALGEBRAS OF CONTINUOUS FUNCTIONS

DAI HONMA

ABSTRACT. Let X,Y be two compact Hausdorff spaces, and let C(X) denote the Banach algebra of all complex-valued, continuous functions on X endowed with the supremum norm $\|f\|_X$. It is shown that if T is a surjective map of C(X) onto C(Y) such that $T\lambda = \lambda$ for $\lambda \in \{\pm 1, \pm i\}$ and satisfying $\|(Tf)\overline{(Tg)} - 1\|_Y = \|f\overline{g} - 1\|_X$ for every pair f and g in C(X), then T is given by $Tf = f \circ \phi$ for some homeomorphic map ϕ of Y onto X; in particular, T is an isometric algebra *-isomorphism.

1. Introduction. There are many papers that deal with spectrum-preserving maps between Banach algebras. Molnár [8] initiated the study of multiplicatively spectrum-preserving maps and showed that a unit preserving surjective map $T:C(X)\to C(X)$, not necessarily linear, on a first-countable compact Hausdorff space X is an algebra isomorphism if

$$\sigma(TfTg) = \sigma(fg)$$

holds for every pair f and g in C(X). Rao and Roy [11] dealt with uniform algebras on compact Hausdorff spaces which are regarded as the maximal ideal space and generalized the result of Molnár. Hatori, Miura and Takagi [1] extended the result of Molnár by replacing the spectrum with the range and showed that a unit preserving surjective map $T:A\to B$ between two uniform algebras is an algebra isomorphism if

$$\operatorname{Ran}(TfTg) = \operatorname{Ran}(fg)$$

holds for every pair f and g in A, where Ran (h) denotes the range of h. Recall that the *peripheral range*, Ran $_{\pi}(f)$, of f in a uniform algebra is defined by Ran $_{\pi}(f) = \{z \in \text{Ran}(f) : |z| = ||f||\}$, where ||f|| is the supremum norm of f. Luttman and Tonev [7] extended the result of Hatori, Miura and Takagi by replacing the ranges with the peripheral

²⁰⁰⁰ AMS Mathematics subject classification. Primary 46J10. Received by the editors on October 22, 2006, and in revised form on March 19, 2007

 $DOI: 10.1216 / RMJ-2009-39-5-1517 \quad Copy \ right © 2009 \ Rocky \ Mountain \ Mathematics \ Consortium \ Mountain \ Mathematics \ Consortium \ Mathematics \ Mountain \ Mathematics \ Mathematics \ Mountain \ Mathematics \ Math$

ranges and showed that a unit preserving surjective map $T: A \to B$ is an algebra isomorphism if T is Ran_{π} -multiplicative (or, peripherally-multiplicative), i.e.,

$$\operatorname{Ran}_{\pi}(TfTg) = \operatorname{Ran}_{\pi}(fg), \quad f, g \in A.$$

Lambert, Luttman and Tonev [6] considered mappings $T:A\to B$ that satisfy the condition $\operatorname{Ran}_{\pi}((Tf)(Tg))\cap \operatorname{Ran}_{\pi}(fg)\neq\varnothing$ for all $f,g\in A$, in general nonlinear, and called them weakly peripherally-multiplicative. They have shown that a mapping $T:A\to B$ between uniform algebras is an isometric algebra isomorphism if and only if it is weakly peripherally-multiplicative and preserves the class of peak functions. In particular, they proved that if a map $T:A\to B$ is norm-multiplicative, i.e.,

$$||TfTg|| = ||fg||, \quad f, g \in A,$$

and preserves the class of peak functions, then there exists a home-omorphism $\phi: \delta A \to \delta B$ so that the equality $|(Tf)(\phi(x))| = |f(x)|$ holds for every $f \in A$ and all x in the Choquet boundary δA of A.

Molnár [8] also gave a characterization on algebra *-isomorphisms: a unit preserving surjective map $T: C(X) \to C(X)$ for a first-countable compact Hausdorff space X is an algebra *-isomorphism if

$$\sigma(Tf\overline{Tg}) = \sigma(f\overline{g})$$

holds for every pair f and g in C(X). Hatori, Miura and Takagi [2] generalized this result for certain semi-simple commutative Banach *-algebras. The author [5] extended the result of Molnár by considering the peripheral ranges instead of the spectra and, in particular, it was proved that a unit preserving surjective map $T:C(X)\to C(Y)$ for compact Hausdorff spaces X and Y (not necessarily first-countable) is an algebra *-isomorphism if

$$\operatorname{Ran}_{\pi}(Tf\overline{Tg}) = \operatorname{Ran}_{\pi}(f\overline{g})$$

holds for every pair f and g in C(X).

In this paper we consider a further extension: multiplicatively normpreserving maps. First of all, one can modify an example of Lambert, Luttman and Tonev [6, Example 1] and exhibit a map which is not linear such that the equality

$$||Tf\overline{Tg}||_Y = ||f\overline{g}||_X$$

holds for every pair f and g in C(X). In the following we mainly consider the condition

$$||Tf\overline{Tg} - 1||_Y = ||f\overline{g} - 1||_X, \quad f, g \in C(X)$$

on a map T from C(X) onto C(Y). If T satisfies the hypothesis

$$\sigma(Tf\overline{Tg}) = \sigma(f\overline{g}), \quad f, g \in C(X),$$

then T satisfies the above condition.

Our main result is the following.

Theorem 1.1. Let X, Y be two compact Hausdorff spaces. If a surjective map $T: C(X) \to C(Y)$ satisfies the conditions

- (a) $T\lambda = \lambda$ for $\lambda \in \{\pm 1, \pm i\}$ and
- (b) $||(Tf)\overline{(Tg)} 1||_Y = ||f\bar{g} 1||_X \text{ for all } f, g \in C(X),$

then there exists a homeomorphism ϕ of Y onto X such that $Tf = f \circ \phi$ for every f in C(X); in particular, T is an isometric algebra *-isomorphism.

2. Preliminaries. Let X be a compact Hausdorff space. We denote by $\sigma_{\pi}(f)$ the *peripheral spectrum* of an element $f \in C(X)$:

$$\sigma_{\pi}(f) = \{ z \in \sigma(f) : |z| = r(f) \},$$

where r(f) denotes the spectral radius of f. Clearly, $\sigma_{\pi}(f) = \operatorname{Ran}_{\pi}(f)$. We denote by P_X° the set of all peak functions in $C(X)^{-1}$, that is, $P_X^{\circ} = \{u \in C(X)^{-1} : \sigma_{\pi}(u) = \{1\}\}$. If $x \in X$, then $P_X^{\circ}(x) = \{u \in P_X^{\circ} : u(x) = 1\}$.

Lemma 2.1. Let $x_0 \in X$, and let F be a closed subset of X with $x_0 \notin F$. Then for each $\varepsilon > 0$ there exists a $u \in P_X^{\circ}(x_0)$ such that $|u(x)| < \varepsilon$ for $x \in F$.

Proof. Let $\varepsilon > 0$ be given. Since $\{x_0\}$ and F are disjoint closed subsets of X, by Urysohn's lemma there exists a continuous function $v_1: X \to [0,1]$ such that $v_1(x_0) = 1$ and $v_1 = 0$ on F. Let $v_2 = (1+v_1)/2$. Then $v_2 \in P_X^{\circ}(x_0)$ and $v_2 = 1/2$ on F. We see that $u = v_2^n$ has the required properties for some sufficiently large n. \square

In the following lemma, the same result for a not necessarily invertible, peak function is proved in [6] for arbitrary uniform algebra.

Lemma 2.2. Let $f \in C(X)$ and $x_0 \in X$. If $\lambda = f(x_0)$ and $\lambda \neq 0$, then there exists a $u \in P^{\circ}_{\mathbf{X}}(x_0)$ such that $\sigma_{\pi}((1/\lambda)fu) = \{1\}$.

Proof. Suppose $\lambda \neq 0$. Let $F_0 = \{x \in X : |f(x) - \lambda| \geq 2^{-1}|\lambda|\}$ and

$$F_n = \{ x \in X : 2^{-n-1} |\lambda| \le |f(x) - \lambda| \le 2^{-n} |\lambda| \}$$

for $n=1,2,\ldots$. Clearly, F_0,F_1,\ldots are closed subsets of X that do not contain x_0 ; so by Urysohn's lemma, there exist continuous functions v_0,v_1,\ldots such that $0 \leq v_j \leq 1$, $v_j(x_0)=1$ and $v_j=0$ on F_j for $j=0,1,\ldots$. For each j we take a positive integer n_j so that $u_j=(1+v_j/2)^{n_j}$ may have the property: If j=0,

$$|u_0(x)| < \frac{|\lambda|}{\|f\|_X}, \quad x \in F_0$$

and, if j > 0,

$$|u_j(x)| < \frac{1}{2j+1}, \quad x \in F_j.$$

Now put $u = u_0 \sum_{n=1}^{\infty} 2^{-n} u_n$. This series is majorized by the convergent series $\sum 2^{-n}$, so u is well defined and $u \in C(X)$. Moreover, u is easily seen to be a function in $P_X^{\circ}(x_0)$.

Put $g = (1/\lambda) f u$. To verify $\sigma_{\pi}(g) = \{1\}$, pick $x \in X$. If $x \in F_0$, then we see

$$|g(x)| = \frac{1}{|\lambda|} |f(x)| |u_0(x)| \sum_{n=1}^{\infty} \frac{|u_n(x)|}{2^n} < \frac{1}{|\lambda|} ||f||_X \frac{|\lambda|}{||f||_X} \sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$$

If $x \in F_n$ for some positive integer n, then

$$|g(x)| = \frac{1}{|\lambda|} |f(x)| |u_0(x)| \left(\frac{|u_n(x)|}{2^n} + \sum_{j \neq n} \frac{|u_j(x)|}{2^j} \right)$$

$$\leq \frac{1}{|\lambda|} (|f(x) - \lambda| + |\lambda|) \left(\frac{|u_n(x)|}{2^n} + \sum_{j \neq n} \frac{1}{2^j} \right)$$

$$< \frac{1}{|\lambda|} \left(\frac{|\lambda|}{2^n} + |\lambda| \right) \left(\frac{1}{2^n} \frac{1}{2^n + 1} + 1 - \frac{1}{2^n} \right) = 1.$$

If $x \in X \setminus \bigcup_{j=0}^{\infty} F_j$, then $f(x) = \lambda$ and $g(x) = u(x) \in D \cup \{1\}$, where $D = \{z \in \mathbf{C} : |z| < 1\}$. Thus, $g(X) \subset D \cup \{1\}$. In particular, $g(x_0) = u(x_0) = 1$. Hence, $\sigma_{\pi}(g) = \{1\}$. This completes the proof. \square

- 3. A proof of Theorem 1.1. Throughout this section, T denotes a surjective map which satisfies the hypotheses of Theorem 1.1:
 - (a) $T\lambda = \lambda$ for $\lambda \in \{\pm 1, \pm i\}$ and
 - (b) $||(Tf)\overline{(Tg)} 1||_Y = ||f\bar{g} 1||_X$ for all $f, g \in C(X)$.

Lemma 3.1. $T(C(X)^{-1}) = C(Y)^{-1}$.

Proof. Let $f \in C(X)^{-1}$. Then we see that $\|Tf\overline{T(\overline{f^{-1}})} - 1\|_Y = \|ff^{-1} - 1\|_X = 0$, thus $Tf\overline{T(\overline{f^{-1}})} = 1$. Hence, $Tf \in C(Y)^{-1}$. Let $F \in C(Y)^{-1}$. Since T is surjective, there are f and g in C(X) such that Tf = F and $Tg = \overline{F^{-1}}$. Then we see that $\|f\overline{g} - 1\|_X = \|Tf\overline{Tg} - 1\|_Y = \|FF^{-1} - 1\|_Y = 0$. Thus, we have that $f\overline{g} = 1$, and $f \in C(X)^{-1}$.

Lemma 3.2. T is injective.

Proof. Suppose Tf = Tg for $f, g \in C(X)$. We will show that f = g. Let $x \in X$. First we consider the case where $f(x) \neq 0$ and $g(x) \neq 0$. By Lemma 2.2, there exist u_f , $u_g \in P_X^{\circ}(x)$ such that $\sigma_{\pi}(fu_f) = \{f(x)\}$ and $\sigma_{\pi}(gu_g) = \{g(x)\}$. Let $u = u_f u_g$. Then u is an element in $P_X^{\circ}(x)$

such that $\sigma_{\pi}(fu) = \{f(x)\}\$ and $\sigma_{\pi}(gu) = \{g(x)\}\$. Then we see that

$$2 = \left\| f \frac{-1}{f(x)} u - 1 \right\|_{X} = \left\| T f \overline{T \left(\frac{-u}{f(x)} \right)} - 1 \right\|_{Y}$$

$$= \left\| T g \overline{T \left(\frac{-u}{f(x)} \right)} - 1 \right\|_{Y} = \left\| g \frac{-1}{f(x)} u - 1 \right\|_{X}$$

$$\leq \frac{1}{|f(x)|} \|g u\|_{X} + 1 = \frac{|g(x)|}{|f(x)|} + 1.$$

Therefore, $|f(x)| \leq |g(x)|$ holds. In a similar way, we see that $|g(x)| \leq |f(x)|$. So we have |f(x)| = |g(x)|. This fact implies that $|g(-1/f(x))u|_X = 1$. It follows that $-1 \in \sigma_\pi(g(-1/f(x))u)$, since $||g(-1/f(x))u - 1||_X = 2$. Thus, $|f(x)| \in \sigma_\pi(gu) = |\{g(x)\}|$, and |f(x)| = |g(x)|.

Next we consider the case where f(x)=0 or g(x)=0. Without loss of generality we may assume f(x)=0. We will show that g(x)=0. Suppose not. Let ε be a positive number with $\varepsilon<|g(x)|$. Let $F=\{x'\in X:|f(x')|\geq \varepsilon\}$. Since F is a closed subset of X with $x\notin F$, by Lemma 2.1 there exists a $u_f\in P_X^\circ(x)$ such that $|u_f(x')|<\varepsilon/(||f||_X+1)$ for all $x'\in F$. We have that $|fu_f|<\varepsilon$ on X. Since $g(x)\neq 0$, by Lemma 2.2 there exists a $u_g\in P_X^\circ(x)$ such that $\sigma_\pi(gu_g)=\{g(x)\}$. Let $u=u_fu_g$. Then u is an element of $P_X^\circ(x)$ such that $|fu|<\varepsilon$ on X and $\sigma_\pi(gu)=\{g(x)\}$. Choose $\alpha\in \mathbf{C}$ such that $|\alpha|=1$ and $(\alpha gu)(x)=-|g(x)|$. Then we see that

$$|g(x)| + 1 = ||\alpha gu - 1||_X = ||(Tg)(\overline{T(\overline{\alpha u})}) - 1||_Y$$

= $||(Tf)(\overline{T(\overline{\alpha u})}) - 1||_Y = ||\alpha fu - 1||_X$
 $\leq 1 + \varepsilon.$

Thus we have $|g(x)| \le \varepsilon$. This contradicts $\varepsilon < |g(x)|$. Hence, g(x) = 0. This completes the proof. \square

By Lemma 3.2, we can consider the inverse T^{-1} of C(Y) onto C(X). Clearly T^{-1} has the same properties as T:

(a')
$$T^{-1}\lambda = \lambda$$
, $(\lambda \in \{\pm 1, \pm i\})$,

(b')
$$\|(T^{-1}F)\overline{(T^{-1}G)} - 1\|_X = \|F\overline{G} - 1\|_Y, F, G \in C(Y).$$

Lemma 3.3. If $f, g \in C(X)^{-1}$, then the equation $\|(Tf)\overline{(Tg)}\|_Y = \|f\overline{g}\|_X$ holds; in particular, $\|Tf\|_Y = \|f\|_X$ holds for every $f \in C(X)^{-1}$. Since $|z\overline{w}| = |zw|$ for any $z, w \in \mathbf{C}$, as a consequence of it T is norm-multiplicative on $C(X)^{-1}$, that is, $\|TfTg\|_Y = \|fg\|_X$ for every pair f and g in $C(X)^{-1}$.

Proof. Let $f,g\in C(X)^{-1}$. We will show that $\|f\overline{g}\|_X\leq \|(Tf)(\overline{Tg})\|_Y$. From Lemma 3.1, $Tf,Tg\in C(Y)^{-1}$. Let $K_n=T(nf)(Tf)^{-1}$ for $n=1,2,\ldots$. In the proof of Lemma 3.1, we have shown that $(Tf)^{-1}=\overline{T(\overline{f^{-1}})}$. It follows that $K_n=T(nf)\overline{T(\overline{f^{-1}})}$. Then we have that $\|K_n\|_Y\leq n$ for each n, since $\|K_n\|_Y-1\leq \|K_n-1\|_Y=\|T(nf)\overline{T(\overline{f^{-1}})}-1\|_Y=\|(nf)f^{-1}-1\|_X=n-1$. For each n we have

$$n\|f\overline{g}\|_{X} - 1 \le \|(nf)\overline{g} - 1\|_{X} = \|T(nf)\overline{Tg} - 1\|_{Y}$$

$$\le \|T(nf)\overline{Tg}\|_{Y} + 1 \le \|K_{n}\|_{Y} \|(Tf)(\overline{Tg})\|_{Y} + 1.$$

Since $||K_n||_Y \leq n$ for every n, it follows that

$$||f\overline{g}||_X - \frac{1}{n} \le ||(Tf)(\overline{Tg})||_Y + \frac{1}{n}.$$

Letting n tend to ∞ , gives $||f\bar{g}||_X \leq ||(Tf)(\overline{Tg})||_Y$. Applying a similar argument to T^{-1} , yields $||(Tf)(\overline{Tg})||_Y \leq ||f\bar{g}||_X$. Hence, $||(Tf)(\overline{Tg})||_Y = ||f\bar{g}||_X$ holds for every pair f and g in $C(X)^{-1}$.

Lemma 3.4. If f and g are elements in $C(X)^{-1}$ such that $||Tf||_Y = 1 = ||Tg||_Y$ and $|Tf|^{-1}(1) \subset |Tg|^{-1}(1)$, then $|f|^{-1}(1) \subset |g|^{-1}(1)$.

Proof. We assume that $|Tf|^{-1}(1) \subset |Tg|^{-1}(1)$. We will show that $|f|^{-1}(1) \subset |g|^{-1}(1)$. Suppose not. Then there is an $x \in X$ such that $x \in |f|^{-1}(1) \setminus |g|^{-1}(1)$. By Lemma 3.3 we have that $||f||_X = ||Tf||_Y = 1$ and $||g||_X = ||Tg||_Y = 1$. $|g|^{-1}(1)$ is a closed subset of X which does not contain x. By Lemma 2.1 there exists a $u \in P_X^{\circ}(x)$ such that |u(x')| < 1 for $x' \in |g|^{-1}(1)$. Then we have that |ug| < 1 on X, that is, $||ug||_X < 1$. Then we have

(1)
$$||(Tu)(\overline{Tg})||_{Y} = ||u\bar{g}||_{X} = ||ug||_{X} < 1.$$

On the other hand, since $|(u\bar{f})(x)| = 1$ and $||f||_X = 1 = ||u||_X$, we have $||(Tu)(\overline{Tf})||_Y = ||u\bar{f}||_X = 1$. Hence, there is a $y \in Y$ such that

|Tu(y)||Tf(y)| = 1. Since by Lemma 3.3 $||Tu||_Y = ||u||_X = 1 = ||Tf||_Y$, we have |Tu(y)| = 1 = |Tf(y)|. This implies $|(Tu\overline{Tg})(y)| = |Tu(y)||Tg(y)| = 1$ because $|Tf|^{-1}(1) \subset |Tg|^{-1}(1)$. Hence we have that $||(Tu)(\overline{Tg})||_Y = 1$. This contradicts the inequality (1).

We will construct a homeomorphism of Y onto X which satisfies the resulting conditions of Theorem 1.1. Lambert, Luttman and Tonev $[\mathbf{6}]$ proved that if a map $T:A\to B$ between two uniform algebras preserves the class of peak functions and is norm-multiplicative, then there exists a homeomorphism $\phi:\delta A\to \delta B$ so that the equality $|(Tf)(\phi(x))|=|f(x)|$ holds for every $f\in A$ and all x in the Choquet boundary δA of A. A similar argument was used in $[\mathbf{7},\mathbf{11}]$. The idea of our construction of a homeomorphism has the same vein. First, we will show that there exists a homeomorphism ϕ of Y onto X such that $|Tf(y)|=|f(\phi(y))|$ holds for every $f\in C(X)^{-1}$ and $y\in Y$. Next, we will show that the indicated map has the desired properties.

For $x \in X$, set $\mathfrak{F}_X(x) = C(X)^{-1} \cap \{f \in C(X) : |f(x)| = 1 = ||f||_X\}$. Clearly, $\mathfrak{F}_X(x)$ properly contains $P_X^{\circ}(x)$.

Lemma 3.5. For $x_1, x_2 \in X$, $x_1 = x_2$ if and only if $\mathfrak{F}_X(x_1) \subset \mathfrak{F}_X(x_2)$.

Proof. The 'only if' part is trivial. We will show the 'if' part. Assume that $x_1 \neq x_2$. Then, by Lemma 2.1, there exists a $u \in P_X^{\circ}(x_1)$ such that $|u(x_2)| < 1$. Thus, we see that $u \in \mathfrak{F}_X(x_1) \setminus \mathfrak{F}_X(x_2)$, that is, $\mathfrak{F}_X(x_1) \not\subset \mathfrak{F}_X(x_2)$.

Lemma 3.6. For each $y \in Y$, there corresponds a unique $x \in X$ such that $T[\mathfrak{F}_X(x)] = \mathfrak{F}_Y(y)$.

Proof. Let $y \in Y$. First, we will show that there exists an $x \in X$ such that $T^{-1}[\mathfrak{F}_Y(y)] \subset \mathfrak{F}_X(x)$. Set

$$L_y = \bigcap_{f \in T^{-1}[\mathfrak{F}_Y(y)]} |f|^{-1}(1).$$

Let $f_1, \ldots, f_n \in T^{-1}[\mathfrak{F}_Y(y)]$. Let $F = Tf_1 \cdots Tf_n$ and $f = T^{-1}F$. Then we see that $F \in C(Y)^{-1}$ and |F(y)| = 1. Since $||Tf_j||_Y = 1$

for every j, we have that $||F||_Y = 1$. Thus by Lemma 3.3, we have that $||f||_X = ||Tf||_Y = ||F||_Y = 1$. Thus, $|f|^{-1}(1)$ is nonempty. Since $||Tf_j||_Y = 1$, we have that $|Tf|^{-1}(1) \subset |Tf_j|^{-1}(1)$ for every j. By Lemma 3.4 we see that $|f|^{-1}(1) \subset |f_j|^{-1}(1)$ for every j, that is, the intersection of all $|f_j|^{-1}(1)$ contains the nonempty set $|f|^{-1}(1)$. Thus, the class $\{|f|^{-1}(1): f \in T^{-1}[\mathfrak{F}_Y(y)]\}$ has the finite intersection property. Since $|g|^{-1}(1)$ is compact for every $g \in T^{-1}[\mathfrak{F}_Y(y)]$, L_y is nonempty. Take an element, say x, from L_y ; then we see that $T^{-1}[\mathfrak{F}_Y(y)] \subset \mathfrak{F}_X(x)$.

Secondly, we show that $T[\mathfrak{F}_X(x)] = \mathfrak{F}_Y(y)$. Applying the above argument to T^{-1} , there exists a $y' \in Y$ such that $T[\mathfrak{F}_X(x)] \subset \mathfrak{F}_Y(y')$ because T^{-1} has the same properties as T. Since T is surjective, we have that $\mathfrak{F}_Y(y) = T[T^{-1}[\mathfrak{F}_Y(y)]] \subset T[\mathfrak{F}_X(x)] \subset \mathfrak{F}_Y(y')$. By Lemma 3.5, we see that y = y' and hence $T[\mathfrak{F}_X(x)] = \mathfrak{F}_Y(y)$.

Finally, we show the uniqueness of x. Suppose that there is an $x' \in X$ such that $T[\mathfrak{F}_X(x')] = \mathfrak{F}_Y(y)$. Then the injectivity of T implies that $\mathfrak{F}_X(x) = T^{-1}[\mathfrak{F}_Y(y)] = \mathfrak{F}_X(x')$. Lemma 3.5 yields that x = x'. This completes the proof. \square

By Lemma 3.6, we can consider a map ϕ of Y into X such that $T[\mathfrak{F}_X(\phi(y))] = \mathfrak{F}_Y(y)$ for every $y \in Y$.

Lemma 3.7. ϕ is a homeomorphism of Y onto X such that $|Tf(y)| = |f(\phi(y))|$ holds for every $f \in C(X)^{-1}$ and $y \in Y$.

Proof. First, we will show that $|Tf(y)| = |f(\phi(y))|$ holds for every $f \in C(X)^{-1}$ and $y \in Y$. Let $f \in C(X)^{-1}$ and $y \in Y$. Then $f(\phi(y)) \neq 0$. By Lemma 2.2, there exists an $h \in P_X^{\circ}(\phi(y))$ such that $\sigma_{\pi}(fh) = \{f(\phi(y))\}$. Thus,

(2)
$$||fh||_X = |f(\phi(y))|.$$

Since $P_X^{\circ}(\phi(y)) \subset \mathfrak{F}_X(\phi(y))$, by the definition of ϕ , we see that $|Th(y)| = 1 = ||Th||_Y$. Since $f, h \in C(X)^{-1}$ and |Th(y)| = 1, by Lemma 3.3 we have that

$$||fh||_X = ||(Tf)(Th)||_Y \ge |Tf(y)||Th(y)|$$

= $|Tf(y)|$.

This fact and equality (2) imply that

$$|Tf(y)| \le |f(\phi(y))|.$$

Since $Tf \in C(X)^{-1}$, $Tf(y) \neq 0$, by Lemma 2.2 there exists a $G \in P_Y^{\circ}(y)$ such that $\sigma_{\pi}((Tf)G) = \{Tf(y)\}$. Let $g = T^{-1}G$. Then G is also in $\mathfrak{F}_Y(y)$; thus, $|g(\phi(y))| = 1$ from the definition of ϕ . Since $G \in C(Y)^{-1}$, we have that $g \in C(X)^{-1}$ by Lemma 3.1. Thus, by Lemma 3.3 we have that $|Tf(y)| = |(Tf)G||_Y = ||fg||_X \geq |f(\phi(y))|$. This fact and inequality (3) imply that $|Tf(y)| = |f(\phi(y))|$.

Secondly, we will show that ϕ is continuous. Let \mathbf{T}_1 be the given topology on X, and let $\{y_\alpha\}$ be a convergent net in Y with $\lim y_\alpha = y$. Then the first part shows that $\lim |f(\phi(y_\alpha))| = \lim |Tf(y_\alpha)| = |Tf(y)| = |f(\phi(y))|$ for every $f \in C(X)^{-1}$. Thus, $\phi(y_\alpha)$ converges to $\phi(y)$ with respect to the weak topology \mathbf{T}_2 on X generated by $|C(X)^{-1}| = \{|f|: f \in C(X)^{-1}\}$. The identity map of (X, \mathbf{T}_1) onto (X, \mathbf{T}_2) is continuous, and (X, \mathbf{T}_2) is Hausdorff because $|C(X)^{-1}|$ separates the points of X; since (X, \mathbf{T}_1) is compact, the map is a homeomorphism. Hence, ϕ is continuous.

Finally, we will show that ϕ is a homeomorphism of Y onto X. Since T^{-1} has the same properties as T, there exists a continuous map ψ of X into Y such that $T^{-1}[\mathfrak{F}_Y(\psi(x))] = \mathfrak{F}_X(x)$ and $|T^{-1}F(x)| = |F(\psi(x))|$ for every $F \in C(Y)^{-1}$. Let $y \in Y$ and $f \in C(X)^{-1}$ with F = Tf. Then we have that

$$|Tf(y)| = |f(\phi(y))| = |T^{-1}F(\phi(y))|$$

= |F(\psi(\phi(\phi(y)))| = |Tf(\psi(\phi(\phi(y)))|.

Thus $y = \psi(\phi(y))$, since $|C(Y)^{-1}| = |T(C(X)^{-1})|$ separates the points of Y. In a similar way, we have $x = \phi(\psi(x))$ for every $x \in X$. Hence, ϕ is a bijective map of Y onto X with $\phi^{-1} = \psi$. Since ψ is continuous, ϕ is a homeomorphism of Y onto X.

Lemma 3.8. $T\lambda=\lambda$ holds for every $\lambda\in S^1,$ where $S^1=\{z\in {\bf C}: |z|=1\}.$

Proof. Let $\lambda \in S^1$. We may assume that $\lambda \notin \{\pm 1, \pm i\}$. From condition (b), we have that $\||T\lambda|^2 - 1\|_Y = \|T\lambda \overline{T\lambda} - 1\|_Y = \|\lambda \overline{\lambda} - 1\|_X =$

0, thus $|T\lambda|=1$, or equivalently, $(T\lambda)(Y)\subset S^1$. Since T1=1, we have

(4)
$$||T\lambda - 1||_Y = ||T\lambda \overline{T1} - 1||_Y = ||l \cdot \overline{1} - 1||_X = |\lambda - 1|.$$

Since T(-1) = -1, we have

(5)
$$||T\lambda + 1||_Y = ||T\lambda \overline{T(-1)} - 1||_Y = ||\lambda \cdot (\overline{-1}) - 1||_X = |\lambda + 1|.$$

Since $(T\lambda)(Y) \subset S^1$, (4) and (5) imply that $(T\lambda)(Y) \subset \{\lambda, \bar{\lambda}\}$. If Im $\lambda > 0$, the condition Ti = i gives

$$||T\lambda - i||_Y = ||T\lambda \overline{Ti} - 1||_Y = ||\lambda \cdot \overline{i} - 1||_X = |\lambda - i|.$$

This implies that $(T\lambda)(Y) = \{\lambda\}$, that is, $T\lambda = \lambda$. If $\operatorname{Im} \lambda < 0$, in a similar way, we have that $||T\lambda + i||_Y = |\lambda + i|$ because T(-i) = -i. It follows that $T\lambda = \lambda$. Thus the proof is complete. \square

Lemma 3.9. $T(\alpha P_X^{\circ}(\phi(y))) = \alpha P_Y^{\circ}(y)$ holds for every $\alpha \in S^1$ and $y \in Y$.

Proof. Let $\alpha \in S^1$. First, we will show that $T(\alpha P_X^{\circ}) = \alpha P_Y^{\circ}$. Let $f \in P_X^{\circ}$. From Lemma 3.8 we have

$$2 = \| -\overline{\alpha}\alpha f - 1\|_X = \|T(\alpha f)\overline{T(-\alpha)} - 1\|_Y$$
$$= \| -\overline{\alpha}T(\alpha f) - 1\|_Y.$$

Thus, $\alpha \in \sigma_{\pi}(T(\alpha f))$ since $||T(\alpha f)||_{Y} = ||\alpha f||_{X} = 1$ by Lemma 3.3. Let $\beta \in \sigma_{\pi}(T(\alpha f))$. Lemma 3.8 gives

$$2 = \| -\overline{\beta}T(\alpha f) - 1\|_Y = \|\overline{T(-\beta)}T(\alpha f) - 1\|_Y$$
$$= \| -\overline{\beta}\alpha f - 1\|_X.$$

Thus, $\beta \in \sigma_{\pi}(\alpha f)$ since $\|\alpha f\|_{X} = 1$. Since $\sigma_{\pi}(\alpha f) = \{\alpha\}$, we have that $\beta = \alpha$ and $\sigma_{\pi}(T(\alpha f)) = \{\alpha\}$. Thus, $T(\alpha P_{X}^{\circ}) \subset \alpha P_{Y}^{\circ}$. In a similar way, we have that $T^{-1}(\alpha P_{Y}^{\circ}) \subset \alpha P_{X}^{\circ}$. Hence, $T(\alpha P_{X}^{\circ}) = \alpha P_{Y}^{\circ}$.

Let $y \in Y$ and $f \in P_X^{\circ}(\phi(y))$. From the above argument, we have that $T(\alpha f) \in \alpha P_Y^{\circ}$. We show that $T(\alpha f)(y) = \alpha$. Since $f \in C(X)^{-1}$, by Lemmas 3.3 and 3.7 we see that

$$|T(\alpha f)(y)| = |\alpha f(\phi(y))| = 1 = ||\alpha f||_X$$

= $||T(\alpha f)||_Y$.

Thus, we have $T(\alpha f)(y) = \alpha$. Since $f \in P_X^{\circ}(\phi(y))$ is arbitrary, we have that $T(\alpha P_X^{\circ}(\phi(y))) \subset \alpha P_Y^{\circ}(y)$. In a similar way, it holds for T^{-1} that $T^{-1}(\alpha P_Y^{\circ}(\phi^{-1}(x))) \subset \alpha P_X^{\circ}(x)$ for every $x \in X$. Let $x = \phi(y)$. Then $T^{-1}(\alpha P_Y^{\circ}(y)) \subset \alpha P_X^{\circ}(\phi(y))$, so we see that

$$\alpha P_Y^{\circ}(y) = T(T^{-1}(\alpha P_Y^{\circ}(y))) \subset T(\alpha P_X^{\circ}(\phi(y)))$$

$$\subset \alpha P_Y^{\circ}(y).$$

Thus, we have that $T(\alpha P_X^{\circ}(\phi(y))) = \alpha P_Y^{\circ}(y)$.

Lemma 3.10. If $f \in C(X)^{-1}$, then $Tf(y) = f(\phi(y))$ holds for every $y \in Y$.

Proof. Let $f \in C(X)^{-1}$ and $y \in Y$. From Lemma 3.7, we have $|Tf(y)| = |f(\phi(y))|$. Suppose $Tf(y) \neq f(\phi(y))$. Since $Tf(y) \neq 0$, there exists an $H \in P_Y^{\circ}(y)$ such that $\sigma_{\pi}((Tf)H) = \{Tf(y)\}$ by Lemma 2.2. Since T is surjective, there exists an $h \in C(X)$ such that $Th = \overline{H}$. Since \overline{H} is also in $P_Y^{\circ}(y)$, Lemma 3.9 implies that $h \in P_X^{\circ}(\phi(y))$ and $\sigma_{\pi}((Tf)(\overline{Th})) = \sigma_{\pi}((Tf)H) = \{Tf(y)\}$. Let $\alpha = -|f(\phi(y))|^{-1}\overline{f(\phi(y))}$. Then $\sigma_{\pi}(\alpha(Tf)(\overline{Th})) = \{\alpha(Tf(y))\}$. Our assumption $Tf(y) \neq f(\phi(y))$ implies that $\alpha(Tf(y)) \neq -|Tf(y)|$. Thus, we see that $-|Tf(y)| \notin [\alpha(Tf)(\overline{Th})](Y)$. It follows that

(6)
$$\|\alpha(Tf)(\overline{Th}) - 1\|_Y < |Tf(y)| + 1.$$

Since $\overline{\alpha}Th \in \overline{\alpha}P_Y^{\circ}(y)$, from Lemma 3.9 there exists an $h' \in P_X^{\circ}(\phi(y))$ such that $T(\overline{\alpha}h') = \overline{\alpha}Th$. Then we see that

$$\|\alpha(Tf)(\overline{Th}) - 1\|_{Y} = \|(Tf)(\overline{T(\bar{\alpha}h')}) - 1\|_{Y} = \|\alpha f \bar{h}' - 1\|_{X}$$

$$\geq |\alpha f(\phi(y))\overline{h'(\phi(y))} - 1|$$

$$= |-|f(\phi(y))| - 1| = |-|Tf(y)| - 1|$$

$$= |Tf(y)| + 1.$$

Thus, $\|\alpha(Tf)(\overline{Th}) - 1\|_Y \ge |Tf(y)| + 1$. This contradicts inequality (6). Thus, we have that $Tf(y) = f(\phi(y))$.

Lemma 3.11. If $g \in C(X)$, then $Tg(y) = g(\phi(y))$ holds for every $y \in Y$. In particular, T is an isometric algebra *-isomorphism of C(X) onto C(Y).

Proof. First, we consider the case where $g(\phi(y)) \neq 0$ and $Tg(y) \neq 0$. Using Lemma 2.2 gives $u_1 \in P_X^{\circ}(\phi(y))$ such that $\sigma_{\pi}(gu_1) = \{g(\phi(y))\}$. Let $\alpha = -(\overline{g(\phi(y))})/|g(\phi(y))|$. Then we see that $\sigma_{\pi}(\alpha gu_1) = \{-|g(\phi(y))|\}$. Also, there exists a $U_2 \in P_Y^{\circ}(y)$ such that $\sigma_{\pi}((Tg)U_2) = \{Tg(y)\}$. Let $u_2 = T^{-1}U_2$. Since $U_2 \in P_Y^{\circ}(y)$, by Lemma 3.9, $u_2 \in P_X^{\circ}(\phi(y))$. Thus, we have that $u_2(\phi(y)) = 1 = ||u_2||_X$. It follows that $\sigma_{\pi}(\alpha gu_1u_2) = \{-|g(\phi(y))|\}$. Thus, we have

(7)
$$\|(Tg)\overline{T(\overline{\alpha u_1 u_2})} - 1\|_Y = \|\alpha g u_1 u_2 - 1\|_X = |g(\phi(y))| + 1.$$

Since $u_1, u_2 \in C(X)^{-1}$, Lemma 3.10 shows that $T(\overline{\alpha u_1 u_2}) = (\overline{\alpha u_1 u_2}) \circ \phi$ and $u_2 \circ \phi = Tu_2 = U_2$. So we see that

$$||(Tg)\overline{T(\overline{\alpha u_1 u_2})} - 1||_Y = ||(Tg)((\alpha u_1 u_2) \circ \phi) - 1||_Y$$

$$\leq |\alpha|||(Tg)U_2||_Y||u_1 \circ \phi||_Y + 1$$

$$= ||(Tg)U_2||_Y + 1 = |Tg(y)| + 1.$$

Combining this inequality and equality (7) gives that $|g(\phi(y))| \leq |Tg(y)|$. In a similar way, we see $|G(\psi(x))| \leq |T^{-1}G(x)|$, where G = Tg and $x = \phi(y)$. Thus, $|Tg(y)| = |g(\phi(y))|$. Since $\sigma_{\pi}(\alpha(Tg)U_2) = \{\alpha Tg(y)\}$ and $u_1(\phi(y)) = 1 = ||u_1||_X$, we have that $\sigma_{\pi}((Tg)\overline{T(\overline{\alpha u_1 u_2})}) = \sigma_{\pi}((\underline{Tg})((\alpha u_1 u_2) \circ \phi))) = \sigma_{\pi}(\alpha(Tg)U_2(u_1 \circ \phi)) = \{\alpha Tg(y)\}$. Thus, $||(Tg)\overline{T(\overline{\alpha u_1 u_2})}||_Y = |\alpha(\underline{Tg(y)})| = |g(\phi(y))|$. Equality (7) gives that $-|g(\phi(y))| \in \sigma_{\pi}((\underline{Tg})(\overline{T(\overline{\alpha u_1 u_2})})) = \{\alpha Tg(y)\}$. Since $-|g(\phi(y))| = \alpha Tg(y)$ because $\sigma_{\pi}((Tg)\overline{T(\overline{\alpha u_1 u_2})}) = \{\alpha Tg(y)\}$. Since $-|g(\phi(y))| = \alpha g(\phi(y))$ holds from the definition of α , the equality $Tg(y) = g(\phi(y))$ holds.

Next, we consider the case where Tg(y)=0 and suppose $g(\phi(y))\neq 0$. Let ε be a positive number with $\varepsilon<|g(\phi(y))|$. Then there exists a $U_1\in P_Y^\circ(y)$ such that $|(Tg)U_1|<\varepsilon$ on Y. Also, there exists a $u_2\in P_X^\circ(\phi(y))$ such that $\sigma_\pi(gu_2)=\{g(\phi(y))\}$. Choose a complex number α with $|\alpha|=1$ such that $\alpha g(\phi(y))u_2(\phi(y))=-|g(\phi(y))|$. Let $u_1=T^{-1}U_1$; then, since $u_1\in P_X^\circ(\phi(y))$, we see that $\sigma_\pi(\alpha gu_1u_2)=\{-|g(\phi(y))|\}$. It follows that

(8)
$$\|(Tg)\overline{T(\overline{\alpha u_1 u_2})} - 1\|_Y = \|\alpha g u_1 u_2 - 1\|_X = |g(\phi(y))| + 1.$$

Applying Lemma 3.10 to $\overline{\alpha u_1 u_2}$ and u_1 ,

$$||(Tg)\overline{T(\overline{\alpha u_1 u_2})} - 1||_Y = ||\alpha(Tg)(u_1 \circ \phi)(u_2 \circ \phi) - 1||_Y$$

$$= ||\alpha(Tg)U_1(u_2 \circ \phi) - 1||_Y$$

$$\leq ||(Tg)U_1||_Y ||u_2 \circ \phi||_Y + 1 < \varepsilon + 1.$$

This inequality and (8) show that $|g(\phi(y))| < \varepsilon$, and this is a contradiction, so $g(\phi(y)) = 0 = Tg(y)$.

Finally, the case $g(\phi(y)) = 0$. Let $g = T^{-1}G$, $G \in C(Y)$ and $y = \psi(x)$, $x \in X$. Then the hypothesis implies that $T^{-1}G(x) = 0$. Noticing that $\phi = \psi^{-1}$, we can conclude from the argument in the previous paragraph that $Tg(y) = G(\psi(x))$. This completes the proof. \square

ENDNOTES

1. An element in $P_X^{\circ}(x)$ may have other points where it takes the value one, not merely at the point x.

REFERENCES

- 1. O. Hatori, T. Miura and H. Takagi, Characterizations of isometric isomorphisms between uniform algebras via non-linear range-preserving properties, Proc. Amer. Math. Soc. 134 (2006), 2923–2930.
- 2. ——, Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative, J. Math. Anal. Appl. 326 (2007), 281–296.
- 3. ———, Multiplicatively spectrum-preserving and norm-preserving maps between invertible groups of commutative Banach algebras, preprint.
- 4. S.H. Hochwald, Multiplicative maps on matrices that preserve the spectrum, Linear Algebra Appl. 212/213 (1994), 339-351.
- 5. D. Honma, Surjections on the algebras of continuous functions which preserve peripheral spectrum, Contemp. Math. 435 (2007), 199–205.
- **6.** S. Lambert, A. Luttman and T. Tonev, Weakly peripherally-multiplicative mappings between uniform algebras, Contemp. Math. **435** (2007), 265–281.
- 7. A. Luttman and T. Tonev, Uniform algebra isomorphisms and peripheral-multiplicativity, Proc. Amer. Math. Soc. 135 (2007), 3589–3598.
- 8. L. Molnár, Some characterizations of the automorphisms of B(H) and CX), Proc. Amer. Math. Soc. 130 (2002), 111–120.
- 9. T. Petek and P. Šemrl, Characterization of Jordan Homomorphisms on M_n using preserver properties, Linear Algebra Appl. 269 (1998), 33–46.
- ${\bf 10.}$ T. Ransford, A Cartan theorem for Banach algebras, Proc. Amer. Math. Soc. ${\bf 124}$ (1996), 243–247.
- 11. N.V. Rao and A.K. Roy, Multiplicatively spectrum-preserving maps of function algebras, Proc. Amer. Math. Soc. 133 (2005), 1135–1142.
- 12. ——, Multiplicatively spectrum-preserving maps of function algebras, II, Proc. Edinburgh Math. Soc. 48 (2005), 219–229.

13. N.V. Rao, T.V. Tonev and E.T. Toneva, Algebra isomorphisms and σ_π -additivity, Contemp. Math., to appear.

DEPARTMENT OF MATHEMATICAL SCIENCE, GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, NIIGATA UNIVERSITY, NIIGATA 950-2181 JAPAN Email address: raf.0007.simons-80s@auone.jp