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COMMUTATIVE FINITELY GENERATED ALGEBRAS
SATISFYING ((yz)z)z =0 ARE SOLVABLE

IVAN CORREA AND IRVIN ROY HENTZEL

1. Introduction. We study commutative, nonassociative algebras
satisfying the identity

(1) ((yz)x)z = 0.

We show that finitely generated algebras over a field K of characteristic
# 2 satisfying (1) are solvable. For z in an algebra A, define the
multiplication operator R, by yR, = yz, for all y € A. Our identity is
then that R3 = 0.

Our interest in this problem arose from attempts to prove the Albert-
Gerstenhaber conjecture. This conjecture asks if every commutative,
power-associative, finite-dimensional, nil algebra is solvable. In such
algebras the multiplication operator R, is nilpotent for each z. Our
result forms part of the solution for the Albert-Gerstenhaber conjecture
in the particular case of nilindex four. In fact, from Gerstenhaber [3,
Theorem 1], it follows that in this case the algebra satisfies RS = 0
for every element x. Since there exists an z with 3 # 0, one of
the following cases occurs: i) R3 = 0 for all z, or ii) R} = 0 for
all z, and there exists an z with R2 # 0, or iii) there exists an x
with R £ 0. Our result gives the solution for case i). The Albert-
Gerstenhaber conjecture for nilindex four and dimension < 4 has been
studied by Gerstenhaber and Myung [4] and a generalization without
the hypotheses of power associativity was obtained by Correa, Hentzel
and Labra [2].

We chose to study commutative algebras satisfying R} = 0 for some
fixed n. In the case n = 1, the algebra squares to zero. In the case n = 2
and characteristic # 2, the algebra cubes to zero. In the case n = 2
and characteristic = 2, the algebra is associative and if it is finitely
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generated it will be nilpotent. But if it is not finitely generated, it may
not be solvable.

This brings us to the case n = 3 which is the topic of this paper.

Our proof requires characteristic # 2. But this is the only restriction
we need on the characteristic. Our proofs have to be a bit more
complicated to avoid use of the characteristic # 3 and the characteristic

£ 5.

The goal to have the least restriction on the characteristic as possible
was motivated by the related problem of a commutative algebra satis-
fying 2% = 0. In this case finitely generated algebras are nilpotent, and
there is no restriction of characteristic at all.

2. Preliminary results. Because our proofs will involve some fine
distinctions based on linearization and characteristic, we will give a
brief review (see [7, page 9] for a discussion of linearization). Let A
be a commutative, nonassociative algebra over a field of characteristic
# 2. Let f(z1,22,23) be a multi-linear function. Suppose that W is a
subalgebra. We will consider the following three statements.

(i) f(a,a,a) in W, for all a in A.
(ii) f(a,a,b) + f(a,b,a) + f(b,a,a) in W, for all a,b in A.

(iii) f(a,b,c) + f(b,c,a) + f(c,a,b) + f(b,a,¢) + f(a,c,b) + f(c,b,a)
in W, for all a,b,c in A.

Then, in characteristic # 2, the underlying field has necessarily at least
three elements and we have that (i) = (ii) < (iii) but, in characteristic
3, neither (ii) nor (iii) implies (i).

In this paper we will be working with a subalgebra W such that
(aa)(a(aa)) isin W for all @ in A. It will turn out that all of the partial
linearizations of (aa)(a(aa)) are also in W. These linearizations are in
W because the proof that showed (aa)(a(aa)) is in W can be linearized.
The reason that the proof can be linearized is because it only requires
linearizations of degree three. When we say that an expression and all
of its linearizations are in W, we mean that the expression evaluates to
an element W for any choice of arguments from A, and also all of its
partial linearizations evaluate into A as well.

Since (1) is degree 3 all of its linearizations are also identities. It
follows that this partial linearization is an identity.
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(2) ((y2)z)z + ((yz)2)z + ((yz)x)z = 0.
It also follows from (1) that all linearizations of
(3) ((zz)x)z =0

are identities as well.

From (2) with y = z and (1) we obtain that all linearizations of
(4) (z2®)x + 22> = 0

are identities.

In the following we denote the Jacobi operator by J(z,y,z) =
(xy)z + (zz)y + z(yz). It is easily seen that J(z,y,z) is symmetric
on its three variables by writing it in its equivalent form J(z,y,z2) =
(zy)z + (y2)z + (22)y.

Lemma 1. Let A be a commutative algebra of characteristic # 2
satisfying (1). Then A satisfies the identity

(5) J(z,y,zw) = J(zy, z,w).

Proof. Replacing y by z in (2), we obtain:
(6) (22)x + ((22)2)z + ((22)z)2 = 0.
Interchanging = with z in (6), we obtain (z22)z+ ((z2)z)z+ ((z2)2)z =

0. From this equation and (6), we obtain (2?z)z = (2%2)2. Linearizing
this identity we obtain:

(wz)x)y + (w2)y)z = ((zy)2)w + ((zy)w)z.

We add (zy)(zw) to both sides of this identity and get (5). o

Corollary 2. Let A be as in Lemma 1. Then the set I = {x € A |
J(A, A, z) = {0}} is an ideal of A.
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Proof. It is clear that I is closed under addition and scalar mul-
tiplication. Let z in I and a in A. Then, using (5) we obtain that
J(A, A, ax) C J(A?% a,z) = {0}. This proves the corollary. o

Lemma 3. Let A be as in Lemma 1. Then all the linearizations of
J(A,z2,2%) are zero.

Proof. Notice that this proof uses (1), (4) and (5). All linearized
forms of these three identities are valid. Therefore, this proof will be
valid for all linearized forms of J(a,z?, z*) as well.

J(a,2? z3) = J(az?, z, z?) Symmetry of J
= J((az®)z,z,x) Using (5)
= —J(az® x,z) Using (4)
~J(a,z*,2%)  Using (5)
= —J(a,2z%,2%)  Symmetry of J.

Therefore, 2J(a,z2,23) = 0, and by characteristic # 2 we conclude

that all of the linearizations of J(a,z?,z*) are zero.

An immediate consequence of the identity (5) and Lemma 3 is the
following:

Corollary 4. Let A be as in Lemma 1. Then all of the linearizations
of J(A, A, z32?) are zero.

Lemma 5. Let A be a commutative algebra satisfying identity
(1) as well as all linearizations of x3xz*. Then all linearizations of

J(A, A, z%z?) are zero.

Proof. We first show that all linearizations of 4.J (y, z, 2%)+J (y, 2, 2?)
are zero. The proof only uses (1) and (4) so the proof is valid for all
linearizations.
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4J (y, z, 2%) + J(y, 2%, z?)
=2J(y,z,z3) + 2J (y, z, %) + J(y, 22, z?) Splitting the
first expression
= 2J((yz)z, , x) + 2J (y,z,2°) + J(y2°,z,2) by (5)
A(((yz)a)z)z + 2((yz)z)?
+2(yz)z® + 2(yx3)x + 2y(zz) by expansion
+2((ya*)a)z + (ya*)a
0 +2((yz)z)z? by (1)
+22%(yz) + 2(yz®)z + 0 by commutativity and (1)

—2(yz®)z + (yz?)z? by (4) and commutativity
= 2((yz)x)z* + 22°(yx) + (y2*)z? collecting terms
= linearization of z322.
Now
J(a,b,:t: 22%) = J(ab,z%,z%) by (5)
= —4J(ab,z,x*) by first part of this proof

= —4J(a,b,zz®) by (5)
=0 by (1).

Lemma 6. Let A be a commutative algebra of characteristic # 2
satisfying (1) and all linearizations of x?xz*. Then all linearizations of

J(A, A, x3) are zero.

Proof. We have:

J(a,b,z*)

= J(ab,z,z?%) by (5)

= J((ab)z, z, ) by (5)

= ((ab)z)z)z + ((ab)x)(xz) by expansion.

=0 The first term is zero by (1) and

the second is a linearization of z2z2.
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3. Solvability. In this section A will be a commutative, nonassocia-

tive algebra satisfying (1). We have three nonassociative polynomials

which will be of interest to us. These are z2, z?z? and z3z2. We will

linearize these polynomials in all possible ways. We will then evaluate
these linearizations using all possible choices of elements in the alge-
bra A for the arguments. Let M3 be the subset of A obtained by first
linearizing #* and then evaluating these linearizations on A. Similarly,
M, is the subset of A obtained from z2z2 and M; is the subset of A
obtained from 2322. We use pointy brackets to represent the ideal gen-
erated. This means that (M) is the ideal generated by the set M. Let
13 - <M3>, I4 - <M4> and I5 - <M5>

Lemma 7. a) J(Ms, A, A) C (My) = I4.
b) J(My, A, A) C (M5) = I5.
C) J(M5aA7 A) = {0}

Proof. a) is from Lemma 6.
b) is from Lemma 5.

c) is from Corollary 4. O

Lemma 8. Let M be any subset of A. Then:
a) The set K ={kec A| (M)k C (J(M, A, A))} is an ideal of A,
b) Iy C K.

Proof. a) From identity (5) we have that
7 J((M), A, 4) € J(M, A, 4).

Let ¢t be an element in (M), let a be any element of A, and let k be
any element in K. We have: J(t,a,k) = (ta)k + (ak)t + (kt)a. Thus,
t(ak) = J(t,a,k) — (ta)k — (kt)a. So, using (7), we get:

(M)(AK) € J({M), A, K) + ((M)A)K + ((M)K)A
((M), A, A) + (M)K + ((M)K)A
(M, A ) (J(M, A, A)) + (J(M, A, A)) A

J
J
J
(J(M, A A)>

<
<
c
c
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This shows that AKX C K and so K is an ideal of A.

b) Let x be an element in A. If a and b are also elements of A, then
z(ab) = —(za)b — (xb)a + J(z,a,b). Letting x be in (M) gives:
(M)(ab) C ((M)a)b+ ((M)b)a+ J((M), A, A).
Using this three times gives us:
(M)z? C (M)x)z)z+J((M), A, A)+J(M)z, A, A)+ J((M), A, A)z.
Now, using (1) and (7), we have:
(M)z® C (J(M,A,A)). O

Lemma 9. a) J(I3, A, A) C I,
b) J(I45A7A) - I5a
C) J(I5aA7 A) = {O}

Proof. Using (7) and Lemma 7, we get:

a) J(I3, A, A) = J((Ms), A, A) C J(M3, A, A)
b) J(I4, A, A) = J((My), A, A) C J(My, A, A)
c) J(Is, A, A) = J((M5), A, A) C J(M5, A, A) = 0.

<
<

Lemma 10. a) I3I3 C Iy,
b) I4I5 C Is,
C) 1513 - {0}

Proof. a) IsI3 = (M3)I3 C (J(Ms, A, A)) C< My) = I.
b) 1413 =< M4>13 - <J(M4,A.,A)> < M5> =Is.
C) I515 =< M5>I3 - <J(M5,A, A)> = {0} [m}

Lemma 11. I3 is solvable.

Proof. Using Lemma 10 we have:

((Is13)(I313))((I313)(1313)) C ((I3l3)I3)13 € (1al3)I3 C IsI3. O
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The following two results will be useful in the proof of our main result.

Proposition 12 [6, Proposition 2.2, page 18]. If an algebra A
contains a solvable ideal I, and if A/I is solvable, then A is solvable.

Theorem 13. Let A be a commutative finitely generated algebra
over a field of characteristic # 2, satisfying the polynomial identity
((yz)xz)x = 0. Then A is solvable.

Proof. A/I3is a commutative finitely generated algebra satisfying the
identity =2 = 0. From [7, Exercise 4, page 114] (see also [1, Proposition
page 2]) A/Is is nilpotent. From Lemma 11, I3 is solvable. It follows
from Proposition 12 that A is solvable. |
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