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ABSTRACT. Here we introduce a general class of discrete
operators, not necessarily positive and we give a Voronovskaya-
type formula for this class. Applications to generalized
sampling-type operators and to a further generalization of the
classical Szdsz-Mirak’jan operator are given. Finally a survey
on Voronovskaya’s formula for classical discrete operators is
treated.

1. Introduction. In this paper we deal with the pointwise
approximation properties of a general class of discrete, not necessarily
positive, operators acting on functions defined on an interval of the real
line, having the form

—+o00

(Snf)(t) = ZKn(taVn,k)f(Vn,k), neN, tel,

k=0

where [ is a fixed interval (bounded or not) in R and, for every fixed
n € N, (Vnk)ken, C I is a sequence satisfying suitable assumptions.
These kinds of operators may be considered as particular cases of a class
of abstract (also nonlinear) operators which was introduced and widely
studied in [7, 8], in connection with uniform and modular convergence
in modular function spaces (see [27]), under specific assumptions on
the “kernel functions” K,,.

Probably the most classical discrete operator is the celebrated Bern-
stein operator (polynomial), which gives an elegant approach to the
famous Weierstrass approximation theorem for continuous functions,
see e.g., [15, 25]. Later, Voronovskaya [36] gave the first asymptotic
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formula for the pointwise approximation of continuous functions which
have a second derivative at a point ¢ € I = [0,1]. Since then, a lot
of generalized versions of Voronovskaya’s formula have been studied,
for various discrete operators, which represent generalized versions of
the classical Bernstein operator. We quote here the operators of Szasz-
Mirak’jan, Chlodovsky, Baskakov, Meyer-Konig and Zeller, Bleimann-
Butzer-Hahn and their various extensions (see also the book [19]). The
contributions in this direction are so numerous that we can certainly
speak of a “Vornovskaya-type approximation theory,” which involves
essentially the pointwise convergence. This theory was developed also
for classical integral operators of convolution type, see [33], and re-
cently for Mellin-type convolution operators in [9]. Another important
fact is that this theory reveals deep links with the theory of semigroups
of operators, see [4].

Our aim is to give a unitary approach to the study of pointwise
asymptotic formulas of Voronovskaya type, using a general class of dis-
crete operators, which includes as special cases all the above-mentioned
operators. In Section 2 we determine some basic assumptions which al-
low us to state a general Voronovskaya’s formula (Theorem 1). It turns
out that, in order to apply a general method to various kinds of discrete
operators, it is convenient to consider, as a first step, only bounded
functions f. As main applications, some kind of generalized sampling
operators generated by a compact support function (see [10, 16, 17,
30]) and a further generalized version of the Szdsz-Mirak’jan operator
is considered in Sections 3 and 4, respectively. Section 5 represents a
survey on various asymptotic formulas for the classical operators, which
can be deduced as special cases of our general approach.

Finally, in Section 6, we give an extension of the asymptotic formula
proved in Section 2 to a nonlinear operator of the form

“+ oo

(Snf)(t) = ZKn(ta Vn,kaf(’/n,k))v n e Na tel.

k=0

In this case the theory is quite different because we can obtain only
some estimates of the error of approximation in terms of limsup which
involves only the first derivative of the function f. In particular, it
seems to us that it is not possible to obtain an exact order of pointwise
approximation.
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2. A general Voronovskaya-type theorem. In the following we
will denote by I a fixed interval (bounded or not) in R and, for every
fixed n € N, by I'y, = (Vn,k)ken, C I a sequence such that

0< Un,k+1 — VUnk S )\n,

where ),, are positive real numbers and lim,_, - A, = 0.

Let us consider a sequence S = (S,,) of operators of the form

+oo
(1) (Snf)(t) = Kn(t,vnp)f(vng), neN, tel

We will put Dom S := N,cn Dom S,, where Dom S, is the set of all
functions f : I — R for which (1) is well defined.

The family of functions (K,)nen, Kn : I X I';, — R satisfies the
following assumptions

1) 0% Ky(t,vnk) =1, for every n € N and ¢ € I.
2) Putting for j € N

—+o0
mj(Kn,t) =Y Kn(t, k) (Vnp — t)?
k=0

we have, for every t € I, n € N and j = 1,2,
—00 < mj(Ky,t) < +o0,
and there are o > 0 and real numbers ¢;(t) such that

(2) lim n%m;(K,,t) =¢;(t), j=1,2.

n—-+o0o

3) For the above a > 0, putting
—+o00
M2(Kn7t) = Z |Kn(ta Vn,k)|(l/n,k - t)27
k=0

for every t € I, there is a positive constant H(t) and @ € N such that

n*Msy(K,,t) < H(t)
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for every n > m and, for every ¢ > 0,
> Kt vn i) (ng — 1) =o(n"®), n— +oo,
[Vn,k—t]>68
forteI.

Theorem 1. Let f € Dom S N L>®(I) be a function such that f"(t)
exists at a pointt € I. Under the above assumptions there holds

@ w500 - F01= Foan + L.

n—-+o0o

Proof. Using a local Taylor’s formula for the function f, there exists
a bounded function h such that lim,_ . A(y) = 0 and

Fn) = 10+ 8O0+ T =) 4 Bt =) s =102
Thus, we have
+oo
n®[(Snf)(8) = F(B)] = n®f'(£) Y Kn(t, vn k) (vnp —t)
k=0
" +oo
+ nafT(t) k; Koty Un i) (Un ks — t)?

+o00
+n® Z Kty Vn i) h(Vn g — ) (Wn g — t)°
k=0
=1+ I+ I3.
We immediately have

Il = naf'(t)ml(Kn,t), IQ = na@mg(lfn,t).

Now we estimate I3. Let ¢ > 0 be fixed. There exists a § > 0 such that
|h(y)| < e for every |y| < . Hence,

[Is| <n® Y [Kn(tvn ) h(van — )| (g — 1)
|[Vn, e —t]<8

+n® Z | K (&, v e )PV ke = 8)| (Ve — t)?
‘Vn,kft‘zls
— 41
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We have, by assumption 3),
[I3] < eH(t)

for a sufficiently large n. Moreover, choosing a constant M > 0 such
that |h(y)| < M, we have

1] < Mn® Y [Kalt,vaw) | (vag — 1)° = o(1)

[Vn,k—t]>d

for n — +oc0. Thus, using (2),

msup n°((5,7)(0) ~ £(0)] < 100 + 100 + (1),
and analogously,
)

lim inf n®[(Sn f) () — f(2)] = f' ()61 (2) +

n—-+oo 2

ly(t) — eH(t).
So (3) follows. O

Remark 1. If I is bounded, condition 3) above is implied by the
following simpler one

3') For every t € I, there is a positive constant H(t) such that
n®Ms(Kp,t) < H(t)
for every n > m and, for every ¢ > 0,
Z | Ky (t, vn k)| =o(n™%), n— +oo.
[V, —t] 28

fort e1.
Indeed, we easily have
Z (K (t, Vn k)| (Vo — t)2
|Vn,k7t‘25

<P Y 1Kt vng)l = o(n™),

[Vn, k—t]>6
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|I| denoting the length of I. In this instance it is easy to show that
L>(I) c Dom S.

Remark 2. Note that we can obtain a generalization of Theorem 1
without the assumptions (2). We only assume that

limsup n®m;(Kn,t) = £;(t) e R, j=1,2,

n—-+4oo
1 1 @ ; = II 1 =
lﬁg}r{gn mi(Ky,t) =£;(t) €eR, j=12.

In this instance we obtain an estimate of the type

Fer + Loy < imintno((5,£)(0) - £0)
< timsup n*[(S.)(t) — /(0] < £ (O (0) + L /;(t) b (1)-

n—+oo

Remark 3. If I is an unbounded interval, we can relax the bounded-
ness assumption on f in the following way. Assume that there are two
positive constants a and b such that

f(x)| < a+ba?, forevery z € I.

Then, putting

Poa) = 1)+ £ O~ 0+ T @y,

Taylor’s polynomial of second order centered at point ¢, by Taylor’s
formula we can write

= h(z —t),
where h is a function such that lim,_,o A(y) = 0. Then A is bounded
in a neighborhood of ¢, say [t — d,t + 4], while for | — t| > §, we have

< a+bx? |Py(z))

0] < ot g
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and the second righthand side of the above inequality is bounded for
|z —t| > §, Thus h(- — t) is bounded on I, and we can proceed as in
the proof of Theorem 1, obtaining the same Voronovskaya’s formula.

Remark 4. If we assume that there is a positive constant a,, such that
Qn, S Un,k+1 — Vn,k, n e N:

then L°°(I) C Dom S for any interval I. Indeed, we can write

ZKn(taVn,k)|:< oo+ > >Kn(t,un,k)|;zll+12.

k=0 [V —t|<l  |vnk—t|21

Then I; has only a finite number of terms while for I5, using assumption
2), we get

Li< Y |Ku(tvng)|(vng — 1) < My(Kp,t) < +o0.

‘V",k—t‘zl

Thus, for f € L*°(I), we have

oo

Z |Kn (8, Ve k) [Lf ()| < ([ flloo Z | K (t, v ie) | < 4o00.

k=0 k=0

If simply (K,) is nonnegative, then L*°(I) C DomJS is a direct
consequence of assumption 1).

3. Generalized sampling series. Let us consider now the whole
real line as base interval I and v, = k/n, k € Z, n € N. Let
¢ : R — R be a continuous function with compact support J C R
satisfying the following assumptions:

i) we have
+o0
Z e(lu—k)=1, ueR
k=—o0
and
—+o00
Mo() = sup > le(u— k)| < +oo
ue —
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ii) Assume that, for every u € R,

—+oo

mie) = Y plu—k)(k-u)=0
k=—o0
+oo

map)i= 3 plu—K)(k—w?=C
k=—oc0

for a given constant C' € R.

For n € N, the generalized sampling operator is defined as (see, e.g.,
[10, 16, 17, 30])

GHi= 3 s0<n<t S)Mg)

k=—o0

Note that, in this case, since ¢ has a compact support, for every fixed
n and t € R, only a finite number of sample values k/n occurs in the
series defining (G, f)(t). Therefore, Dom G = N,,en Dom G,, contains
every function f: R — R. In particular, L*°(R) C DomG.

k k
Kt h) =o(n(e-5)). ter, rez
n n

By assumption i) we easily obtain

5 ka(u8) = 55 e

k=—o0 k=—o0

Moreover for j = 1,2, we have

TS R (1 () T

k=—oc0
1 Ix :
= — o(nt — k)(k — nt)’

nJ
k=—o00

1
= ﬁmj(sa)-
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Thus, we have

lim n?m(K,,t) =0

n—-+o0o

and

lim n’my(K,,t) = C.

n—+oo

Moreover, in order to prove assumption 3) note that, denoting by
[ R, R] the support of ¢ there holds, with o = 2,

n?My(K,,t) = n? Jio |ga(nt—k)|<§—t>2

+oo
= Z (p(nt — k)|(nt — k)* < R2My(yp)

k=—o0
:= H(t)

Moreover, let 6 > 0 be fixed, and let @ be such that én > R for every
n > n. Thus, for n > 7,

b 2

> lete- w5 1) =0
n

|k—nt|>nd

so property 3) holds for any « > 0.

So we obtain the following result as a corollary

Corollary 1. Let f € L*(R). Then we have

lim_ n2((Gaf)(t) - f()] = 01 )

n—-+oo 2

at every point t € R in which f"(t) exists.

Now, using a method developed in [17], we give an explicit example
of kernel ¢ satisfying all the previous assumptions. In order to do that,
let us define the central B-splines of order h € N as

Bult) = ﬁg(ly (Y (hee )

+
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where 27, := max{z",0}. It is well known that the Fourier transform
of the functions By, is given by

~ sinv/2 h
Bh(v):< o2 ), veER, heN,

(see [17, 31]). Given real numbers €, e1, €2 with €9 < &1 < €2, we will
construct a linear combination of translates of By, with h > 3, of type

(,D(t) = aoBh(t — 60) + alBh(t — 61) + agBh(t — 82)

in such a way that i) and ii) are satisfied. Using Poisson’s summation
formula,

I +o00
(i) Y pu—k)u—ky ~ 3 g9 (2rk)e2m,
k=—o00 k=—o0

we have to find constants ag, a; and as such that

1 k=0

p(2rk) =
= {4
@'(2mk) = 0 for every k € Z.

T =
4 0 k#£0.

The Fourier transform of ¢ is given by

5) = Ba(v) (Z )]

By an elementary calculation, we have
B}, (2kr) = 0 for every k € Z

and
—h/12 k=0

Bl (2kr) = { 0 k£ 0:
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thus, we obtain the system

(70\(0) :a0+a1+a2 = ].
@l(O) = —i(ano +e1a1 + 82(12) =0
i "

I(O) = —(6(2](10 + 6%&1 + s%ag) — o =-C,

while for k # 0 we obtain identities 0 = 0. Solving the above linear
system, we obtain the unique solution

C - (h/12) + €162

T 1 —co)(ea—e0)
a :_C—(h/l2)+€0€2
! (82 - 81)(61 - 80) ’
C - (h/12) + €1€0
ags =

(e2 —€1)(e2 —€0)

Moreover, it is easy to see that the support of function ¢ is contained
in the interval [gg — h/2,e2 + h/2].

4. A Szasz-Mirak’jan type operator. In this section we will
study a Szasz-Mirak’jan type operator generated by functions of the
type ¢(t) = p(t)e’, where p(t) is a polynomial and t € I = [0, +o0],
using a set of sample values of the type k/(n + (), where 3 is a
nonnegative constant. We will apply our general theorem in order to
obtain an asymptotic formula for this operator.

Let us consider I = [0, +oo[ and v, = k/(n+ B), k € No, n € N.
We define the operator

<Tnf><t>=%§ak<nt>kf( ).

n+p

where the coefficients aj, are given (uniquely) by the Taylor expansion

+oo
o(t) = Z axtt.
k=0
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The polynomial p(t) has the form p(t) = ¢" + byt" ! + .- + b,, and
we will assume that p(t) > 0 for every ¢ > 0. Note that in this case
the domain of operator T, contains very large classes of functions; for
example, we can also consider functions with exponential growth (for
the Szdsz-Mirak’jan operator, see e.g., [4, 20, 34]). In what follows,
we will simply assume that f € DomT = N,cnDom7T,. In particular,
L>(I) C DomT.

Here

£(t5) = et

It is easy to show that assumption 1) holds. The following lemma gives
an expression for the moments m, (K,,t) for v € N.

Lemma 1. Putting, for j € N,

+oo
S; = Z ark? (nt)k,
k=0

there holds, for v € N,

v

2 %1325 (5) (nt:;w %

Jj=

my (K, t) =

Proof. We have

B 1 400 . k v
my, (Kp,t) = () kzzoak(nt) (n—i—ﬂ —t>
1 < yej tvd itn
= 9p(nt);(q) (> CEL Zakk t)¥

Il
N
—
s | |
e
S
\_/‘
o
N
SN
N~
:w
+| s
™| =
SN—r
O
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If we now calculate S; for j = 1,2,3,4, by elementary calculations
we have

S1 = nty'(nt)
&quw(fmw
= nte'(nt) + 3(nt)?Q" (nt) + (nt)*¢" (nt)
54 = nte' (nt) + 7(nt)%Q" (nt) + 6(nt)3p" (nt) + (nt)*p™ (nt).

Thus, we obtain the following expressions for the first four moments:

_nt ¢'(nt)
m(Kn,t) = 275 p(nt)
Lt (P 1\
m““”‘n+ﬂQx>QHw ”)*wmwww>+t
1 nt , " "
m3(Kp,t) = WW(@ (nt) + 3ntp" (nt) + nt%p (nt))
- e G )+t ()
32 ot
g’ Mt
ma(Kn,t) = —— " (o (nt) + Tnte” (nt)

p(nt) (n + B)*
T 6n2t2g0'"(nt) + n3t3¢iv (nt))
4t nt

p(nt) (n+B)°
Lo

¢(nt) (n+ B)?
4t* ot

¢(nt) (n +5)

We now state the following

(¢'(nt) + 3nte" (nt) + n*t*¢" (nt))
(¢'(nt) + nte" (nt))

¢ (nt) + t.

Lemma 2. There hold
lim nmy(K,,t) =r — Bt,

n—-+4oo

lim nmo(Kp,,t)

n—-+oo

lim nmg(K,,t) =0.

n—+4oo

t
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Proof. First note that, for every j = 1,2, 3,4, there holds
. J j .
0 =3 (1)0 0
v=0

Thus, it is easy to see that

. (p(j) (t)
(4) t—lH-oo g&(t)

=1, j=1,234.

Taking into account the degree of polynomial p, by elementary calcu-
lations we obtain
ntp' (nt) — Btp(nt)

li Kp,t) = i S
Jim nm ( ) ™ (n+ B)p(nt) rr

lim nmeo(K,,t)

n—-+oo

nt
n—lgtloo n+p
y np(nt) + B2tp(nt) + np'(nt) — 26ntp’ (nt) + n’tp (nt)
(n+ B)p(nt)

=t.

Finally, we calculate the limit

lim nmy(Ky,t).

n—-+oo

Taking into account (4), we can reduce the calculation of the limit in
the following way

544 v (nt 4Anitd " (it

lim nm4(Kn,t) = lim n . 14 (n) . n 4 (n)
n—+o0o n—+oo ('n, + ﬂ) go(nt) (n + /6)3 <p(nt)
6n3tt " (nt) 3 4n2t* o' (nt)

(B o(nt) niBem) T

Reducing now the last term in a unique fraction, we determine a ratio
P/Q of two polynomials in n, P and @, having degree r + 3 and r + 4,
respectively. Thus,
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lim nmg(K,,t) =0,

n—-+4o0o

and the proof is now complete. u]
So we obtain the following result as a corollary
Corollary 2. Let f € L*(I). We have

im n[(T,f)(t) — f(t)] = (r = Bt)f'(t) +t

n—-+4oo

(t)
2 )
at every point t in which f"(t) exists.

Proof. We have only to check assumption 3), with @ = 1. The first
part is satisfied for sufficiently large n by taking H(t) = t+1 for every
t € [0, +00[. For the second part, we can write, for § > 0,

3 K(tL>( k _t>2<lm(K £) = o(n~1)
"n+8) \n+8 =52 YT

|(k/n+pB)—t|>65
for n — +oo. O

In the cases r = 0 and 8 = 0, T}, is the classical Szdsz-Mirak’jan
operator:

S0 =S e B () iz

n

The asymptotic formula reduces to the classical one:

lim nl(Saf)(t) - £8)] = 120,

n——+oo 2
when f"'(t) exists.

The cases r = 0 and 8 > 0 have been discussed in [29], in which
the authors introduced the following slight modification of the Szdsz-
Mirak’jan operator:

+oo
aB _ e—nt(nt)k k
Sow=X s () 2o
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In this case the asymptotic formula reduces to ([29])

lim (S8 F)(t) - F(B)] = —Btf (1) + 1),

n—+o0o 2

Another interesting generalization of the Szdsz-Mirak’jan operator is
studied in [29], in which the following operator is considered:

1 400 nt 2k 2k

k=0

Here I = [0, +00[ and vy, = 2k/n for k € N. The kernel is given now

by
2k
K (2o L
n coshnt (2k)!

We will consider functions f : [0,+oco[— R such that f € Dom H =
NpenDom H,.

It is easy to show that assumption 1) holds. As to the moments
mj(Ky,t) for j = 1,2, we have (see [28])

ml(Kn,t) =

1 IX(ne)2 <2k -

t) = —t(1 — tanhnt
coshnt & (2k)! ) ( anhnt)

n
and
t t
ma(Kp,t) = <2t2 - —> (1 — tanhnt) + —,
n n

and so
lim nm(K,,t) =0, lm nmq(K,,t)="=t.

n—-+o0o n—-+o0o

Finally, let us remark that for sufficiently large n, (depending on ¢)
we have
nMy(Kp,t) <t+1,

and so putting o = 1 and H(t) =t + 1 the first part of 3) is satisfied.

For the second part of 3) we apply [28, Lemma 3] which states the
following estimate for the fourth order moment:

m4(Kn, t) =

1 <X (nt)* <2k ~

4
< —2
coshnt £ (2k)! t) = Cn”,

n
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for every n € N, since C' is a positive constant depending only on t.

Thus, we have
|2t \° 1
K, (t, ﬁ) ‘ <_ - t> < 5_2m4(Knat) = O(nil)a

2 ;

|(2k/n)—t]>5

n — +oo0.

So we obtain the following result as a corollary (see [28, Theorem 1]).

Corollary 3. Let f € L*(R). For the hyperbolic Szdsz-Mirak’jan
operator H, f, we have
. (¢
lim nl(Haf)(0) — £(8)] = 112,

n—-+oo 2

at every point t > 0 in which f"(t) exists.

We can consider also a variant of the above operator which involves
the function sinh¢. This operator was also studied in [28], and it is
defined as

) L P 2k
(Hnf)(t) = 1+ sinhnt 1+sinhnt§ (2k+1)!f< n >

For this operator we obtain the same asymptotic formula

tim_n[(F,f)(E) - 1) = 22,

n—-+o0o 2

5. Classical examples. In this section we will give a survey
about Voronovskaya’s formula for various classical discrete operators
by showing that all of them are particular cases of our general theory.
Here we will always assume that f € L*>(I).

5.1. Bernstein polynomials. Let us consider I = [0,1] and
Unk = k/n for k =0,...,n. The Bernstein polynomials of a function
f:[0,1] — R are defined as (see, e.g., [6, 25])

B0 =3 (1) 1(5)ra-o

k=0
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Here,

K, (t, %) = <Z> tF(1— )",

It is easy to show that assumption 1) holds. It is very well known that
(see [6, 25])

t(1—t)

ml(Kn,t) = 0, mg(Kn,t) =

Thus, we have
nMz(K,,t) =t(1 —t),

and so putting & = 1 and H(t) = ¢(1—t), the first part of 3) is satisfied.
For the second part note that (see [6])

My(Kp,t) = my(Kp,t) = %(3712152(1 — )%+ (1 - 6t(1 —t))nt(l —t)),

and so

k| /[ k S|
K, — - — < =My (K,
n<t7n>‘(n t> ~ (52 4( nat)a

and so 3) is completely proved. The asymptotic formula for the
Bernstein polynomials of f now reads (see [36]):

by

|(k/n)—t]>6

lim n[(Baf)®) — £(8)] = ¢(1 — )0

n—-+oo 2 ’

at every point ¢ € [0,1] in which f(¢) exists.

Let us consider now the modification of the Bernstein operator
introduced by Chlodovsky (see [3, 18, 21]) and defined, for f :
[0, +oo[— R, by

o= (-2)

where 0 < ¢t < b, and (b,) is a sequence of positive numbers such
that lim, 1 by, = +oo and lim,_, . n®* b, = c for nonnegative
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constants a < 1 and c¢. Here I = [0,+00[, vp i = bpk/n, for k € N,
and

k n VE(1 — )E 0<t<b,,
Kn<t,bn;>: 0<k>(t/b)(1 (t/bn)) 0<t<b

t > by.

It is easy to show that assumption 1) holds. In [21] it is proved that,
for 0 <t < b,
t(b, —t
ml(Kn,t) = 0, mg(Kn,t) = %
So we have, for the above constants a and ¢,

: a _
nglfwn ma(K,,t) = ct.

Thus, we also have

t

nl—a

N My (K, t) = (b — 1),

and so for the constant o < 1, the first part of 3) is satisfied with
H(t) = ct + 1. For the second part note that, putting

t t
X=—(1-—
()

and using the expression of the fourth order moment of the Bernstein
operator (see, e.g., [6]), we have

b4
My(Kp,t) = my(Kp, t) = n—Z[3n2X2 +nX(1-6X)],

and so
lim n*My(K,,t) =0.

n—-+4oo

Since

>

|(brk/n)—t[>8

kb, \ | [ kb, |
Kn (t;—) <_ _t) S §M4(Kn7t)7

n n
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assumption 3) is completely proved. The asymptotic formula for the
Bernstein-Chlodowsky polynomials reads

lim no[(Cuf)(t) - £(8)] = ctD D,

n—-4o0o 2
at every point ¢ € [0, +oco[ in which f”(¢) exists.

5.2. Baskakov operator. Let us consider I = [0,+oo] and
Unk = k/n, k € Ny, n € N. The Baskakov operator is defined as

+o00 k
~ n+k—1 t k
B,.f)(t) = —f = |,
(Bul)(®) kE_O:( e g (5)

for f € Dom B = ﬂneNDomgn. Here
k
Kt 2)=(mrE-t) L
n k (14 t)ntk

It is easy to show that assumption 1) holds. For the moments

m;(K,,t), for j = 1,2, we have, using elementary calculations (see
also [11])
~+00 k
n+k—1 t k
() =3 ("TE ) e ()
A A AT
“+o0 k
1 n+k—1 t
= — | k—t=0
n(1+t)nkz=:1< k ><l+t> ’
and
t(1+t

Thus, we have
nMy(K,,t) =t(1+1t),

and so putting a = 1 and H (t) = ¢(1+t), the first part of 3) is satisfied.

For the second part of 3) we refer to [11, Lemma 4] in which it is

proved that

Cn d,,
ma(Kp,t) = FH(vt) + EHZ(t),
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where ¢, and d, are bounded sequences of positive numbers. So we
can write

E\ [k |
> K, <t, —> (— - t> < —ma(Kp,t)
| /m) 2|26 n/AR 0

and so the second part of 3) is satisfied with « = 1. So we get the
following asymptotic formula for the Baskakov operator (see [19]):

lim n[(Buf)(t) — £0)] = t1 + )10

n—-+oo 2 ’

at every point ¢ € [0, +oo[ in which f”(¢t) exists.

5.3. The Meyer-Konig and Zeller operators. Let us consider
I=1[0,1] and v, = k/(k +n), k € Ng, n € N. The Meyer-Konig and
Zeller operator is defined as (see [11, 26, 35])

n 1 7’L+k k:
(Mo D)0) = (1 - ) Z( Jer():
for f € Dom M = NjenDom M,,. Here

K (t %) = (1— )+ <"Zk>t’“.

It is easy to show that assumption 1) holds. Now we calculate m (K, t)
for j = 1,2. We have, using an elementary calculation,

mi(Kn,t) = (1 ft)"“io ("zk> tk(lern t)

(k+n-—
_ _ n+1 k_
B Z f1|nlt t=0.

Moreover, for the moment my(K,,t), we have (see [32])

(Ko t) t(1 ; t)? N t(1— t);(?t -1)

+0(n™3).
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Thus, we have

Mo (K,t) = 1(1 — 1)? 4 LEZDCE =)

+0(n ),
and so putting o = 1 and H(t) = t(1 — t)? + 1, the first part of 3) is
satisfied.

For the second part of 3), we apply the representation of the fourth
moment proved in [32]

3t2(1—t)*

m4(Kn,t) = >

+0(n™3).

n

So we can write

k k S|
E v _ <
K"(t’k+n>(k+n t> - 52m4(K"’t)’

|k/(k+n)—t|26

and so the second part of 3) is satisfied with @« = 1. So we get
the following Voronovskaya’s formula for the Meyer-Konig and Zeller
operators

lim n[(M,f)() — f(t)] =t(1 - t)2w,

n——+o0o 2
at every point ¢ € [0,1] in which f(¢) exists.

For a generalized version of the Meyer-Konig and Zeller operators,
see [2].

5.4. The Bleimann-Butzer-Hahn operator. Let us consider
I=[0,+00] and v, = k/(n+1—k), k € Ny, n € N. The Bleimann-
Butzer Hahn operator is defined as (see, e.g., [1, 12, 23])

N O L |

k=0
te 0,400, m€eN,

for f € Dom L = NpenDom L,,. Here

k 1 n\ .k
K"<t’n+1—k> S (t+1)n <k>t
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As before, it is easy to show that assumption 1) holds. Moreover, for
the first order moment of the kernel K,,, using elementary calculations,
we have

¢ n
ml(Knat) = _t<H‘—1> , t2> 07

and so
lim nmi(K,,t)=0, t>0.

n— 400

For the second order moment, we have the estimate (see [1, 4, 12])

t(1 +¢)?

K,,t)<C
m2( )_ n -+ 2

for a suitable constant C > 0 and

lim nmy(K,,t) = t(1+1t)%

n—-+4oo

Thus, taking o = 1 and H(t) = Ct(1 + t)?, the first part of assump-
tion 3) is satisfied. Finally, the following estimate holds, for sufficiently
small § > 0, (see [22])

1 n -+ 1) k —(n+ 1)(52
(t+ 1)n+t Z < t" <2exp | ————5 |5
(t+1) |k/(n+1—k)—t|>6 k 16¢(1 +¢)

hence, we also have

=y 2 (+)

|k/(n+1—k

- 1 n+l\n+1-Fk,
IGE Z < k > n+1 !

|k/(n+1—k)—t|>6

1 n
S(l—i—t)m Z ( —]L_l)tk

k/(n+1-k)—t|>6

—(n+ 1)62>
16t(1+¢)2 )"

§2(1+t)exp<
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Thus,

o 2wl Gty
o T s ntl—k)\n+t1—k

k
< n(n+ |t])? > Kn <tm>
1|25

|k/(n+1—k)
—(n +1)4?
16t(L+t)2 )"

< 2(1+t)n(n + |t])? exp <

Hence, also the second part of assumption 3) is satisfied, with o = 1.

The related asymptotic formula for the Bleimann-Butzer-Hahn oper-
ator takes the form (see [23])

im n[(L,f)(t) = f(¢)] =t(1+ tﬂw,

n— 400 2

at every point ¢ > 0 in which f”(¢) exists.

6. An extension to the nonlinear case. Here we will consider a
nonlinear version of operator (1), of the form

“+oo

(5)  (Saf)t) =D Kn(t,vnk, f(vnk)), n€N, tel

k=0

We remark that in this instance the theory is quite different because
we can obtain now only some estimates of the error of approximation
in terms of limsup and of absolute moments. In particular, it seems
to us that it is not possible to obtain an exact order of pointwise
approximation.

The results given here involve only the first derivative of the function
f. This is in some sense natural, as we will show later.

In (5) I'n = (Unk)ken, C I is a sequence satisfying the same
assumption of Section 2 and K, : I xI', x R — R is a function
satisfying a Holder condition of type

|Kn(ta Un k, u) - Kn(t7 Vn,k:av)‘ S Ln(ta Vn,k)‘u - U|77
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where 0 < v < 1 and K, (t,vn,0) =0 for every t € I, v, € I'y, and
n € N. Here the sequence (L, )nenN satisfies the conditions

(L.1) there is a constant D > 0 such that

“+o00
ZLn(t,unvk) <D, neN, tel.
k=0

(L.2) There holds

“+o0
Ml(Lnata'y) = ZLn(ta Vn,k)‘yn,k - t|7 < 400
k=0
forme N, tel.
By assumption (L.1) it is easy to see that for every n € N the domain
of S, contains L*(R). Indeed, we have

+oo
(Sul)O) < A% D Lalt, vag) < 111D
k=0

We will say that the sequence (K,),cn is a-singular if for a fixed
a > 0 the following assumptions are satisfied

(K.1) for every t € I and § > 0 there holds

> Laltva)las — ] = o(n™®), (n— +o0).
[V & —t] >0

(K.2) For every u € R and for every ¢t € I we have

n—-+oo

“+ o0
lim n® ZKn(t,yn,k,u)—u =0.
k=0

Theorem 2. Let f € L™(R) be a function such that f'(t) exists at
a point t € I. Let us assume that the sequence (K, )nen 18 a-singular

and

(6) limsup n® M (L, t,v) = ¢1(t) € R.

n—+4oo
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Then
(7) limsup n®[(S,.f)(t) — f(H)| < LI B)].

n—-+oo

Proof. Since f is differentiable at point ¢, there exists a bounded
function A such that lim,_,o h(y) = 0 and

Fng) = f(#) + /() (nk — 1) + h(vng — 1) (vnk — ).

Now we have

+oo
n®|(Suf)(8) = FO <1 D La(t,va ) f(vn k) = F)
k=0
+oo

+0% Y Kt v, f(t) = f(t)| = I + L.
k=0

By assumption (K.2), term I tends to zero. Now we evaluate the term
I;. Using concavity of the function g(z) = 27, = > 0, we have

II < na|f,(t)|’yM1(Ln7 ta 7)
“+ o0
+n® Z L (s v i) |h(Vn e = O [n e — 27
k=0
Denoting by J the last term on the righthand side of the previous
inequality and using assumption (K.1), as in the proof of Theorem 1
we have

J < €7naM1(Lnat77) + O(l)a (n - +OO)
Thus, by (6) we have

lim sup n®|(Sn f)(t) = f(H)| < @IS B O

n—-+4oo

Remark. Note that in this case it is not meaningful to assume the
existence of a second derivative at a point ¢ along with

—+oo
My (L, t,y) = ZLn(t,un’k)h/n’k —t*7 < 400
k=0
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and

3 Lt vag) Ve — 7 = o(n ),
|Vn,k_t|26

for every § positive. Indeed, in this case, we also have

Z Ln(tayn,k)‘yn,k _t|7

[Vn,k—t]28

<5 N Laltvag)lag — 77 = o(n™?),
[Vn, &k —t] >0

so that all the assumptions of Theorem 2 are satisfied and we obtain
(7). This means that estimate (7) cannot be improved if the function
f is more regular.

Examples. 1. A nonlinear Bernstein operator. Let us
consider I = [0,1] and v, = k/n, for k = 0,...,n. A nonlinear
version of the Bernstein operator may be defined as (see [8])

0 =3 (1) 6u((3) -

where G,, : R — R satisfies a Hélder condition of the form
|Gn(u) = Gn(v)| < Rlu —v|”
for every n € N, 0 < v < 1 and a suitable constant R > 0 and

lim n%(G,(u) —u) =0

n—+4oo

for every u € R. Here

K, <t%u> = (Z) t*(1 — )" * G, ().

It is easy to show that all the previous assumptions are satisfied with

L, <t, %) -R (Z) t*(1 — )% .= RL, <t, %)
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and D = R. Using the relations (see [13, 37])

-t
n

!
2t(1—¢)\/? 1 . .
=R — —+0 t(1—t /2
(PE=0)" v om -
for t €]0, 1[, by concavity of the function g(z) = 27, = > 0, we have

v

a0 ()
+ O(n’:(t(l — )7/,

Thus, for o = v/2, we have

o < (100"

Moreover (see Section 5) using again the concavity of the function g,

we get
2y

g E\| &
Mg(Ln,t,y):RZLn<t,E)E—t

)
gR(’f(_;t))v.

Then we have

> L. (t, Z)

|(k/n)—t]>6

1 _
< 6_,YM2(Lnat7PY) = O(n 7/2)‘
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Therefore, for o = /2, we obtain the following asymptotic formula
2t(1 — )\ "?
imsupa?/2(5,1)0) - 0] < & ZC=0) i
n—-+oo ™
at every point ¢ €]0, 1[ in which f'(¢) exists.
2. A nonlinear Szasz-Mirak’jan operator. Let us consider

I =[0,4+00] and v, = k/n for k € Ny. A nonlinear version of the
Szdsz-Mirak’jan operator may be defined as (see [8])

_ —nt (nt)k k
(Snf)) =Y e =Gl F( ) )
where G, : R — R satisfies the previous conditions. Here

k _ _—nt (nt)k
K, <t, E,u) =e TGn(u)

k ~
Lot 5) = et " _ g7 (1 F).
n k! n

As in the previous example, it is easy to show that all the previous
assumptions are satisfied with D = R. Using the relations (see [14,

i XL R\ 2t\ /2 1 )
R,;)Ln<t’ﬁ>‘ﬁ_t‘:}z<;> %—FO(n )

for ¢ € [0, +00[, we have

and

My(Ln,t,7) =R L, (t, E)
=0

k
()" () o

Moreover, as in Section 4, there holds

t Y
Ms(Ly,,t,v) < R(g) .
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Therefore, as in the previous example, for a = /2, we obtain the
following asymptotic formula

/2
limsup n?/|(Suf)(t) — F()] < R(ﬁ) 0%

n—-+4oo s

at every point t € [0, +oo[ in which f’(¢) exists.

Further examples may be deduced, using the same methods, from
other classical linear operators such as Bleimann-Butzer-Hahn, Baska-
kov, Meyer-Konig, the Zeller operator, and so on.
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