ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 39, Number 5, 2009

NORM-PRESERVING SURJECTIONS
ON ALGEBRAS OF CONTINUOUS FUNCTIONS

DAI HONMA

ABSTRACT. Let X,Y be two compact Hausdorff spaces,
and let C'(X) denote the Banach algebra of all complex-valued,
continuous functions on X endowed with the supremum norm
[fllx. It is shown that if T is a surjective map of C(X)
onto C'(Y') such that TA = A for A € {£1, +i} and satisfying

(Tf)(Tg) — 1|y = ||fg — 1||x for every pair f and g in
C(X), then T is given by T'f = f o ¢ for some homeomorphic
map ¢ of Y onto X; in particular, 7" is an isometric algebra
*.isomorphism.

1. Introduction. There are many papers that deal with spectrum-
preserving maps between Banach algebras. Molndr [8] initiated the
study of multiplicatively spectrum-preserving maps and showed that
a unit preserving surjective map T : C(X) — C(X), not necessarily
linear, on a first-countable compact Hausdorff space X is an algebra
isomorphism if

o(T'fTg) =0o(fg)

holds for every pair f and g in C'(X). Rao and Roy [11] dealt with
uniform algebras on compact Hausdorff spaces which are regarded as
the maximal ideal space and generalized the result of Molnar. Hatori,
Miura and Takagi [1] extended the result of Molndr by replacing the
spectrum with the range and showed that a unit preserving surjective
map T : A — B between two uniform algebras is an algebra isomor-
phism if
Ran (TfTg) = Ran (fg)

holds for every pair f and g in A, where Ran (h) denotes the range of
h. Recall that the peripheral range, Ran,(f), of f in a uniform algebra
is defined by Ran,(f) = {z € Ran(f) : |z| = ||f||}, where |f]|| is the
supremum norm of f. Luttman and Tonev [7] extended the result of
Hatori, Miura and Takagi by replacing the ranges with the peripheral
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ranges and showed that a unit preserving surjective map 7T': A — B
is an algebra isomorphism if 7" is Ran,-multiplicative (or, peripherally-
multiplicative), i.e.,

Ran, (T fTg) = Ran,(fg), f,g9€ A

Lambert, Luttman and Tonev [6] considered mappings T : A — B
that satisfy the condition Ran,((Z°f)(Tg)) N Ran,(fg) # @ for all
f,g9 € A, in general nonlinear, and called them weakly peripherally-
multiplicative. They have shown that a mapping 7: A — B between
uniform algebras is an isometric algebra isomorphism if and only if it
is weakly peripherally-multiplicative and preserves the class of peak
functions. In particular, they proved that if a map 7" : A — B is
norm-multiplicative, i.e.,

ITfTgll =fgll, f,g¢€A,

and preserves the class of peak functions, then there exists a home-
omorphism ¢ : A — 0B so that the equality |(T'f)(é(z))| = |f(z)]
holds for every f € A and all z in the Choquet boundary 6 A of A.

Molndr [8] also gave a characterization on algebra *-isomorphisms: a
unit preserving surjective map T : C(X) — C(X) for a first-countable
compact Hausdorff space X is an algebra *-isomorphism if

o(TfTg) = o(fg)

holds for every pair f and g in C(X). Hatori, Miura and Takagi [2]
generalized this result for certain semi-simple commutative Banach *-
algebras. The author [5] extended the result of Molnar by considering
the peripheral ranges instead of the spectra and, in particular, it was
proved that a unit preserving surjective map T : C(X) — C(Y) for
compact Hausdorff spaces X and Y (not necessarily first-countable) is
an algebra *-isomorphism if

Ran, (T'fTg) = Ran,(fg)

holds for every pair f and ¢ in C(X).

In this paper we consider a further extension: multiplicatively norm-
preserving maps. First of all, one can modify an example of Lambert,
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Luttman and Tonev [6, Example 1] and exhibit a map which is not
linear such that the equality

ITfTylly =1f7llx

holds for every pair f and g in C(X). In the following we mainly
consider the condition

ITfTg —1lly =g llx, f.g9€C(X)

on a map T from C(X) onto C(Y). If T satisfies the hypothesis

o(TfTg) = o(fg), f,9€C(X),

then T satisfies the above condition.

Our main result is the following.

Theorem 1.1. Let X,Y be two compact Hausdorff spaces. If a
surjective map T : C(X) — C(Y) satisfies the conditions
(a) TA = X for A € {£1,£i} and

(b) (T'f)(T'g) — Ly = [[fg — Llx for all f,g € C(X),

then there exists a homeomorphism ¢ of Y onto X such that Tf = fo¢
for every f in C(X); in particular, T is an isometric algebra *-

isomorphism.

2. Preliminaries. Let X be a compact Hausdorff space. We denote
by o (f) the peripheral spectrum of an element f € C(X):

or(f) ={z € a(f) : [z = r(f)},

where r(f) denotes the spectral radius of f. Clearly, o (f) = Ran,(f).
We denote by P% the set of all peak functions in C(X)~!, that is,
Py ={uecC(X) " :o,(u) ={1}}. Ifz € X, then Py (z) = {u € P% :
u(z) =1}.1

Lemma 2.1. Let xy € X, and let F be a closed subset of X with
xzo ¢ F. Then for each € > 0 there exists a u € Py (xo) such that
lu(z)] < e forx € F.
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Proof. Let € > 0 be given. Since {z¢} and F are disjoint closed
subsets of X, by Urysohn’s lemma there exists a continuous function
vy : X — [0,1] such that vi(xzo) = 1 and v; = 0 on F. Let
vg = (14wv1)/2. Then ve € Pg(xp) and v = 1/2 on F. We see
that v = v} has the required properties for some sufficiently large n. O

In the following lemma, the same result for a not necessarily invert-
ible, peak function is proved in [6] for arbitrary uniform algebra.

Lemma 2.2. Let f € C(X) and zp € X. If A\ = f(xg) and X # 0,
then there exists a u € Py (xo) such that o,((1/X)fu) = {1}.

Proof. Suppose A # 0. Let Fy = {x € X : |f(z) — A\| > 27} \|} and

Fo={zeX: 27" '\ <|f(z) - A <2 "]Al}

for n = 1,2,.... Clearly, Fy, Fy,... are closed subsets of X that
do not contain zg; so by Urysohn’s lemma, there exist continuous
functions vg,v1,... such that 0 < v; < 1, vj(zg) = 1 and v; = 0
on Fj for j =0,1,.... For each j we take a positive integer n; so that

u; = (1 +v;/2)™ may have the property: If j =0,

lup ()| < z e F
\|f||
and, if j > 0,
1
|’U,J($)| < Qj—H’ CEEF]'.

Now put u = ug Y .., 2~ ™u,. This series is majorized by the conver-
gent series Y 27", so u is well defined and v € C(X). Moreover, u is
easily seen to be a function in Pg(zo).

Put g = (1/A) fu. To verify o,(g) = {1}, pick z € X. If x € Fp, then
we see

un (T =1
9(0)] = 371@)un(a Z‘ < I 2 g =1
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If x € F,, for some positive integer n, then

|ur, (z |UJ
960 = i1 @lhua(o)] (1282 1 3~ 1ol

J#n

L s (e
gwum A|+|A|>( # )

v L
n2
< IM N
|>\| 2n2n+1

If z € X \ U2 F}, then f(z) = A and g(z) = u(x) € D U {1}, where
= {z € C: |z|] < 1}. Thus, g(X) C D U{1}. In particular,
g(xo) = u(xp) = 1. Hence, o,(g) = {1}. This completes the proof. O

3. A proof of Theorem 1.1. Throughout this section, T" denotes
a surjective map which satisfies the hypotheses of Theorem 1.1:

(a) TA = X for A € {£1,+i} and
() (Tf)(Tg) = Uly = [1fg — Llx for all f,g € C(X).

Lemma 3.1. T(C(X)"Y) =C(Y)™

Proof. Let f € C(X)~'. Then we see that ||[TfT(f~!) —1||y =
|ff ' —1||x =0, thus TfT(f~') = 1. Hence, Tf € C(Y)~!. Let
F € C(Y)~ 1. Since T is surjective, there are f and g in C(X) such that
Tf=Fand Tg= F-1. Then we see that ||fg—1||x = ||TfTg9—1|y =
|FF~1 —1||y = 0. Thus, we have that fg =1, and f € C(X)~%. o

Lemma 3.2. T is injective.

Proof. Suppose T'f = Tg for f,g € C(X). We will show that f =
Let # € X. First we consider the case where f(x) # 0 and g(z) ;é
By Lemma 2.2, there exist uys, uy € P%(x) such that o, (fuy) = {f(ac)}
and o, (guy) = {g9(x)}. Let u = uyuy. Then u is an element in P%(z)
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such that o (fu) = {f(z)} and o, (gu) = {g(z)}. Then we see that
2=z, = [rer(5) -

) -, - -1,

Therefore, |f(z)] < |g(z)| holds. In a similar way, we see that
lg(z)] < |f(x)]. So we have |f(x)| = |g(z)|. This fact implies that
lg(=1/f(z))ul|lx = 1. It follows that —1 € o,(g(—1/f(z))u), since
lg(=1/f(z))u = 1[x = 2. Thus, f(z) € ox(gu) = {g(z)}, and
f(z) = g().

Next we consider the case where f(z) = 0 or g(x) = 0. Without
loss of generality we may assume f(z) = 0. We will show that
g(xz) = 0. Suppose not. Let € be a positive number with ¢ < |g(z)|.
Let F = {2/ € X : |f(z')] > €}. Since F is a closed subset of X
with « ¢ F, by Lemma 2.1 there exists a uy € P%(z) such that
lug(z")] < e/(JIfllx +1) for all 2" € F. We have that |fus| < ¢ on
X. Since g(x) # 0, by Lemma 2.2 there exists a u, € Pg(z) such that
ox(g9ug) = {9(z)}. Let u = usuy. Then u is an element of P%(z) such
that |fu| < € on X and o,(gu) = {g(z)}. Choose a € C such that
|a| =1 and (agu)(x) = —|g(x)|. Then we see that

Y

+ 1.

9(2)[ + 1 = [lagu — 1] x = [I(T9)(T(ew)) — 1[Iy

= (TH)(T(am)) — 1y = [lefu — 1| x
<l+e.

Thus we have |g(z)| < e. This contradicts £ < |g(z)|. Hence, g(x) = 0.
This completes the proof. o

By Lemma 3.2, we can consider the inverse T~! of C(Y') onto C(X).
Clearly T-! has the same properties as T':

(@) T-'A = A, (A € {£1,+i}),

(b) [(T'F)(T1G) - 1 x = [|[FG — 1|y, F,G € C(Y).
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Lemma 3.3. If f,g € C(X)™ L, then the equation ||(Tf)(Tg)|ly =
Ifgllx holds; in particular, || Tf|ly = ||f|lx holds for every f €
C(X)™'. Since |zw| = |2w| for any z,w € C, as a consequence of
it T is norm-multiplicative on C(X)~1, that is, |TfTglly = ||fgllx for
every pair f and g in C(X)7L.

Proof. Let f,g € C(X)~'. We will show that ||fgllx < [|[(Tf)(Tg)|y-
From Lemma 3.1, Tf,Tg € C(Y)™'. Let K,, = T(nf)(Tf)~! for
n = 1,2,.... In the proof of Lemma 3.1, we have shown that

(Tf)~' = T(f~1). It follows that K, = T(nf)T(f~!). Then we
have that ||K,|ly < n for each n, since |K,|y — 1 < ||K, — 1|ly =

IT(nf)T(f~1) —1|ly = ||(nf)f~! — 1||x = n — 1. For each n we have

nllfglx — 1< [[(nf)g — Ux = |T(nf)Tg - 1y
< Tf)Tglly +1 < IKaly (T (Tg)lly +1.

Since || K|y < n for every n, it follows that

1 _— 1
17gllx = = < ITH(T)lly + -

Letting n tend to oo, gives ||fgllx < |[(Tf)(Tg)|ly- Applying a

similar argument to 7', yields ||(Tf)(T9)lly < [/fgllx.- Hence,
I(TF)(Tg)|ly = ||fgllx holds for every pair f and g in C'(X)~!. O

Lemma 3.4. If f and g are elements in C(X) ! such that | T f|ly =
1=|Tglly and [Tf|7'(1) C[Tg|7 (1), then [f|~'(1) C |g|~"(1).

Proof. We assume that |T'f|"1(1) C |Tg|~*(1). We will show that
|fI71(1) C |g|~*(1). Suppose not. Then there is an z € X such that
z € |fI71(1)\|g|7*(1). By Lemma 3.3 we have that || f||x = [|[Tf|ly =1
and ||g|lx = ||Tglly = 1. |g|7'(1) is a closed subset of X which does
not contain x. By Lemma 2.1 there exists a u € Py (z) such that
lu(z')] < 1 for ' € |g|(1). Then we have that |ug| < 1 on X, that
is, |lug||x < 1. Then we have

(1) I(Tw)(TPlly = llugllx = llugllx < 1.

On the other hand, since |(uf)(z)] = 1 and [|f]x =1 = ||u|x, we
have ||[(Tu)(Tf)|ly = ||lufllx = 1. Hence, there is a y € Y such that
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|Tu(y)[|Tf(y)| = 1. Since by Lemma 3.3 ||Tully = |lullx = 1 =
ITf|ly, we have |Tu(y)| = 1 = |T'f(y)|. This implies |(TuTg)(y)| =
|Tu(y)||Tg(y)| = 1 because |Tf|~1(1) C |T'g|~*(1). Hence we have that
|(Tu)(Tg)|ly = 1. This contradicts the inequality (1). o

We will construct a homeomorphism of Y onto X which satisfies the
resulting conditions of Theorem 1.1. Lambert, Luttman and Tonev
[6] proved that if a map T : A — B between two uniform algebras
preserves the class of peak functions and is norm-multiplicative, then
there exists a homeomorphism ¢ : 64 — 0B so that the equality
[(Tf)(¢(z))| = |f(x)| holds for every f € A and all = in the Choquet
boundary 6A of A. A similar argument was used in [7, 11]. The idea
of our construction of a homeomorphism has the same vein. First, we
will show that there exists a homeomorphism ¢ of Y onto X such that
ITf(y)| = |f(¢(y))| holds for every f € C(X)~! and y € Y. Next, we
will show that the indicated map has the desired properties.

Forz € X,set x(z) =C(X) 'n{feCX):|f(x)|=1=|flx}
Clearly, §x (z) properly contains Py (z).

Lemma 3.5. For zi,z02 € X, x1 = x2 if and only if Fx(x1) C
Sx(x2).

Proof. The ‘only if” part is trivial. We will show the ‘if’ part. Assume
that ®1 # x2. Then, by Lemma 2.1, there exists a u € Pg(x1) such
that |u(zz)] < 1. Thus, we see that u € Fx(z1) \ Fx(z2), that is,
Sx(z1)  Fx(z2). o

Lemma 3.6. For each y € Y, there corresponds a unique x € X
such that T[Fx (z)] = Ty (v).

Proof. Let y € Y. First, we will show that there exists an z € X
such that T71[Fy (v)] C Fx(z). Set

L= (] 7.
FET-1 3y W)

Let fi,...,fn € T YFv(y)]. Let F = Tf---Tf, and f = T 'F.
Then we see that F € C(Y) ! and |F(y)| = 1. Since ||Tfjlly = 1
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for every j, we have that ||F|ly = 1. Thus by Lemma 3.3, we have
that [|fllx = |Tflly = [IFlly = 1. Thus, [f|"*(1) is nonempty.
Since ||Tf;lly = 1, we have that |Tf|7*(1) C |T'f;|7*(1) for every
j. By Lemma 3.4 we see that |f|~*(1) C |f;|7'(1) for every j, that
is, the intersection of all |f;|~!(1) contains the nonempty set |f|=*(1).
Thus, the class {|f|71(1) : f € T![Fy(y)]} has the finite intersection
property. Since |g| (1) is compact for every g € T 1[Fy(y)], Ly
is nonempty. Take an element, say z, from L,; then we see that

T8y ()] € Sx ().

Secondly, we show that T[§x(z)] = Fv(y). Applying the above
argument to 7!, there exists a y' € Y such that T[§x(z)] C Sy (¥')
because 7! has the same properties as 7. Since 7' is surjective,

we have that Fy(y) = T[T '[Fv(y)]] € T[¥x(z)] C Fv(¥). By
Lemma 3.5, we see that y = y’ and hence T[Fx (z)] = Fy (v)-

Finally, we show the uniqueness of . Suppose that there is an 2’ € X
such that T[Fx(z')] = v (y). Then the injectivity of T" implies that
Sx(z) = TSy (y)] = Fx(2'). Lemma 3.5 yields that x = z’. This
completes the proof. mi

By Lemma 3.6, we can consider a map ¢ of Y into X such that
T[Fx(4(y))] = Sy (y) for every y € Y.

Lemma 3.7. ¢ is a homeomorphism of Y onto X such that
ITf(y)| = |f(p(y))| holds for every f € C(X)™! andy €Y.

Proof. First, we will show that |T'f(y)| = |f(é(y))| holds for every
feCX)'andy € Y. Let f € C(X)™' and y € Y. Then
f(¢(y)) # 0. By Lemma 2.2, there exists an h € P%(¢(y)) such that
or(fh) = {f(¢(y))}. Thus,

(2) IfRllx = [f(e(»)]-

Since P%(¢(y)) C Fx(¢(y)), by the definition of ¢, we see that
|Th(y)| = 1 = ||Th|ly. Since f,h € C(X)~! and |Th(y)| = 1, by
Lemma 3.3 we have that
[fpllx = I(THTR)ly = |Tf()|[Th(y)]
171 ().
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This fact and equality (2) imply that

(3) Tf(y)l < [f(o())]-

Since Tf € C(X)™', Tf(y) # 0, by Lemma 2.2 there exists a
G € Pg(y) such that o ((Tf)G) = {Tf(y)}. Let g = T7'G. Then
G is also in Fy (y); thus, |g(¢(y))] = 1 from the definition of ¢. Since
G € C(Y)™ !, we have that ¢ € C(X) ! by Lemma 3.1. Thus, by
Lemma 3.3 we have that |T'f(y)| = [(Tf)Glly = [Ifgllx = [f(¢())].
This fact and inequality (3) imply that |T'f(y)| = |f(é(y))|.

Secondly, we will show that ¢ is continuous. Let T; be the given
topology on X, and let {y,} be a convergent net in Y with limy, =
y. Then the first part shows that lim|f(é(ys))| = Um|Tf(ya)| =
ITf(y)| = [f(¢(y))| for every f € C(X)~'. Thus, ¢(ya) converges
to ¢(y) with respect to the weak topology Ty on X generated by
|IC(X)7Y = {|f] : f € C(X)~'}. The identity map of (X, T;) onto
(X, Ts) is continuous, and (X, T2) is Hausdorff because |C(X)™}|
separates the points of X; since (X,T;) is compact, the map is a
homeomorphism. Hence, ¢ is continuous.

Finally, we will show that ¢ is a homeomorphism of Y onto X. Since
T~ has the same properties as T, there exists a continuous map v of X
into Y such that T Fy (¢(z))] = §x(x) and |T 1 F(z)| = |F(¢(x))]
for every F € C(Y)™!. Let y € Y and f € C(X) ! with F = Tf.
Then we have that

Tf(y)l = £(6W)) = 1T F(4(y))]
= [FW (o) = [T (% (o(y))]-

Thus y = ¥(¢(y)), since |C(Y) Y| = |T(C(X)™!)| separates the points
of Y. In a similar way, we have x = ¢(¢)(z)) for every z € X. Hence,
¢ is a bijective map of Y onto X with ¢! = . Since v is continuous,
¢ is a homeomorphism of Y onto X. u]

Lemma 3.8. TA = \ holds for every A\ € S, where S* = {z € C:
|z| = 1}.

Proof. Let A € S'. We may assume that A ¢ {+1,+i}. From
condition (b), we have that |||TA|>—1||y = |[TATA-1|y = |[|[A—1|x =
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0, thus |TA| = 1, or equivalently, (TA)(Y) C S*. Since T'1 = 1, we have
(4) ITA =1y = [TATT - Ly = [I- T - 1] x =[x - 1].

Since T(—1) = —1, we have

(5)  MTA+ 1y = ITAT(=1) = 1}y = A~ (=1) = 1] x =[A+1].

Since (TA)(Y) C S*, (4) and (5) imply that (TA)(Y) C {\ A} If
Im X\ > 0, the condition Tt = 7 gives

ITX = illy = |TAT: = 1fly = [[A i =1 x = |A =]

This implies that (TA)(Y) = {\}, thatis, TA = A. If InA < 0, in a
similar way, we have that ||TA + i||y = |\ + ¢| because T'(—i) = —i. It
follows that T'A = A. Thus the proof is complete. a

Lemma 3.9. T(aPg(¢(y))) = aPy(y) holds for every a € S* and
yeY.

Proof. Let a € S'. First, we will show that T'(aP%) = aPy. Let
f € P%. From Lemma 3.8 we have

2= -aaf -1x = T(af)T(-a) - 1y
= [ —aT(af) = 1ly-

Thus, a € o,(T(af)) since ||T(af)||ly = ||laf]|lx = 1 by Lemma 3.3.
Let 8 € o(T(af)). Lemma 3.8 gives

2= -BT(af) = 1lly = IT(=B)T(af) — 1y
=l - Baf — 1f|x.
Thus, 8 € o, (af) since ||af||x = 1. Since o, (af) = {a}, we have that
8 =« and o, (T(af)) = {a}. Thus, T(aP%) C aPy. In a similar way,
we have that 771 (aPy) C aPg. Hence, T(aPy) = aPy.

Let y € Y and f € P%(é(y)). From the above argument, we have
that T(af) € aPy. We show that T(af)(y) = a. Since f € C(X)7!,
by Lemmas 3.3 and 3.7 we see that

T (af)(y) = lef(6(y))| =1 = llaflx
= [T (af)lly-
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Thus, we have T'(af)(y) = a. Since f € Py (¢(y)) is arbitrary, we have

that T(aPX( #(y))) C aPy(y). In a similar way, it holds for 7! that
“aPy(¢7(z))) C a °( ) for every z € X. Let z = ¢(y). Then
T YaPy(y)) C aPy(é(y)), so we see that
aPy(y) = T(T~H (aPy(y))) C T(aPx(6(y)))
C aPy(y).
Thus, we have that T'(aPx%(¢(y))) = aPg(y). o

Lemma 3.10. If f € C(X) 7L, then Tf(y) = f(¢(y)) holds for every
yevyY.

Proof. Let f € C(X) ! and y € Y. From Lemma 3.7, we have

ITf(y)| = |f(¢(y))|- Suppose T'f(y) # f(é(y)). Since T'f(y) # 0,
there exists an H € Pg(y) such that o ((Tf)H) = {T'f(y)} by
Lemma 2.2. Since T is surjective, there exists an h € C(X) such
that Th = H. Since H is also in Pg(y), Lemma 3.9 implies that
h € Px(¢(y)) and ox((Tf)(Th)) = ox(Tf)H) = {Tf(y)}. Let
o = ~[f(6())| " T@)). Then oy (a(TS)(TR)) = {a(T](y)}. Our
assumption T'f (y) # f(#(y)) implies that a(T f(y)) # —|T f(y)|. Thus,
we see that —|T'f(y)| ¢ [a(Tf)(Th)](Y). It follows that
f)

(6) 1T F)(TR) =1y <|Tf(y)| + 1.

Since @T'h € aPy(y), from Lemma 3.9 there exists an k' € P (¢(y))
such that T'(@h') = @Th. Then we see that

T F)(TR) — Ly = (T )T

@h)) — 1lly = llafB’ — 1]|x

> |af(6(y)) W (8(3)) ~ 1]

= [~ 1f(6W)] -1 = |~ ITf@)] 1]
— [Tf(y)| +1.

Thus, ||a(Tf)(Th) — 1|y > |Tf(y)| + 1. This contradicts inequality
(6). Thus, we have that T'f(y) = f(¢(y)). o

Lemma 3.11. If g € C(X), then Tq9(y) = g(¢(y)) holds for every
y €Y. In particular, T is an isometric algebra *-isomorphism of C(X)
onto C(Y).
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Proof. First, we consider the case where g(¢(y)) # 0 and T'g(y) # 0.
Using Lemma 2.2 gives u; € P%(¢(y)) such that o (gu1) = {g(¢(y))}
Let a = —(g(6(y)))/l9(¢(y)). Then we see that or(agui) =
{—=lg(é(y))|}. Also, there exists a Uz € Py (y) such that o ((Tg)Usz) =
{Tg(y)}. Let up = T7'Us. Since Uy € Pg(y), by Lemma 3.9,
uz € PY(#(y)). Thus, we have that ua(¢(y)) = 1 = |Juzl/x. It fol-
lows that o, (aguiuz) = {—|9(¢(y))|}. Thus, we have

(1) I(T9)T(auruz) — Uy = [laguius — 1 x = [9(6(y))| + 1.

Since u1,up € C(X)~!, Lemma 3.10 shows that T'(auus) = (Quiuz)o¢
and ug 0 ¢ = Tug = Us. So we see that

(T9)T (@uruz) - ly = [[(Tg)((aviuz) © ¢) = 1|y

< |all[(T9)Vslly [lur o ¢lly +1

= [(Tg)Vzlly +1=Tg(y)| + L.
Combining this inequality and equality (7) gives that |g(é(y))| <
|Tg(y))|. In a similar way, we see |G(¢(z))] < |T 'G(x)|, where
G = Tg and =z = ¢(y). Thus, |Tg(y))| = lg(¢é(y))|. Since
or(a(Tg)Uz) = {aTg(y)} and ui(é(y)) = 1 = [lullx, we have
that o ((T9)T (auruz)) = ox((T9)((auiuz) © ¢))) = o (a(Tg)Us(us 0

¢)) = {aTg(y)}. Thus, |(Tg)T(awruz)lly = |a(Tg(y))| = |9(¢(y))!-
Equality (7) gives that —|g(¢(y))| € o.((Tg)(T(auiuz))). Hence,

—lg(@(v))] = aTg(y) because o, ((T'9)T (auruz)) = {aTg(y)}. Since
—lg(@(y))] = ag(é(y)) holds from the definition of «, the equality

Tg(y) = g(é(y)) holds.

Next, we consider the case where T'g(y) = 0 and suppose g(¢(y)) # 0.
Let ¢ be a positive number with e < |g(¢(y))|. Then there exists a U; €
Py (y) such that [(T'g)U;| < € on Y. Also, there exists a us € Py (¢(y))
such that o.(guz2) = {g(¢(y))}. Choose a complex number o with

|o| =1 such that ag(¢(y))ua(¢(y)) = —[g(¢(y))]. Let uy = T~'UL;
then, since u; € Py (¢(y)), we see that o, (aguiuz) = {—|g9(é(y))|}. Tt
follows that
@) (T9)T(auruz) —1lly = laguiuz —1f|x = [g(6(y))| + 1.
Applying Lemma 3.10 to auju; and u;,
1(T'9)T (ourwz) — 1y = [la(T'g)(u1 © ¢)(uz 0 ¢) — 1|y
= |la(Tg)Us(uz 0 ¢) — 1|y
< [(Tg)Urllylluz o glly +1 <e+1.
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This inequality and (8) show that |g(¢(y))| < ¢, and this is a contra-
diction, so g(¢(y)) = 0 = Tg(y).

Finally, the case g(¢(y)) = 0. Let ¢ = T7'G, G € C(Y) and
y = ¥(z), z € X. Then the hypothesis implies that T-1G(z) = 0.
Noticing that ¢ = ¥ !, we can conclude from the argument in the
previous paragraph that T'g(y) = G(¢(z)). This completes the proof. O

ENDNOTES

1. An element in P%(z) may have other points where it takes the
value one, not merely at the point .
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