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A MOUNTAIN PASS THEOREM
FOR A SUITABLE CLASS OF FUNCTIONS

DIEGO AVERNA AND GABRIELE BONANNO

ABSTRACT. The main purpose of this paper is to estab-
lish a three critical points result without assuming coerciv-
ity of the involved functional. To this end, a mountain-pass
theorem, where the usual Palais-Smale condition is not re-
quested, is presented. These results are then applied to prove
the existence of three solutions for a two-point boundary value
problem with no asymptotic conditions.

1. Introduction. It is well known that the mountain-pass theorem
of Ambrosetti and Rabinowitz [1, Theorem 2.1] and its variants or
generalizations, as for instance Theorem 1 of [17], is successfully used to
find critical points of real-valued C' functions J defined on an infinite-
dimensional Banach space X. One of the key assumptions in this result
is a compactness hypothesis, usually called the Palais-Smale condition.

The present paper deals with the case
J(z) = ®(z) — ¥(x), zeX,

which often occurs in the variational formulation of both ordinary and
partial differential problems. We first introduce a new type of Palais-
Smale condition, see Section 3. It is mutually independent from the
usual condition and holds true every time ® and ¥ turn out sufficiently
smooth and ® is coercive, see Theorem 3.1. A mountain pass-like result,
which also provides a more precise localization of the obtained critical
point obtained in regards to the function ®, is then established, see
Theorem 4.3. Moreover, putting this result together with Theorem 2.1
in [5] yields the main result of the paper, which is a three critical points
theorem for the functional

Ixn(z) = ®(z) — A\¥(z), ze€ X,
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where A > 0, whose norms are uniformly bounded with respect to A,
see Theorem 5.2. Let us point out that, contrary to the basic result of
Ricceri [20, Theorem 1] on this topic, no coercivity of Jy is assumed. To
prove our results we employ tools from the generalized gradient theory
for locally Lipschitz continuous functions, which has been introduced
and developed by Clarke [12]. We make further use of a critical point
theorem in this framework, namely Theorem 2.2 of [15]. The critical
point theory for locally Lipschitz continuous functionals, including
applications to elliptic problems with discontinuous nonlinearities, has
been introduced and extensively studied by Chang in [11], see also [16]
for an in-depth account in this field. The results of the present paper
deal with smooth functions in a natural way, using the nonsmooth
theory.

As an application of these results to nonlinear differential problems,
we present an existence theorem of three solutions for a two-point
boundary value problem (see Theorem 6.1). The assumptions of
Theorem 6.2, which are a consequence of Theorem 6.1, are that there
is a growth which is greater than the quadratic of the antiderivative for
the function in a suitable interval, see assumption (k), and a growth less
than the quadratic of the same antiderivative in a following, suitable
interval, see assumption (kk). By way of example, here we present the
following result, which is a particular case of Theorem 6.2.

Theorem 1.1. Let g:[0,1] > R and f : R —> R be two continuous,
nonnegative and nonzero functions. Put F(z fo t)dt for all

z € R and gy = fs//:g dt)/(folg t) dt), and assume that there are
three positive constants ¢, d and p, with ¢ < d < (p/2), such that

(k) F(c)/c* < (90/3)(F(d)/d?);
(kk) F(p)/p* < (90/6)(F(d)/d?).
Then, for each

Ae}%mm{ f2:2 it F(p f: }[

the problem

" = Xg()f(u)
(453) { u(0) = u(1) =0,
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admits at least three nonnegative (positive, if f(0) # 0) classical
solutions u;, ¢ = 1,2,3, such that

lluilloo <p, i=1,2,3.

We also observe that in Theorems 6.1 and 6.2 no asymptotic condition
is assumed, see Example 6.1. Moreover, again as a consequence of
Theorem 6.1, we obtain a result, Theorem 6.3, similar to that given by
Ambrosetti and Rabinowitz [18, Theorem 2.32] and, in addition, we
obtain an upper bound involving X, where ]X, —l—oo[ is the interval for
which the problem (AP)) admits at least two positive solutions, see
Remark 6.6.

Finally, we recall that three solutions for two-point boundary value
problems were ensured by Avery and Henderson [4], and Henderson
and Thompson [13, 14] by using different methods, such as lower and
upper solutions or fixed-point theorems. It is easy to verify that their
results are mutually independent from ours, see also [2, Remark 3.7].

2. Preliminaries. Let (X, || -||) be a real Banach space. As usual,
X* is the dual space and (-,-) stands for the duality pairing between
X*and X. A function I : X — R is called Lipschitz near a given point
u if there exists a neighborhood U of u and a constant L > 0 such that

[1(v) = I(w)] < L|v — wl]

for all v,w € U. I is called locally Lipschitz in X if it is Lipschitz near
u for each u € X.

The generalized directional derivative of a locally Lipschitz function
I at point u along direction v is defined as follows:

1 tv) -1
I°(u;v) = limsup (w+tv) (w)
w—ru t
t—0T

Moreover, the generalized gradient of I at u is the following set:

OI(u) = {u* € X* : (u*,v) < I°(u;v) for all v € X}.
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We recall that if I is continuously Gateaux differentiable at u, then I
is Lipschitz near u and 8I(u) = {I'(u)}. Further, a point v € X is
called a (generalized) critical point of the locally Lipschitz function I
if 0x~ € 0I(u), namely,

I°(u;v) >0

for all v € X. Clearly, if I is a continuously Gateaux differentiable at
u, then u becomes a (classical) critical point of I, that is,

Finally, we say that a locally Lipschitz function I satisfies the Palais-
Smale condition (P.S.)., ¢ € R, if each sequence {u,} such that

(1) I(un) =,

(2) minyearu,) llvl|x- =0
possesses a convergent subsequence.

It is well known that condition (2) and

(2') I%(upn,v — uy) > —ep|lv — uy|| for all v € X, where g, — 07,

are equivalent. Moreover, when I is a continuously Gateaux differen-
tiable function, the (P.S.). condition is reduced to the classical one,
namely, each sequence {u,} such that

(1) I(un) — ¢,
(2) 11" (un)llx= =0
possesses a convergent subsequence.
For a thorough treatment on these topics, we refer to [11, 12, 18].

Now, given two functions ®,¥ : X — R, we define the following
functions:

Supzemw \II(ZU) — \II(ZU)

2.1 P = inf
( ) SOI(T) ;1:€<I>*118—oo,r[) r— q)(l‘)
(2.2)
@1(r1,7m2) + = max{p1(r1); p1(r2)}
(2.3)
. U(y) — ¥(z)
T1,T2) = inf su —
()02( 1 2) ZE<I>71(]—OO,T‘1D yeq)*l([p’f‘lﬂ’z[) (P(y) - (P(m)
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for all r,ry,re > infx @, with 71 < ro and where ®—1(] — co,r[)¥ is
the closure of ®!(] — oo, 7[) in the weak topology. For the reader’s
convenience we recall below the theorem obtained in [5] which ensures
the existence of a precise open interval A C |0, 4o00[ such that for each
A € A the function J = & — AV admits two local minima which are
uniformly bounded in norm with respect to .

Theorem 2.1 [5, Theorem 2.1]. Let X be a reflexzive real Banach
space, and let ®,¥ : X — R be two functions. Assume that @ is
sequentially weakly lower semi-continuous, (strongly) continuous and
coercive, and V¥ is sequentially weakly upper semi-continuous. Assume
also that two constants r1 and ro exist such that

(By) infx ® <1y <7
(B2) ¢1(r1,72) < @2(r1,72);

Then, for each X € (1/p2(r1,r2)), (1/@1(r1,72))[ the restriction of
® — AV to @ (] — oo,r1]) admits a global minimum vy, and the
restriction of ® — AU to ®~1(] — oo, rs[) admits a global minimum
vy € ®7Y([r1,72[), which are two local minima for ® — \¥.

We also recall that the proof of Theorem 2.1 is based on the varia-
tional principle of Ricceri in [19].

3. A new type of Palais-Smale condition. Let &, ¥ : X — R
be two locally Lipschitz functions. Of course, the function

J=o -0
is a locally Lipschitz function. Fix M € R and put
U(u) if ¥(u) <M
v = -
() { M i U(u) > M.
It is simple to show that also ¥, is a locally Lipschitz function.

We now give the following definition.

Definition 3.1. We say that the function J = ® — U satisfies the
Palais-Smale condition cut off at M (briefly (P.S.)M) if the function
Jy = @ — ¥, satisfies the Palais-Smale condition.
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It is easy to verify that the (P.S.)M condition and the (P.S.).
condition on J are mutually independent. For instance, it is enough
to pick X =R, ® = 0, ¥(z) = —1/22%; it is clear that J(z) = 1/22?
satisfies the (P.S.). condition, while J; does not satisfy the (P.S.).
condition. On the contrary, by choosing X = R, ® = 1/222, ¥(x) =
1/22%, Jyr (with M > 0) satisfies the (P.S.). condition, while J does
not satisfy the (P.S.). condition.

Now, we emphasize the following theorem that guarantees the
(P.S.)M condition for all M € R for functions of class C.

Theorem 3.1. Let &,V : X — R be two continuously Gateaux
differentiable functions, with ® coercive. Assume that ®' : X — X*
admits a continuous inverse operator on X*, and ¥' : X — X* is
compact. Then, the function ® — U satisfies the (P.S.)M condition for
all M € R.

Proof. Fix M € R, and let {u,} be a sequence such that
(1) ®(up) — U (up) = ¢, c€R,
(2) mingeo(@—w ) (un) €llx- = 0.

Since ® is coercive, also & — ¥, is coercive and, hence, from (1) we
obtain that {u,} is bounded. Moreover, taking into account that

O(® — W) (un) = 0(®)(un) — (Y ar)(un) = 2 (un) — O(¥ar)(un)

and
U (uy,) if O(u,) <M
O(¥r)(un) =<0 if U(up) >M
{r¥' (u,):r€[0,1]} if U(u,)=M

(see [12, Corollary 2, page 39; Proposition 2.2.4, page 33; Proposi-
tion 2.3.12, page 47]), one has

1€]lx- = , llx-

= min d (u,) — .
omn ) il

min min
£€0(2—Tr)(un) £€0(2)(un)—0(¥r)(un
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i (P/ n) \I,/ n *
min (19" () ¥ (un) | x

19" (un) — T ¥ (tn)||x+

From the compactness of ¥’ and the fact that {r,} C [0,1], there
are two sequences {r,,} and {u,,} such that {r,, ¥'(u,,)} con-
verges. From (2) and the previous equalities, one has ||®'(uy,) —
Trg ¥ (up, )||x+ — 0. Hence, {®'(u,,)} also converges and, due to
our assumption on ®, {u,, } converges. O

Remark 3.1. We explicitly observe that if, in the previous theorem,
instead of ® coercive, we assume ® — ¥ coercive, then the function
® — U satisfies the classical (P.S.). condition (see, for instance, [22,
Example 38.25, page 162]).

4. A mountain pass theorem. In this section we assume that X
is a reflexive real Banach space and @, ¥ : X — R are two continuously
Géateaux differentiable functions. Moreover, we assume that

(A1) @ is convex;

(Az) for every xy, xo such that ¥(z;) > 0 and ¥(x2) > 0, one has

inf (¢t 1-—t > 0.
o (twy + (1 = t)zs) >

Now, we present a version of the classical mountain pass theorem for
functions of the type J = ® — ¥ where a localization of the (classical)
critical point is also guaranteed.

Theorem 4.1. Assume that there is a positive real number s and two
points z1, 2 € X, with |z — z1|| > s and B(z1,5) C @7 (]—o0, p|),
where p > max{®(x1), ®(x2)}, such that

(4.1) J(z) > max{J(z1), J(z2)}

for all x € 0B(x1,s). Assume also that min{¥(z;),¥(z2)} > 0.
Further, assume that

(C) there is an M > 0 such that
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(Cl) supze‘?fl(]_oo,p_«_MD \I/(l‘) < M.
and

(Co) J satisfies the (P.S.)M condition for all c € R.

Then, the function J has a (classical) critical point x3 distinct from zq
and x9 such that

J(z3) > max{J(z1); J(x2)}

and
cI>(.’E?,) <p+ M.

Proof. Put
U(u) if ¥(u) <M

Yar(u) = {M if U(u) > M,

Ju(u) = @(u)— Uy (u) and Ipg(u) = Jpr(u+z) for all w € X. Clearly,
Iy is alocally Lipschitz function and, taking into account (Cy), satisfies
the Palais-Smale condition (P.S.)., ¢ € R. Now, put e = z3 — 21
and a = max{Iy;(0);Ipr(e)}. One has Ip(0) < a, Ins(e) < a and
|le]] > s. Moreover, taking into account (C4), assumption (4.1) ensures
that Ins(u) > a for all w € 0B(0,s). Hence, all the assumptions of
the mountain pass theorem for nondifferentiable functions (see, for
instance, Theorem 2.2 of [15]) are verified. Therefore, there exists
a (generalized) critical point y3 of Ips such that

In(ys) = inf sup In(7(t)),
€L ¢el0,1]

where I' = {y € C°([0,1], X) : 7(0) = 0,v(1) = e}. Moreover, one has

(4.2) Ing(y3) > max{In(0);Ips(e)}.

We claim that ys is a (classical) critical point of Ips. In fact, by
choosing the segment with endpoints 0 and e as v, and from (A;)
and (As), one has Ip(ys) < SUPyeo,1] I ((1 — t)e) = Supyeo,1] {m
(1 =t)(z2 — 21)) = supyepo,1) Im(tz1 + (1 — t)z2) = supycpo,yy [P (tz1 +
(1 = t)m2) = Wy (twy + (1 — t)w2)] < supyepo [ (1) + (1 — £) R (w2)] —
infte[O,l] \I/M(t:vl + (1 — t):l?g) < p, namely,

(4.3) In(y3) < p-
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On the other hand, setting z3 = y3 + x1, one has Ip(y3) = Ju(ys +
z1) = Jp(zs) = ®(x3) — Yas(xs). Hence, from (4.3) one has

‘I>(:v3) <p+ M.

Therefore, due to (C}) one has ¥(z3) < M. So, it follows immediately
that Iy is a continuously Gateaux differentiable at y3 and our claim is
proved.

Finally, it is easy to verify that z3 is a classical critical point of J
and that, from (4.2), we obtain J(z3) > max{J(z1);J(z2)}. Hence,
the proof is complete. o

We also obtain the result below.

Theorem 4.2. Assume that J admits two distinct local minima x4,
z2 € X. Put p € R such that max{®(z1), ®(z2)} < p, and assume that
min{¥(x1), ¥(z2)} > 0. Further, assume that

(C) there is an M > 0 such that
(C1) suPyea-1(-copsmp ¥(@) < M.
and
(Cq) J satisfies the (P.S.)™ condition for all c € R.

Then, the function J has a third (classical) critical point x3 distinct
from x1 and x2 such that

D(z3) < p+ M.

Proof. Without loss of generality, we can assume J(z2) < J(z1).
Since z; € ®!(] — oo, p[), which is an open set, there is an r > 0
such that B(xy,7) C ® (] — oo,p[). By choosing s > 0 such that
s < min{||zz — x1||;7}, condition (4.1) is easily verified. Hence, the
conclusion follows directly from Theorem 4.1. O

Finally, we present the main result of this section.

Theorem 4.3. Assume that ® is coercive, ® : X — X* admits
a continuous inverse operator on X*, ' : X — X* is compact, and



716 DIEGO AVERNA AND GABRIELE BONANNO

J = @—V admits two distinct local minima x1, xo € X. Put p € R such
that max{®(z1), ®(z2)} < p, and assume that min{¥(zy), ¥(z2)} >0
and there is an M > 0 such that

(Ch) SUPgca-1(]—o0,p4 M]) U(z) < M.
Then, the function J has a third critical point x3 distinct from x1 and

To such that
@(233) < 1% + M.

Proof. Tt follows directly from Theorem 4.2 and Theorem 3.1. O

5. Multiple critical points theorems. In this section we assume
that X is a reflexive real Banach space and ®,¥ : X — R are two
continuously Gateaux differentiable functions. Moreover, we assume
that ® is coercive, and ¥ is sequentially weakly upper semi-continuous.
Finally, we also assume that (A;) and (As3) in Section 4 hold, and

(A3) infyx & = ®(0) = T(0) = 0.

Let 71, 72 be two constants and ¢1(r1,r2), @2(ri,r2) as given in
Section 2. Moreover, given M > 0, we define

SUPzed—1(]—o0,ro+M]) \Il(l‘)

(103(T27M) = M

and
‘104(7'17 T2, M) = max{gal(rl, TQ); 993(7'27 M)}

Now, we present the following three critical points theorem.

Theorem 5.1. Assume that there exist two constants r1 and ro such
that

(B1) 0 <71 <ry;

(B2) p1(r1,7m2) < p2(r1,72);
and

(C) there is an M > 0 such that

(C1) @3(ra, M) < @2(r1,72);

and
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(CY) for each X € 1(1/(p2(r1,72))), (1/(pa(r1,me, M)))[ the function
® — \U satisfies the (P.S.) condition for all c € R.

Then, for each A € [(1/(p2(r1,72))), (1/(pa(r1,72, M)))[ the function
® — AV admits three distinct critical points x;, i = 1,2,3, such that
z1 € ®1(]—00,71|), w2 € @ ([r1,72), z3 € @ 1(]—00, 72 + M]).

Proof. Fix A € |(1/(p2(r1,72))), (1/(pa(r1,r2, M)))[. Taking into
account that ® is also sequentially weakly lower semi-continuous and
since A € [(1/(p2(r1,72))), (1/(p1(r1,72)))[, from Theorem 2.1 one has
that the restriction of ® — A\¥ to ® (] — co,r1[) admits a global
minimum z; and the restriction of ® — AW to ®!(] — oo, r2[) admits
a global minimum x5, which are two distinct local minima for ® — AW,
Therefore, from (A3z) one has min{A¥(x;), \¥(z2)} > 0. Further, since
A < (1/(ps3(r2, M))), one has

SUPged—1(]—oco,ro+M]) \I,(m) < l
M A

from which

sup AU(z) < M,
z€P~1(]—o00,r2+M])

which is (C1) of Theorem 4.2 applied to the function ® — (A\¥).

Clearly, from (C%) it follows that the function ® — (AV),, satisfies the
(PS). condition, which is (C2) of Theorem 4.2 applied to the function
D — (D).

Hence, Theorem 4.2 ensures the conclusion. a
Finally, we present the main result of the paper.

Theorem 5.2. Assume that ®' : X — X* admits a continuous
inverse operator on X* and ¥' : X — X* is compact. Assume also
that there exist three positive constants r1, ro and M, with vy < ra,
such that

(D) pa(r1,re, M) < pa(r1,72);

Then, for each A € |(1/(p2(r1,72))), (1/(pa(r1,72, M)))[ the function
® — AU admits three distinct critical points x;, i = 1,2,3, such that
z1 € (] —00,r1]), 22 € @7 ([r1, 72]), w3 € @7(] — 00, 7o + M]).
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Proof. 1t follows from Theorems 5.1 and 3.1. u]

Remark 5.1. Since ® is coercive, there exists a o > 0 such that
& (] — 0o,y + M[) C B(0x,0).

Therefore, the conclusion of the previous theorems ensures that the
three critical points are uniformly bounded in norm with respect to A,
that is,

@il <o,

i=1,2,3, for all A € |(1/(p2(r1,72))), (1/(0a(r1, 72, M)))].

Remark 5.2. Recently, three critical point theorems have been estab-
lished in [2, 5, 6]. In [6, Theorem 2.1], which is based on [20, Theorem
3], it was established that the existence of an interval A C [0, +o00[ such
that, for each A € A, the function ® — AV has three critical points which
are uniformly bounded in norm with respect to \. However, in Theo-
rem 2.1 of [6], only an upper bound of the interval A was guaranteed.
On the other hand, in Theorem B of [2], which is based on the varia-
tional principle of Ricceri in [19], a precise interval of parameters, A,
for which the function ® — AV has three critical points was established,
losing however the uniform boundedness in norm. For a more precise
comparison between Theorem 2.1 of [6] and Theorem B of [2], we refer
to [7]. Here, we explicitly observe that the conclusion of previous the-
orems ensures both a precise interval of parameters, A\, for which the
function ® — AV has three critical points and the uniform boundedness
in norm of the three critical points with respect to A\. Further, we point
out that one of the key assumptions, both of [6, Theorem 2.1] and of
[2, Theorem B]J ,

lim (®(z) — A¥(z)) = +o0

llzl|—+o0

is not requested in Theorems 5.2 and 5.2. On the other hand, the
assumption (C1) is not requested in Theorem 2.1 of [6] and Theorem B
of [2]. We also observe that the assumptions of Theorem 2.3 of [5]
(which is also based on Theorem 2.1) are mutually independent from
those of Theorem 5.1 and, in this case, the third critical point is actually
the third local minimum point.
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6. A two-point boundary value problem. The multiple critical
point theorems established in [2, 5, 6] have been applied in several
nonlinear differential problems, see, for instance, [2, 3, 5-10, 21].
Our aim is to apply the three critical points theorem (Theorem 5.2) to
these types of nonlinear differential problems. The novel situation with
respect to previously cited papers is expressed by the assumption

there is an M > 0 such that
(Ol) Supze'@_l(]—oo,p-‘rMD ‘I’(i[,') <M

and how it can be translated in differential problems. By way of
example, here we consider a two-point boundary value problem to give
an application of the results in Section 5.

In Theorems 6.1 and 6.2 below, the function f : [0,1] x R — R is
an L'—Carathéodory function which is nonnegative in [0, 1] x [0, +o0],
namely,

(a) t — f(t, x) is measurable for every = € R;
(b) z — f(t,x) is continuous for almost every t € [0, 1];
(c) for every p > 0 there exists a function {, € L'([0,1]) such that

for almost every ¢ € [0, 1],
(d) f(¢,z) > 0 for almost every ¢ € [0,1] and all z > 0.

Consider the following problem

) { —u" = \f(t,u)

u(0) = u(1) =0,
where A is a positive real parameter, and put
3
F(t6) = [ f(t.0)do
0

for all (¢,€) € ]0,1] x R.

We have the following theorem.
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Theorem 6.1. Assume that there exist four positive constants ¢y, d,

co and k, with ¢; < d < (v/2/2)c2 < (V/2/2)k, such that
) (o F(tser)dt)/cd < (1/3)(f))} F(t,d) dt)/d?s
) (Jy F(t,ez)dt)/c3 < (1/3)(f))} F(t,d) dt)/d?
(iii) (fy F(t,k)dt)/ (K — c3) < (1/3)(J1/y F(t,d)dt)/d>.

Then, for each X € 16d*/ f3/4 F(t,d)dt),min{2c?/( fo (t,c1)dt); 2¢2/

fo (t,c2)dt); (2k* — 2¢3)/ fo (t, k) dt)}| the problem (Py) admits
three nonnegatwe generalized solutwns ui, © = 1,2,3, such that

||ul||oo < ka 1=1,2,3.

Proof. Without loss of generality, we can assume f(¢t,z) > 0 for
almost every ¢ € [0,1] and for all z € R. Let X be the Sobolev space
W,2([0,1]) endowed with the norm [|ul| := fo |u’(t)|? dt)'/2. For each
u € X, put:

B(u) ::%||u||2, ¥ (u) ;:/0 Pt u(t)) dt.

It is well known that the critical points in X of the functional ® — AW
are precisely the generalized solutions of problem (P)) and that ® and
¥ are as in Theorem 5.2 (see, for instance, [3, Section 2]). Our aim is
to verify that there exist three positive constants ry, ry, with ry < ro,
and M such that (D) of Theorem 5.2 holds. First, we claim that ry and
ro exist such that ¢q(r1,r2) < @a(r1,72). We argue as in Theorem 3.1
of [5]. By choosing 71 = 2c?, ry = 2¢3, and

4d(t — 1) ift €[0,1/4]
Yo(t) == d if t €[1/4,3/4]
4d(1—t) ifte]3/4,1],

we have 0 < 71 < 7a, yo € X, |lyo]|> = 8d%. Moreover, taking into
account that
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1
(6.1) jz(0)] < 5 ll]l

for all ¢ € [0,1] and for all x € X, one has

f?’/“ F(t,d)dt + [,/* F(t,dt) dt
4d?

f3/4 (t,4d(1 —t))dt — [ F(t,c1)d
4d?

Y2 (7“1, 7“2

fol F(tacl)dt' fol F(t,Cz)dt}

(63) ‘pl(rlv TZ) S max { 203 ) 203

Since f is nonnegative and (i) holds, in particular, one has

[Pt dyde— [} F(t,er)d

902(7‘1,7'2

42
3/4 1
fl//4 (t,d) dt fo (t,c1)
42 4c?
3/4
NSV VACULL
4 12 d? ’
that is,
(64) P2 (Tla T2) 6 7d2 .

Due to (i) and (ii), from (6.3) and (6.4) our claim is proved.
Now, we prove that there is an M > 0 such that @3(re, M) <
@a2(r1,72). To this end, fix M = (2k% — 2c2). Taking (6.1) again
into account, one has ¢3(r2, M) = (SUPzca-1(]—oo,r+mp) ¥(2))/M <

fo (t,k)dt)/(2k? — 2¢3), that is,
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Jy F(t,k)dt

(6.5) p3(r2, M) < m

Therefore, due to (iii) from (6.4) and (6.5), we obtain the proof as we
claimed.

Hence, from Theorem 5.2 we obtain that for each

6d> 2¢2 ] 2c2 2k% — 22
f3/4 dydt \JLF(te)dt [ F(te)dt [LF(tk)dt

the problem (Py) admits three generalized solutions z;, ¢ = 1,2,3,
which, due to the maximum principle, are nonnegative. Further, one
has ®(z;) < ro + M, that is, ||z;]|c < k, and the proof is complete. O

Remark 6.1. We observe that the conclusion of Theorem 6.1 can
be more precise. In fact, the three solutions satisfy the following
conditions: [|z1|co < €1, ||Z2]lco < c2, ||Z2]] > 2¢1 and ||23]|co < k.

Remark 6.2. We observe that in Theorem 6.1 assumptions (i)—(iii)
can be expressed in the following, more general, form

1 1
F(t,c1)dt (t, c2) dt (t, k) dt
1 — max { Jo Ft,e)dt [y F(t,c2) fo }

2 2¢3 ’ 2¢3 ’ 2k2—2c
f3/4 F(t,d)dt+ [)/* P(t,4dt) dt
A2
f3/4 (t,4d(1 — t)) dt — [} F(t,c1)dt
Ad?
1
=1

as can easily be deduced from the proof itself of the theorem (see (6.2),
(6.3) and (6.5)). Clearly, in this case, the interval for which the problem
admits at least three solutions, whose norms in C°([0, 1]) are uniformly
bounded with respect to A from k, is |Ay, Ag].
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Finally, we observe that, in a similar way and taking into account
the techniques used in [5], see also [3], we can study the more general
problem

{-—(huwzuv’—-xfa,uwmuv
u(a) = u(b) = 0.

Remark 6.3. If f is a continuous function we explicitly observe that
the three solutions are classical. We also observe that, if f(¢,0) # 0
for some ¢ € [0, 1], then the three solutions are positive; while, on the
contrary, Theorem 6.1 ensures at least two positive solutions for the
problem considered.

Now, we highlight the following consequence of Theorem 6.1.

Theorem 6.2. Assume that there exist three positive constants cy,
d, p, with ¢y < d < (p/2), such that

K) (Jy F(t,cx)dt)/c3 < (1/3)(J7/y F(t,d)dt)/d?;

(kk) (fy F(t,p)dt)/p* < (1/6)([7]} F(t,d)dt)/d?.

Then, for each X\ € |6d*/ fl?’/: (t,d) dt), min{(2c?)/ fo (t,c1)dt);

p?/( fo (t,p) dt)}|, the problem (Py) admits three nonnegative gener-
alized solutions u;, 1 = 1,2,3, such that

luillso <p, i=1,2,3.

Proof. Tt is enough to pick ¢, = (1/4/2)p and k = p and to apply
Theorem 6.1. In fact, one has

Jo Flt:ea)dt _ [y F(t, (1/v2)p) dt
c2 N p?

3 4
2f01 F(t,p)dt 1 f /
p? d2

<
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and

8/4
Jy F(t,k)dt [ F(t,p) dt 1 Jija F(

k2 — c2 o p? 3 d2

Remark 6.4. In Theorem 3.1 of [3] we assumed the condition

(i3) F(¢,€) < p(1+181°)
for all (¢,€) € [0,1] x R, for some s < 2 and for some p > 0. A simple
computation shows that, by choosing p big enough, (jjj) implies (kk) of
Theorem 6.2. Hence, when f is a nonnegative function, Theorem 6.2
(with (k) expressed as seen in Remark 6.2) improves Theorem 3.1 of [3].

Remark 6.5. Theorem 1.1 in the introduction follows directly from
Theorem 6.2.

Now, we present another consequence of Theorem 6.1.

Theorem 6.3. Let f: R — R be a continuous function. Assume
that there exist three positive constants ¢, d and ¢, with ¢ < d < ¢ such
that

) (fy f(z)dz)/c* < (1/6) fo x)dz)/d?;
(ﬁ) f(©) =0 and f(x )>0f0rallx€]0 c['

Then, for each \ € |(12d?)/ fo )/ (s f( [, the prob-
lem (AP)) admits three positive classzcal solutzons whose norms in
C°([0,1]) are less than or equal to €.

Proof. Define f* : R — R as follows
f(0) if x €]—00,0]
ff(x):=<¢ f(z) ifte]0,7q
0 if t € |, +o0],

and fix \ € ]12d%)/ fo ), (2¢%)/( [y f(t)dt
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By choosing ¢; = ¢ and

p > max {2d; & V12(F(0))/(F(d))d; \/2(F(5))/(F(C))C} ;

itis a simple computation to show that (k)—(kk) of Theorem 6.2 hold
and ( fo t)dt) = min{(2¢?)/(F*(c1));p?/(F*(p))}. Therefore,

the problem
—u = )\f*(u)
{ u(0) =u(l1) =0,

admits three nonnegative solutions wu;, i = 1,2, 3, such that |u;(t)| < p,

€ [0,1], ¢ = 1,2,3. We claim that |u;(¢t)| < ¢ t € [0,1], s = 1,2,3.
In fact, arguing by a contradiction, there exists [a,b] C [0, 1] such that
u;(t) > ¢ for all ¢ € [a,b], u;(a) = w;(b) = 0 and hence, being a
solution of the previous problem, must be u;(¢t) = 0 in [a, b]; this is a
contradiction and our claim is proved. The conclusion follows since u;
are also solutions of (APy). O

Remark 6.6. In Theorem 2.32 of [18], under the assumptions

() £(0) =05
and (B) of Theorem 6.3, the existence of A > 0 such that, for each
A\ > )\, the problem (APy) admits two positive solutions and is ensured
(the result for elliptic equations also holds). We explicitly observe that
in Theorem 6.3 f(0) may be different from zero and that three positive
solutions are obtained. Moreover, if we assume

(@) limg o+ (f(2)/2) = 0;
(which is stronger than both (') and («)) we obtain that the prob-
lem (AP)) admits at least two positive solutions for each A >
inf jcy0,91 12d2 fo . In other words, Theorem 6.3 ensures (un-

der the stronger condltlon (")) an upper bound of the ) established
in Theorem 2.32 of [18], namely,

2
X< inf 12d
de€)o,e f f

Remark 6.7. We explicitly observe that in Theorem 6.1 no condition
at infinity is requested, as the following easy example shows.
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Example 6.1. Let g : [0,1] — R be defined by g(t) = ¢ for every
t €10,1], and let h: R — R be the function defined as follows

1 if z € ]—00,1]
)2 ifzell, ]
M) =9 910 ity 12,1002
]

h(z) if z € ]1002, +o0],

where A : ]1002, +00[ — R is an arbitrary function.

The function f(t,z) = g(¢t)h*(z), where h* is a continuous function
which coincides with h in |—o00,1002], satisfies all the assumptions of
Theorem 6.1 by choosing, for instance, ¢; = 1, d = 2, ¢ = 500,
k = 1002. Then, for each A € ](6/10), (18/10)], the problem

{ —u" = Ath(u)
u(0) = u(1) =0,

admits at least three positive classical solutions whose norms in C([0, 1])
are less than 1002.
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