A FEW REMARKS ON CONGRUENT NUMBERS

TERUTAKE ABE, ASHVIN RAJAN AND FRANÇOIS RAMAROSON Dedicated to Professor Takashi Ono

ABSTRACT. Adapting an argument by Nigel Boston, we provide a new elementary proof of a theorem due to J.S. Chahal which asserts that every residue class $a \pmod{8}$ for which gcd(a, 8) is square-free contains an infinite set of congruent numbers. We then establish the following stronger result. Fix a positive integer q, an integer a such that gcd(a, q) is squarefree, and a real number θ such that $0 < \theta < \pi$, for which $\cos \theta$ is a rational number. Then the number of integers in the interval [1, n] that are θ -congruent numbers belonging to the residue class $a \pmod{q}$ is at least $\mathcal{O}(\sqrt{n})$.

1. Introduction. Fix a real number θ such that $0 < \theta < \pi$, for which $\cos \theta = s/r$, where r and s are relatively prime integers with r > 0. Write $\alpha_{\theta} = \sqrt{r^2 - s^2}$. A square-free integer n is a θ -congruent number if $n\alpha_{\theta}$ is the area of a rational triangle one of whose angles is θ . (A rational triangle is a triangle whose three sides all have rational lengths.) We call $(\pi/2)$ -congruent numbers "congruent numbers."

Our inspiration was the following pretty density argument, proposed by Nigel Boston. For an odd, positive, square-free integer n, the triple (n-2, n, n+2) must be relatively prime in pairs, and hence if the three positive integers n and $n \pm 2$ are all square-free, then so is $2n(n^2-4)$, which is the area of the rational right triangle whose sides make up the integral triple $(n^2 - 4, 4n, n^2 + 4)$. Thus, to prove that the set of congruent numbers is infinite, it suffices to prove that all three entries in triples (n-2, n, n+2) are square-free infinitely often. If there were at most a finite number of such triples in which all three entries were square-free, then the natural density of the positive odd square-free integers amongst all the positive odd integers can be no more than 2/3. However, as is well-known, this density is $8/\pi^2$. And since $8/\pi^2 > 2/3$, the set of (even) congruent numbers must be infinite.

Keywords and phrases. Congruent numbers, density, binary forms. Received by the editors on February 19, 2007.

²⁰⁰⁰ AMS Mathematics subject classification. Primary 11A05, 11B05,11E76, 11H46, Secondary 11G05, 11B25.

For positive integral q, a residue class $a\pmod{q}$ is permissible if $\gcd(a,q)$ is square-free. We modify Boston's argument to re-prove a theorem due to Chahal [3], which states that each permissible residue class modulo 8 contains an infinite set of congruent numbers. Chahal's theorem was extended by Bennett [1], who proved that for an arbitrary positive integer q, every permissible residue class $a\pmod{q}$ contains an infinite set of congruent numbers. Fujiwara [4] has also refined Chahal's theorem, proving that for any θ with $0 < \theta < \pi$, where $\cos \theta$ is a rational number, every permissible residue class modulo 8 contains an infinite set of θ -congruent numbers.

We generalize these theorems of Bennett and Fujiwara, via asymptotic estimates for the distribution of square-free values of binary forms proved by Stewart and Top [8], and establish that for an arbitrary integer $q \geq 1$ and θ such that $0 < \theta < \pi$, with $\cos \theta$ rational, the number of integers in the interval [1, x] that are θ -congruent numbers belonging to each permissible residue class $a \pmod{q}$ is at least $\mathcal{O}(\sqrt{x})$.

2. Density arguments and Chahal's theorem. The natural density of a set S of positive integers is $\delta(S) = \lim_{n \to \infty} (|S \cap [1, n]|/n)$, and if C is a second subset of positive integers containing S, the relative natural density of S in C is $\delta_C(S) = \lim_{n \to \infty} (|S \cap [1, n]|/|C \cap [1, n]|)$. Landau [6] proved that the relative natural density $\delta_{a,q}$ of square-free integers in a residue class $a \pmod{q}$ where $\gcd(a, q)$ is square-free, is

$$\delta_{a,q} = B \cdot \frac{6}{\pi^2} \cdot \prod_{p|q, p: \text{ prime}} \left(p^2/(p^2 - 1) \right), \text{ where}$$

$$B = \varphi(q)/[\gcd(a, q) \cdot \varphi(q/\gcd(a, q))].$$

We see that the relative density of the square-free integers amongst the integers in each permissible residue class modulo 8 is $8/\pi^2$. This enables us to prove the following theorem.

Theorem 2.1 [3]. Every permissible residue class modulo 8 contains an infinite set of congruent numbers.

Proof. Consider the triple (n-8, n, n+8) where n is odd. Since these three entries are relatively prime in pairs, if all three are square-free, then so is $2n(n^2-64)$, which, being the area of the rational right triangle with sides

$$\left(\frac{n^2-64}{2}, 8n, \frac{n^2+64}{2}\right),$$

is a congruent number. If the three entries in (n-8,n,n+8) were all square-free only finitely often, then the density of the square-free integers in the congruence class $n \pmod 8$ could be at most 2/3. However, since this density is $8/\pi^2$, there must be an infinite set of triples with all three entries square-free. Choosing $n \equiv 1 \pmod 8$ (or $3 \pmod 8$) yields an infinite set of congruent numbers in the residue class $2 \pmod 8$ (or $6 \pmod 8$). To treat the odd residue classes modulo 8, we work with $n(n^2-16)$ which is the area of the right triangle with sides

$$\left(\frac{n^2-16}{2}, 4n, \frac{n^2+16}{2}\right).$$

Landau's density estimate modulo 4 enables one to conclude immediately that there are infinite sets of triples (n-4,n,n+4) whose entries are all square-free, in each of the residue classes 1 and 3 (mod 4). Let $T_{1,4}$ be the set of all positive integers $n \equiv 1 \pmod{4}$ for which the entries of (n-4,n,n+4) are all square-free. Then the intersection of $T_{1,4}$ with each of the two residue classes 1 and 5 (mod 8) is infinite. For if, to the contrary, $T_{1,4}$ contained only finitely many n with $n \equiv 1 \pmod{8}$, then there is a positive integer A, so that if n > A and $n \equiv 1 \pmod{8}$ then at most two of (n-4,n,n+4) are square-free. This certainly implies that for each n with n > A and $n \equiv 1 \pmod{16}$, at most three of (n-4,n,n+4,n+8) are square-free. Let X be the set of all integers in the residue class 1 modulo 4 which are greater than A, and let S be the set of all square-free integers in X. Then $\delta(S)$ must be $\delta_{1,4}/4 = 2/\pi^2$. On the other hand, since $\delta(X) = 1/4$,

$$\begin{split} \delta\left(S\right) &= \lim_{N \to \infty} \frac{|S \cap [1,N]|}{N} \\ &= \lim_{N \to \infty} \frac{|S \cap [1,N]|}{|X \cap [1,N]|} \cdot \frac{1}{4} \leq \frac{3}{4} \cdot \frac{1}{4} < \frac{2}{\pi^2}. \end{split}$$

So, there must be an infinite set of triples (n-4, n, n+4) where $n \equiv 1 \pmod{8}$, with all three entries square-free. Each such triple gives the square-free congruent number $n(n^2-16) \equiv 1 \pmod{8}$. Repeating the argument with $n \equiv 5 \pmod{8}$ yields an infinite set

of congruent numbers in the residue class 5 (mod 8), and replacing $T_{1,4}$ by $T_{3,4}$ and choosing $n \equiv 3$ or 7 (mod 8) produces infinite sets of congruent numbers belonging to the residue classes 3 or 7 (mod 8), respectively.

3. Congruent numbers as values of binary quartic forms. To prove a general result, and recover the theorems of Bennett and Fujiwara as special cases, we view θ -congruent numbers as square-free values of binary quartic forms. So, fix a real θ where $0 < \theta < \pi$, with $\cos \theta = s/r$ where r and s are relatively prime integers and r > 0. Kan [5] has proved that a square-free natural number n is a θ -congruent number if and only if n is the square-free part of the value of the binary form

$$G(X, Y) = XY(X + Y)(2rX + (r - s)Y)$$

at integral X and Y. The following very powerful theorem by Stewart and Top [8] gives asymptotic estimates for the distribution of square-free values of binary forms. We state a version that applies to our situation.

Let $Q \geq 1$, U and V be integers, and let

$$F(X,Y) = a_d X^d + a_{d-1} X^{d-1} Y + \dots + a_0 Y^d$$

be a homogenous binary form of degree d>2 with integral coefficients. Assume that F(X,Y)>0 if X and Y are positive. Let $R_2(x)$ denote the number of square-free integers $t\in [1,x]$ for which there exist $u\equiv U\pmod Q$ and $v\equiv V\pmod Q$ such that F(u,v)=t.

Theorem 3.1 [8]. If there is a pair of integers $(u, v) \equiv (U, V)$ (mod Q) such that F(u, v) is square-free, the degree of the largest irreducible factor of F over \mathbf{Q} is less than 6, and the discriminant of F(X,Y) is nonzero, then there are positive real numbers c and C (which depend on Q and F) such that if x > c, then $R_2(x) > Cx^{2/d}$.

Theorem 3.2. Assume that for $0 < \theta < \pi$, $\cos \theta = s/r$, where r > 0, and $\gcd(s, r) = 1$. Fix a positive integer q. Then every permissible residue class a \pmod{q} contains an infinite set of θ -congruent numbers. More precisely, there is a positive constant C, depending on

 θ and q, such that for a sufficiently large positive integer n, the number of integers in the interval [1, n] that are θ -congruent numbers in the residue class $a \pmod{q}$ is at least $C\sqrt{n}$.

Proof. In Theorem 3.1, set Q=q, and consider the binary quartic form

$$G(X, Y) = XY(X + Y)(2rX + (r - s)Y).$$

Let $r = r_1 l$, where r_1 is the largest factor of r that is relatively prime with q. Set X = u and $Y = 2q^2 lv$. Then

$$G(X,Y) = XY (X + Y) (2rX + (r - s) Y)$$

= $4q^2l^2uv (u + 2q^2lv) (r_1u + (r - s) q^2v)$.

So, square-free values of G(X,Y), for X=u and $Y=2q^2lv$, are square-free values of

$$F(u, v) = uv (u + 2q^2 lv) (r_1 u + (r - s) q^2 v),$$

and these square-free values are θ -congruent numbers. Since $\gcd(q, r_1) = 1$, there exists a t_1 such that $t_1r_1 \equiv 1 \pmod{q}$. Let U = 1 and $V = at_1$ (with $\gcd(a,q)$ square-free). If $(u,v) \equiv (1,at_1) \pmod{q}$, then $F(u,v) \equiv a \pmod{q}$. To see that F(u,v) achieves square-free values infinitely often for $(u,v) \equiv (1,at_1) \pmod{q}$, we consider the cubic polynomial $f(x) = F(1,at_1+qx)$, which is the product of three linear factors with positive integral coefficients, such that no two factors are proportional to each other. Elementary arguments verify that $f(x) \equiv 0 \pmod{p}^2$ has fewer than p^2 solutions for every prime number p. A theorem by Shapiro ([7, Theorem 4.2]) then allows us to conclude that the set of positive integers x for which f(x) is square-free has positive density. This proves that the number of square-free values of F(u,v) in the residue class $a \pmod{q}$ is infinite. Thus, this residue class contains an infinite set of θ -congruent numbers.

Moreover, every irreducible factor of the form F, being linear, is of degree less than 6, the discriminant of F is easily seen to be nonzero, and the argument above shows that there is at least one (in fact infinitely many) $(u,v) \equiv (1,at_1) \pmod{q}$ for which F(u,v) is squarefree. Thus, the assumptions of Theorem 3.1 are satisfied, and we can now conclude that there exist positive constants c and C such that for

real numbers x > c, $R_2(x) > C\sqrt{x}$. This immediately implies that the number of integers in the interval [1, n] that are θ -congruent numbers belonging to the residue class $a \pmod{q}$ is at least $\mathcal{O}(\sqrt{n})$.

Finally, we remark in closing that, in Theorem 3.2, specializing to $\theta = \pi/2$ one obtains Bennett's theorem, while setting q = 8 yields Fujiwara's theorem.

Acknowledgments. The third author would like to thank Howard University for providing him a sabbatical leave of absence for the spring semester in the academic year 2006–2007 during which this work was completed.

REFERENCES

- 1. M.A. Bennett, Lucas' pyramid problem revisited, Acta Arith. 105 (2002), 341–347.
 - 2. N. Boston, Infinitely many congruent numbers, Internet posting.
- 3. J.S. Chahal, On an identity of Desboves, Proc. Japan Acad. Math. Sci. 60 (1984), 105-108.
- 4. M. Fujiwara, θ -congruent numbers, Number Theory, K. Györy, A. Pethö and V. Sós, eds., de Gruyter, 1997, Berlin.
- 5. M. Kan, θ -congruent numbers and elliptic curves, Acta Arith. 54 (2000), 153–160.
- 6. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig, 1953.
- 7. H. Shapiro, Powerfree integers represented by linear forms, Duke Math. J. 16 (1949), 601-607.
- 8. C.L. Stewart and J. Top, On ranks of twists of elliptic curves and power-free values of binary forms, J. Amer. Math. Soc. 8 (1995), 943–973.

Department of Mathematical and Physical Sciences, Texas A&M International University, Laredo, Texas, 78041

Email address: tabe@tamiu.edu

3935 Cloverhill Road, Baltimore, MD 21218

Email address: ashvinrj@aol.com

DEPARTMENT OF MATHEMATICS, HOWARD UNIVERSITY, WASHINGTON, DC 20059 Email address: framaroson@howard.edu