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SEARCH BOUNDS FOR ZEROS OF POLYNOMIALS
OVER THE ALGEBRAIC CLOSURE OF Q

LENNY FUKSHANSKY

ABSTRACT. We discuss existence of explicit search bounds
for zeros of polynomials with coefficients in a number field.
Our main result is a theorem about the existence of polyno-
mial zeros of small height over the field of algebraic numbers
outside of unions of subspaces. All bounds on the height are

explicit.
1. Introduction. Let Fi,... , Fj be a collection of nonzero polyno-
mials in NV variables of respective degrees My, ... , M}, with coefficients

in a number field K of degree d over Q. Consider a system of equations
(1) Fi(Xy,...,XNy)=--=F(Xy,...,Xn)=0.

There are two fundamental questions one can ask about this system:
does (1) have nonzero solutions over K, and, if yes, how do we find
them? In [8], Masser poses these general questions for a system of equa-
tions with integer coefficients and suggests an alternative approach to
both of them simultaneously by introducing search bounds for solutions.
We start by generalizing this approach over K.

We write Q for the algebraic closure of Q and P(QN) for the

projective space over QN. If H is a height function defined over Q,
then by Northcott’s theorem [10] a set of the form

(2) Sp(C) = {x e P(Q") : H(x) < C, deg(x) < D}

has finite cardinality for any C, D € R, where deg (x) is the degree of
the field extension generated by the coordinates of x over Q. Suppose
that we were able to prove that if (1) has a nonzero solution x € K%,
then it has such a solution with H(x) < C for some explicit C. This
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means that we can restrict the search for a solution to a subset of the
finite set Sq(C) as in (2). We will call a constant C' like this a search
bound for (1). If a search bound like this exists, it will clearly depend
on heights of the polynomials Fi,... , Fi. As in [8], we can now replace
the two questions above by the following problem.

Problem 1. Find an explicit search bound for a nonzero solution of
(1) over K.

This problem has been solved for arbitrary IV only in very few cases.
First suppose that ¥ < N, and M; =--- = M = 1. If F,..., F} are
homogeneous, a solution to Problem 1 is provided by Siegel’s lemma, see
[2]. In the case when F}, ..., F}, are inhomogeneous linear polynomials,
this problem has been solved [11]. Another instance of (1) for which
the general solution to Problem 1 is known is that of one quadratic
polynomial. If £ = 1, My = 2, and F} is a quadratic form in N > 2
variables with coefficients in K, a solution to Problem 1 is presented in
[3] in case K = Q and generalized to an arbitrary number field in [13].
If F} is an inhomogeneous quadratic polynomial, a general solution
to Problem 1 over Q can be found in [7] and its generalization to an
arbitrary number field in [5]. For a review of further advances in this
subject and a detailed bibliography see [8].

A general solution to Problem 1 even for one polynomial of arbitrary
degree in an arbitrary number of variables seems to be completely out
of reach at the present time. In fact, if K = Q and Fi,..., Fy are
homogeneous, a solution to Problem 1 would provide an algorithm to
decide whether a system of homogeneous Diophantine equations has
an integral solution, and so would imply a positive answer to Hilbert’s
tenth problem in this case. However, by Matijasevich’s famous theorem
[9], Hilbert’s tenth problem is undecidable. This means that, in general,
search bounds do not exist over Q; in fact, they are unlikely to exist over
any fixed number field. Moreover, it is known they do not exist over Q
for even a single quartic polynomial or for a system of quadratics, see
[8] for details.

In this paper we deal with the case of a single polynomial. Let us
relax the condition that a solution must lie over a fixed number field
K, but instead search for a solution of bounded height and bounded
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degree over Q. In other words, given an equation of the form
F(Xla"'aXN) :Oa

. . —N
we want to prove the existence of a nonzero solution x € Q  such that
H(x) < C and deg x(x) < D for explicit constants C' and D, where
deg k (x) stands for the degree of the field extension over K generated
by the coordinates of x. This problem is easily tractable as we will
show in Section 3 and still provides an explicit search bound since the
set Sp(C) is finite. In fact, we can prove a stronger statement by
requiring the point x in question to satisfy some additional arithmetic

conditions. Write GX¥ for the multiplicative torus (QX)N . Here is the
main result of this paper.

Theorem 1.1. Let F(X;,...,Xy) be a homogeneous polynomial
i N > 2 variables of degree M > 1 over a number field K, and let
A € GLy(K). Then either there exists 0 # x € K~ such that F(x) = 0
and

(3) H(x) < H(A),
or there exists x € AGY with deg x(x) < M such that F(x) =0, and
(4) H(x) < Ci(N,M)H(A)?H(F)"M,

where

2 N

N ) 1/2M
M+j5—2
XH( j-2 ) '

=2

[(AM+1)(N—-2)]/2M 1/2M
M +2 M+ N
C1(N, M) :2N1<—> ( >

(5)

In other words, Theorem 1.1 asserts that, for each element A of
GLy (K), there either exists a zero of F' over K whose height is bounded
by H(A), or there exists a small-height zero of F over Q which lies
outside of the union of nullspaces of row vectors of A~!; for instance,
if A = Iy, this means that there exists a small-height zero of F' with
all coordinates nonzero.



792 LENNY FUKSHANSKY

Notice that our approach of searching for small-height polynomial
zeros over Q is analogous in spirit to the so-called “absolute” results,
like the absolute Siegel’s lemma of Roy and Thunder, [14]. The
difference, however, is that we also keep a bound on the degree of a
solution over the base field K.

This paper is organized as follows. In Section 2 we set the notation
and introduce the height functions that we will use. In Section 3 we
talk about basic search bounds for zeros of a given polynomial over Q.
In Section 4 we prove Theorem 1.1. Results of this paper also appear

as a part of [4].

2. Notation and heights. We start with some notation. Let K be
a number field of degree d over Q, O its ring of integers and M (K) its
set of places. For each place v € M(K), we write K, for the completion
of K at v, and we let d, = [K, : Q,] be the local degree of K at v, so
that for each u € M(Q)

0 Y d-d
veEM(K),v|u

For each place v € M(K), we define the absolute value || ||, to be
the unique absolute value on K, that extends either the usual absolute
value on R or C if v | 0o, or the usual p-adic absolute value on Q,

if v | p, where p is a prime. We also define the second absolute value

| |» for each place v by |al, = ||a\|g”/d for all @ € K. Then, for each

nonzero a € K, the product formula reads

(7) H |a'|v =1

veEM(K)
For each v € M(K), define a local height H, on K} by
maxi<i<nN ‘mi‘v lf’UJfOO

dy/2d
(S llaali2) ™ i o] oo

for each x € KY. We define the following global height function on
KN:

(8) Hx)= [] H.(x),
)

vEM (K

H,(x) =
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for each x € KV. Notice that, due to the normalizing exponent 1/d, our
global height function is absolute, i.e., for points over Q its value does
not depend on the field of definition. This means that, if x € GN then
H(x) can be evaluated over any number field containing the coordinates
of x.

We also define a height function on algebraic numbers. Let o € Q,
and let K be a number field containing . Then define

(9) h(a) = H max{1l,|al,}-
veEM(K)

We define the height of a polynomial to be the height of the correspond-
ing coefficient vector. We also define height on GLy(K) by viewing
matrices as vectors in K¥°. On the other hand, if M < N are positive

integers and A is an M x N matrix with row vectors ay,...,ay, we
let
(10) H(A)=H(a; A---Nay),

and if V is the nullspace of A over K, we define H(V) = H(A). This is
well defined, since multiplication by an element of GLys(K) does not
change the height. In other words, for a subspace V of K¥ its height is
defined to be the height of the corresponding point on a Grassmannian.

We will need the following basic property of heights, which can be
easily derived from Lemma 2 of [12] (see [4, Lemma 4.1.1] for details).

Lemma 2.1. Let g(X) € K[X] be a polynomial of degree M in one
variable with coefficients in K. There exists an o € Q of degree at
most M over K such that g(a) =0, and

(11) h(a) < H(g)"™.

Throughout this paper, let M and N be positive integers, and define

N
(12) M(N, M) = (ir,... in) €ZY > iy =My,
j=1



794 LENNY FUKSHANSKY

where Z is the set of all nonnegative integers. Then any homogeneous
polynomial F' in N variables of degree M with coefficients in K can be
written as

F(Xy,...,XN) = Z X XY € K[Xy,..., XN
i€ M(N,M)
For a point z = (21,...,2n) € QN, we write deg x(z) to mean
the degree of the extension K(z,...,2n) over K, ie., degg(z) =
[K(z1,...,2N) : K]. We are now ready to proceed.

3. Basic bounds for one polynomial. We start by exhibiting a

basic bound for zeros of polynomials over Q.

Proposition 3.1. Let M > 1, N > 2, and F(X1,...,Xn) be a
homogeneous polynomial in N wvariables of degree M with coefficients
in a number field K. There exists a 0 # z € QN with deg x(z) < M
such that F(z) =0 and

(13) H(z) < V2 H(F)YM,

Proof. If F is identically zero, then we are done. So assume F' is

—N
nonzero. Write eq,...,ey for the standard basis vectors for Q = over
Q. Assume that, for some 1 < i < N, deg x,F' < M; then it is easy to
see that F(e;) =0, and H(e;) =1. If N > 2, let

Fl(XlaXQ) = F(X17X2707"' 70)7

and a point x = (z1,z2) € 62 is a zero of F; if and only if
(z1,22,0,...,0) is a zero of F, and H(z1,x2) = H(z1,22,0,...,0).
In particular, if F}(X;, X3) = 0, then F(e;) = 0. Hence, we can as-
sume that N = 2, F(X;,X3) # 0, and deg x, F = deg x,F = M.
Write

M
(X1, X5) =Y XX,
i=0
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where fo, f;r 7 0. Let

M

9(X1) = F(X1,1) = Zfz’Xf € K[X4],

be a polynomial in one variable of degree M with coefficients in K.
Notice that, since coefficients of g are those of F', we have H(g) = H(F).
By Lemma 2.1, there must exist an a € Q with deg x(a) < M such
that g(a) =0, and

H(a,1) < V2 h(e) < V2 H(g)V™ = V2 H(F)YM,

Taking z = («, 1) completes the proof. u]

Notice that, if N = 2, then the bound (13) is best possible with
respect to the exponent. Take

F(X1,X2) = XM —cxM,

for some 0 # C' € K. Then zeros of F' are of the form (aCYM @) for
a € Q, and it is easy to see that H(aCY™ o) > (1/v/2)H(F)Y/M.

Corollary 3.2. Let the notation be as in Proposition 3.1. Then

there exist vectors x;; € GN with monzero ith and jth coordinates,
1 <is# j <N, and the rest of the coordinates equal to zero such that
F(x;;) = 0, deg k(xi;) < M, and each x;; satisfies (13). Notice that

GN :spana{xij :1<i#j <N}

Proof. In the proof of Proposition 3.1, instead of setting all but X;
and X, equal to zero, set all but X; and X; equal to zero. u]

4. Proof of Theorem 1.1. Notice that Proposition 3.1 only proves
the existence of a small-height zero of F' which is degenerate in the sense
that it really is a zero of a binary form to which F' is trivially reduced.
Do there necessarily exist nondegenerate zeros of F?7 To answer this
question, we consider the problem of Proposition 3.1 with additional
arithmetic conditions. We wonder what can be said about zeros of a
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polynomial over Q outside of a collection of subspaces? For instance,
under which conditions does a polynomial F' vanish at a point with
nonzero coordinates? Here is a simple, effective criterion.

Proposition 4.1. Let N > 2, and let F(X1,...,Xn) € K[X41,...,
Xn] have degree M > 1. If F is not a monomial, then there exists
az € QN with deg x(z) < M such that F(z) = 0, z; # 0 for all
1<i¢< N, and

(14) H(z) < MM\/N —1H(F).

Proof. Since F' is not a monomial, there must exist a variable which
is present to different powers in at least two different monomials; we
can assume without loss of generality that it is X;. Then we can write

M

F(Xy,...,XN) =Y Fi(Xs,...,Xn)X},
=0

where each F; is a polynomial in N — 1 variables of degree at most
M —i. At least two of these polynomials are not identically zero, say
F; and F}, for some 0 < j < k < M. Let

ij(XQ,... ,XN) = Fj(XQ,... ,XN)Fk(XQ,... ,XN),

then Fjj has degree at most 2M — 1. By [6, Lemma 2.2], there exists
an a € ZV ! such that a; # 0 for all 2 < i < N — 1, Fj,(a) # 0, and

max |a;| < M;
1<i<N-1

hence, H(a) < M+N —1. Then ¢g(X;) = F(Xi,as,...,an) is a
polynomial in one variable of degree at most M with at least two
nonzero monomials. If v € M(K) and v { oo, then H,(g) < H,(F). If

v | 0o, then for each 0 < i < M, we have ||F;(a)||, < MM~1H,(F;),
and so

(15) H(g) < MM~'H(F).
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By factoring a power of Xj, if necessary, we can assume that g is
a polynomial of degree at least one with coefficients in K such that
g(0) # 0. Then, combining Lemma 2.1 with (15), we see that there
exists a 0 # « € Q such that [K(a) : K] < M, g(a) =0, and

h(e) < H(g) < MM~'H(F),

Let z = (a,a), then F(z) = 0, deg(z) < M, z # 0 for each
1<¢< N, and

H(z) <h(a)H(a) < MM\/N —1H(F). 0o

Under stronger conditions, we can find a zero of F' of smaller height,
all coordinates of which are nonzero.

Theorem 4.2. Let F(Xy,...,Xy) be a homogeneous polynomial in
N > 2 variables of degree M > 1 with coefficients in a number field K.
Suppose that F does not vanish at any of the standard basis vectors

e1,...,en. Then there exists a z € QN with deg k(z) < M such that
F(z)=0, 2 #0 forall1 <i< N, and

(16) H(z) < Co(N, M) H(F)™,

where
(17)

[(4M+1)(N—2)]/2M N . 1/(2M)
(M2 M+j—2
Co(N, M) =2V 1<T> < J > .

2N J2

Proof. We argue by induction on N. If N = 2, then the result follows
from the argument in the proof of Proposition 3.1. Assume N > 2. Let
(B be a positive integer, and let

Fig(X1,..., XNy 1) =F(X1,..., Xn_1,£8XN_1);

in other words, set Xy = +6Xn_1, where the choice of £ is to
be specified later. Let €f,...,ely_; be the standard basis vectors
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—N—

for Q ', Notice that if Fl 5 vanishes at e; for 1 < i < N — 2,
then F' vanishes at e;, which is a contradiction. In particular, F:/tﬂ
cannot be a monomial and cannot be identically zero. Suppose that
F:I!:ﬁ(elel) = 0. This means that Fj’:ﬁ(O, ...,0,Xn_1) is identically
zero. Write u; = (0,...,0,i, M — i) € Z~ for each 0 < i < M. Let

M
G(Xn-1,XN) = F(0,...,0,Xn 1, Xn) = Y fu, Xy 1 XM

=0
then
Fis(0,...,0,Xn 1) = G(XNy 1, £8XN 1)
M
- <qui(ir8)M_i>X1]\\f/I—1 =0,
=0
that is,
M .
(18) > fa(EB)M =0
=0

Notice that fu, # 0 and fu,, # 0, since otherwise F(ey) = 0 or
F(eny—1) = 0. Therefore, the lefthand side of (18) is a nonzero
polynomial of degree M in 3, and 0 is not one of its roots, so it has
M nonzero roots. Therefore, for the appropriate choice of £+, we can
select 8 € Z such that (18) is not true and

M M +2
(19) 0<p<+1= 2+ .

Then, for this choice of £, F’iﬁ is a polynomial in N — 1 variables of
degree M which does not vanish at any of the standard basis vectors.
From now on, we will write Fy; instead of F ;5 for this fixed choice of

+8.
Next we want to estimate the height of such Flli‘ Letl e Z_ij\_]_1 be such

that Zf\:ll l; = M. There exist [y_; +1 < M + 1 vectors m; € Zf
such that m;; =1[; foreach 1 <7 < N —2 and Mmj(N—1) T MjiN = IN_1,
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where 0 < j < Iy_1. Therefore, the monomial of F é which is indexed
by 1 will have the coefficient

IN_1

(20 o= Z fm; (iﬁ)lz\uli]’-
j=0
Then, for each v t oo,
(21) |lai|y < Hy(F),
and, for each v | oo,
IN—1lNn-1 o
leallZ < 37 37 B2 fanyllo | fomg o
i=0 ;=0
5211\_1 IN—1ln_1
<(557) S 3 2+ 1 12
(22) i=0 j=0
IN—1 IN—1
BoN-1(ln_q +1)
< (5 S U+ i I
=0 j=0
M 4 9\ 2M+L
< B°M(M +2)H,(F)* < 2( ; ) H,(F)?,

where the last inequality follows by (19). Therefore, by (21) and (22),
we have, for each v { oo,

(23) H,(Fj) < Hy(F),
and, for each v | 0o,
1/2
mE = X Jal?)
1EM(N —1,M)

(24) < V3 LMV — 1,0 (M) (2M+1)/2

H,(F)

M4 N —N\Y2 /01 40\ @M+1)/2
gﬁ( o ) ( ;) H,(P).
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Putting (23) and (24) together implies that

H(F).

(25)  H(Fh) <V2 <M+N— 2)1/2<M+2>(2M+1>/2

N -2 2
By induction hypothesis, there exists an x € QN_I with deg g (x) < M
such that Fé(x) =0,z;#0forall1 <i< N —1, and

H(x) < Co(N — 1, M) H(E})!/™

M+N- 2)1/@””

< Oy(N — 1, M) 21/(2M)
_CZ( 1] ) N —2

(26)

H(F)Y/M,
5 (F)

Let E = K(z1,...,on—-1)- Set z = (x,+Bzy_1) € EV. Then
deg(z) = [F: K] < M, F(z) =0, z; #0 for all 1 < ¢ < N,
and applying (19) and (26) we have

(27)
d, /2d’
H(z) < [ Ho(x) x [T (B*llzv-1llZ + Ho(x)?)
vtoo v|oo
<Vp2+1 H(x)
1/(2M) (AM+1)/(2M)

< g)/2an) (M AN =2 M +2
- N -2 2

x Co(N — 1, M) H(F)'/M,

where the product in (27) is taken over all places in M(E), and d,, d'
stand for local and global degrees of E over Q, respectively. The result
follows. O

Proof of Theorem 1.1. Let K[X]js be the space of homogeneous
polynomials of degree M in N variables over K. For an element
A € GLy(K), define amap pa : K[X]p — K[X]u (compare with [1]),
given by pa(F)(X) = F(AX) for each F € K[X]|p. It is easy to see
that the map A — p4 is a representation of GLy(K) in GL(K [X]ar).

With the notation as in the statement of the theorem, let G(X) =
pa(F)(X). First suppose that G(e;) = F(Ae;) = 0 for some 1 <7 < N.
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Since 0 # y = Ae; € KV is a row of A, it is easy to see that
H(y) < H(A),

which is (3). Next assume that G(e;) # 0 for each 1 < i < N. By
Theorem 4.2, there exists a z € GX such that G(z) = 0, deg x(z) < M,
and

H(z) < Co(N, M) H(G)"/™.

Then x = Az is such that F(x) = 0, deg x(x) < M, and x = Az €
AGYX. Tt is easy to see that

(28) H(x) < H(A)H(z) < Co(N, M) H(A)H(G)*/™M.

We now want to estimate H(G). Let v € M(K). If v { 0o, then

(29) Hy(G) < Hy(A)" Hy (F),

and if v | oo, then

dy/2d
(30) m© < (VM) ma e,

These bounds on local heights are well known. Essentially identical
estimates for a bihomogeneous polynomial in two pairs of variables
follow from Lemmas 6, 7, and formula (2.2) of [1]. The proofs of (29)
and (30) are similar to the proofs of Lemmas 6 and 7 of [1], so we do
not include them here to maintain the brevity of exposition. Combining
(29) and (30), we obtain

1/2
(31) H(G) < <N ;M> H(AMH(F).

The result follows by combining (28) and (31). O

Corollary 4.3. Let F(X;,...,Xy) € K[Xy1,...,Xn] be an inho-
mogeneous polynomial of degree M > 1, N > 2. Suppose that F does
not vanish at any of the standard basis vectors e, ... ,eyn. Then there
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exists a z € QN with deg k(z) < M such that F(z) =0, z; # 0 for all
1<i¢< N, and

(32) H(z) < Cy(N +1,M) H(F)*M,

where the constant Co(N + 1, M) is defined by (17) of Theorem 4.2.

Proof. Homogenize F' using the variable X, and denote the resulting
homogeneous polynomial in N + 1 variables by F'(Xy,...,Xy). Then
F' has degree M, its coefficients are in K, and

F(Xla"' 7XN):FI(17X17"' 7XN)5

N+1

hence, H(F') = H(F). There exists x = (zg,...,zn5) € Q so that

Zo 7’5 0, and
F’(m()?"' 71/'1\[) :F(w1/w0,... ,l’N/xo) =0.
Notice that

H(xy/zo,...,xn/20) = H(21,... ,2n5) < H(x0,...,2N8) = H(X);

hence, it is sufficient to prove that there exists a zero z € QNH of F’ so
that zyp # 0 and z is of bounded height. Notice that, since the variable
X, was introduced to homogenize F', we have deg (F') = deg (F') = M,
and so Xyt F'(Xo,...,XnN).

Write e,...,e,y for the standard basis vectors in GNH. First,
suppose that F’(e}) # 0 for all 0 < ¢ < N. Then, by Theorem 4.2,

there exists a z € QN—H satisfying (32) with deg x(z) < M such that
z; # 0 for each 0 < 7 < N, and F'(z) = 0; hence, we are done. Next,
suppose that F'(e,) = F(0) = 0. Then let

G(Xy,...,Xy)=F'(X1,Xy1,...,Xn),

that is, set Xy = X; in F’. Notice that, for each 1 < i < N,
G(e;) = F(e;)) # 0, and H(G) = H(F') = H(F). Again, by
Theorem 4.2, there exists a z € QN satisfying (32) with deg x(z) < M
such that z; # 0, for each 1 < ¢ < N, and G(z) = F'(z;,2z) = 0, and
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so we are done. Finally, suppose that F'(e}) = 0 for some 1 <43 < N.
Since Xo 1 F(Xo,...,Xn), we can write

F'(Xo,...,Xn) =G1(X1,..., XN) + X0G2(Xo,... , XN),

where GG; and G are both nonzero homogeneous polynomials of degrees
M and M — 1, respectively. Then F'(e]) = G1(e;) = 0, which means
that the coefficient of the term XM in G| is zero, and hence it is zero
in F' and thus in F. This implies that F(e;) = 0, contradicting our
original assumption. Hence, F'(e}) # 0 for every 1 < ¢ < N, and so we
are done. o

In the case N = 2, the exponent in the bound of Corollary 4.3 is best
possible. Take

F(X1,X2) =X, - CXM,

for some 0 # C € K. Then, by the same argument as in the remark
after the proof of Proposition 3.1, every nontrivial zero of F' has height
> O(H(F)YM).

Acknowledgments. I would like to thank Professors Paula Tretkoff
and Jeff Vaaler for their helpful comments on the subject of this paper.
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