SOBOLEV GRADIENTS IN UNIFORMLY CONVEX SPACES

MOHAMAD M. ZAHRAN

1. Introduction. The main idea of this paper is to show how the Beurling-Deny theorem presented in [11] can be extended to find a function from the uniformly convex Sobolev space $H^{1,p}[0,1]$ to the space $L_p[0,1]$, p>2. We also look at the possibility of using that function to establish a relationship between the ordinary gradient $\nabla \varphi$ associated with the Euclidean norm in R^{n+1} and the p-gradient $\nabla_p \varphi$ of a C^1 function φ defined on the uniformly convex Banach space R^{n+1} with the p-norm

(1)
$$||h|| = \left(\sum_{i=1}^{n} \left(\left| \frac{h_i - h_{i-1}}{\delta} \right|^p + \left| \frac{h_i + h_{i-1}}{2} \right|^p \right) \right)^{1/p},$$

$$h = (h_0, h_1, \dots, h_n) \in \mathbb{R}^{n+1}, \quad \delta = \frac{1}{n},$$

which is a finite-dimensional emulation of the Sobolev norm

(2)
$$||f|| = \left(\int_0^1 |f|^p + |f'|^p\right)^{1/p}, \quad f \in H^{1,p}[0,1],$$

in the Sobolev space $H^{1,p}[0,1]$.

In a previous work [16, page 4], we had

(3)
$$(\nabla \varphi)(x) = D^t Q(D(\nabla_p \varphi)(x)),$$

where D_0 , D_1 are functions from R^{n+1} to R^n such that

$$D_0 h = \begin{pmatrix} h_1 + h_0/2 \\ h_2 + h_1/2 \\ \vdots \\ h_n + h_{n-1}/2 \end{pmatrix}, \quad D_1 h = \begin{pmatrix} h_1 - h_0/\delta \\ h_2 - h_1/\delta \\ \vdots \\ h_n - h_{n-1}/\delta \end{pmatrix}.$$

Received by the editors on May 25, 2006, and in revised form on November 6, 2006.

 $DOI: 10.1216 / RMJ-2009-39-3-1035 \quad Copy \ right © 2009 \ Rocky \ Mountain \ Mathematics \ Consortium \ Mountain \ Mathematics \ Consortium \ Mathematics \ Consortium \ Mathematics \$

D is a function from \mathbb{R}^{n+1} to $\mathbb{R}^n \times \mathbb{R}^n$ such that

$$Dh = \begin{pmatrix} D_0 h \\ D_1 h \end{pmatrix}, \text{ for all } h \in \mathbb{R}^{n+1}.$$

 D^t is the adjoint of D as defined in [13], and

$$Q(t) = \operatorname{diag}(pt_1 |t_1|^{p-2}, pt_2 |t_2|^{p-2}, \dots, pt_{2n} |t_{2n}|^{p-2}),$$

for all $t = (t_1, t_2, \dots, t_{2n}) \in \mathbb{R}^{2n}.$

The relationship (3) between the two gradients generalizes the following one found in [12, page 24]:

$$(\nabla \varphi)(x) = (D^t D)(\nabla_2 \varphi)(x), \text{ for all } x \in \mathbb{R}^{n+1},$$

where p=2 and R^{n+1} is then a Hilbert space. $(\nabla_2 \varphi)(x)$ is called the Sobolev gradient of φ at x.

The paper also shows with a detailed proof that the dual space $H^{1,q}[0,1]^*$ of the space $H^{1,q}[0,1]$, $q \neq 2$, is isomorphic to the space $H^{1,p}[0,1]$, where 1/p + 1/q = 1.

2. Duals of Sobolev spaces. In this section, we present a useful characterization of the dual space of the space $H^{1,p}[0,1]$ with the Sobolev norm (2). Some other characterizations can be found in [1].

Since the dual space of the Hilbert space $H^{1,2}[0,1]$ is the dual of the space $H^{1,p}[0,1]$ itself, we will be interested in working with the space $H^{1,p}[0,1]$, $p \neq 2$. The fact that the space $L_p[0,1]$ is isomorphic to the dual space of $L_q[0,1]$, where 1/p+1/q=1 has given us some motivation to show that the space $H^{1,p}[0,1]$ is isomorphic to the dual space of the space $H^{1,q}[0,1]$ with 1/p+1/q=1.

Theorem 1. The dual space $(H^{1,q}[0,1])^*$ of the space $H^{1,q}[0,1]$, $q \neq 2$, is isomorphic to the space $H^{1,p}[0,1]$, where 1/p + 1/q = 1.

Proof. Suppose q<2. Define the function $F:H^{1,p}[0,1]\to (H^{1,q}[0,1])^*$ as follows: for every f in $H^{1,p}[0,1]$,

$$F(f)(g) = \int_0^1 fg + f'g', \quad \text{for all} \quad g \in H^{1,q}[0,1],$$

and denote F(f) by F_f . F is clearly linear. We intend to show that F is a well defined, one-to-one, and onto function.

$$\begin{split} |F_f(g)| &= \left| \int_0^1 fg + f'g' \right| \leq \left| \int_0^1 fg \right| + \left| \int_0^1 f'g' \right| \\ &\leq \|f\|_{L^p[0,1]} \cdot \|g\|_{L^q[0,1]} + \|f'\|_{L^p[0,1]} \cdot \|g'\|_{L^q[0,1]} \\ &\leq \left(\|f\|_{L^p[0,1]}^p + \|f'\|_{L^p[0,1]}^p \right)^{1/p} \left(\|g\|_{L^q[0,1]}^q + \|g'\|_{L^q[0,1]}^q \right)^{1/q} \\ &= \|f\|_{H^{1,p}[0,1]} \|g\|_{H^{1,q}[0,1]} \, . \end{split}$$

Hence,

$$|F_f| \leq ||f||_{H^{1,p}[0,1]}$$
.

Therefore,

$$F_f \in (H^{1,q}[0,1])^*$$

and consequently F is well defined.

Now to show that F is one-to-one we need to show that if $F_f = 0$, then f = 0. Suppose $f \in H^{1,p}[0,1]$ so that $F_f = 0$

$$0 = |F_f| \ge \frac{|F_f(m)|}{\|m\|_{H^{1,q}[0,1]}} = \frac{\left| \int_0^1 f m + f' m' \right|}{\|m\|_{H^{1,q}[0,1]}}$$
 for all $m \in H^{1,q}[0,1], m \ne 0$.

Hence,

$$\int_0^1 f m + f' m' = 0 \quad \text{for all} \quad m \in H^{1,q}[0,1].$$

Let $g = |f|^{p/q}(\operatorname{sgn} f)$. We intend to show that g is a member of the space $H^{1,q}[0,1]$. $f \in H^{1,p}[0,1]$ implies that

$$\int_{0}^{1} |g|^{q} = \int_{0}^{1} |f|^{p} < \infty.$$

Now

$$g' = \frac{p}{q} f |f|^{(p/q)-2} (\operatorname{sgn} f) f'$$

= $\frac{p}{q} |f|^{(p/q)-1} f'$.

Recall that if α and β are two nonnegative real numbers and $0 < \lambda < 1$, then $\alpha^{\lambda}\beta^{1-\lambda} \leq \lambda\alpha + (1-\lambda)\beta$, see [15, page 112].

Suppose q<2. Let $\lambda=q/p,\ \alpha=|f'|^p,\ {\rm and}\ \beta=|f|^p.$ Since q<2, then $\lambda<1$ and

$$\left(\left|f'\right|^p\right)^{q/p}\left(\left|f\right|^p\right)^{1-(q/p)} \leq \frac{q}{p}\left|f'\right|^p + \frac{p-q}{p}\left|f\right|^p.$$

Hence,

$$|f'|^q |f|^{p-q} \le \frac{q}{p} |f'|^p + \frac{p-q}{p} |f|^p.$$

So

$$\begin{split} \int_0^1 |g'|^q &= \left(\frac{p}{q}\right)^q \int_0^1 |f'|^q |f|^{p-q} \\ &\leq \left(\frac{p}{q}\right)^q \int_0^1 \left(\frac{q}{p} |f'|^p + \frac{p-q}{p} |f|^p\right) \\ &\leq \left(\frac{p}{q}\right)^q \max\left(\frac{q}{p}, \frac{p-q}{p}\right) \int_0^1 |f'|^p + |f|^p \\ &= \left(\frac{p}{q}\right)^q \max\left(\frac{q}{p}, \frac{p-q}{p}\right) \|f\|_{H^{1,p}[0,1]}^p \\ &< \infty. \end{split}$$

Therefore, $g \in H^{1,q}[0,1]$. Now

$$0 = \int_0^1 fg + f'g' = \int_0^1 \left(|f|^p + \frac{p}{q} |f|^{(p/q)-1} f'^2 \right) \ge \int_0^1 |f|^p.$$

Hence, $\int_0^1 |f|^p \le 0$. Therefore, $||f||_{L^p[0,1]} = 0$ and f = 0.

Now to show that F is onto let us suppose that φ is in $(H^{1,q}[0,1])^*$. We need to find $f \in H^{1,p}[0,1]$ such that $\varphi = F_f$.

Let β be the extension of φ to $L_q[0,1]$. Then there is a $g \in L_p[0,1]$ such that $\beta(v) = \int_0^1 gv$ for all $v \in L_q[0,1]$. Now for all $v \in H^{1,q}[0,1]$, we have

$$\varphi(v) = F_f(v) = \int_0^1 f v + f' v'$$

and

$$\varphi(v) = \beta(v) = \int_0^1 gv.$$

Hence,

$$\int_0^1 f v + f' v' = \int_0^1 g v \quad \text{for all} \quad v \in H^{1,q}[0,1].$$

This implies that

$$\int_0^1 (f-g)v + \int_0^1 f'v' = 0.$$

Define the function $h(t) = \int_0^t (f - g)$, so that

$$\int_0^1 h'v + \int_0^1 f'v' = 0.$$

If we integrate by parts, we get

$$v(1)h(1) - v(0)h(0) - \int_0^1 hv' + \int_0^1 f'v' = 0,$$

but h(0) = 0. So

$$v(1)h(1) + \int_0^1 v'(f'-h) = 0$$
, for all $v \in H^{1,q}[0,1]$.

If we choose v to be a nonzero constant function, we get v(1)h(1) = 0, and hence h(1) = 0. Therefore,

$$\int_0^1 (f'-h)v' = 0, \quad \text{for all} \quad v \in H^{1,q}[0,1].$$

Thus, f' - h = 0. So we have the following system of equations

$$\begin{pmatrix} f' \\ h' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} f \\ h \end{pmatrix} + \begin{pmatrix} 0 \\ -g \end{pmatrix}$$

with the boundary condition

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} f(0) \\ h(0) \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} f(1) \\ h(1) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

whose solution $\binom{f}{h}$ is given by

$$(f\mathbf{C}h) = \begin{pmatrix} \cosh(t) & \sinh(t) \\ \sinh(t) & \cosh(t) \end{pmatrix} \begin{pmatrix} f(0) \\ h(0) \end{pmatrix}$$

$$+ \begin{pmatrix} \int_0^t \cosh(t-s) & \int_0^t \sinh(t-s) \\ \int_0^t \sinh(t-s) & \int_0^t \cosh(t-s) \end{pmatrix} \begin{pmatrix} 0 \\ -g \end{pmatrix} ds.$$

Since h(0) = 0,

$$f(t) = \cosh(t)f(0) - \int_0^t \sinh(t - s)g(s) \, ds,$$

$$h(t) = \sinh(t)f(0) - \int_0^t \cosh(t - s)g(s) \, ds, \quad 0 \le t \le 1.$$

Since h(1) = 0,

$$\sinh(1)f(0) - \int_0^1 \cosh(1-s)g(s) \, ds = 0.$$

This implies that

$$f(0) = \frac{\int_0^1 \cosh(1-s)g(s) \, ds}{\sinh(1)}.$$

Hence,

$$f(t) = \frac{\cosh(t)}{\sinh(1)} \int_0^1 \cosh(1-s)g(s) ds - \int_0^t \sinh(t-s)g(s) ds,$$

and

$$\begin{split} |f(t)| & \leq \left(\frac{e+1}{2\sinh(1)}\right) \left(\frac{e+1}{2}\right) \int_0^1 |g| \\ & + \frac{e+1}{2} \int_0^1 |g| \\ & = \left[\frac{(e+1)^2}{4\sinh(1)} + \frac{e+1}{2}\right] \int_0^1 |g| \\ & \leq \left[\frac{(e+1)^2}{4\sinh(1)} + \frac{e+1}{2}\right] \|g\|_{L^p[0,1]} \,. \end{split}$$

This gives

$$|f(t)|^p \le \left[\frac{(e+1)^2}{4\sinh(1)} + \frac{e+1}{2}\right]^p ||g||_{L^p[0,1]}^p.$$

Hence,

$$\int_0^1 |f|^p \le \left[\frac{(e+1)^2}{4 \sinh(1)} + \frac{e+1}{2} \right]^p \|g\|_{L^p[0,1]}^p.$$

Also

$$h(t) = \frac{\sinh(t)}{\sinh(1)} \int_0^1 \cosh(1-s)g(s) ds - \int_0^t \cosh(t-s)g(s) ds,$$

and

$$\begin{split} |h(t)| & \leq \frac{(e+1)^2}{4\sinh(1)} \int_0^1 |g| + \frac{e+1}{2} \int_0^1 |g| \\ & = \left[\frac{(e+1)^2}{4\sinh(1)} + \frac{e+1}{2} \right] \int_0^1 |g| \\ & \leq \left[\frac{(e+1)^2}{4\sinh(1)} + \frac{e+1}{2} \right] \|g\|_{L^p[0,1]} \,. \end{split}$$

This gives

$$|h(t)|^p \le \left[\frac{(e+1)^2}{4\sinh(1)} + \frac{e+1}{2}\right]^p ||g||_{L^p[0,1]}^p.$$

Hence,

$$\int_0^1 |f'|^p = \int_0^1 |h|^p \le \left[\frac{(e+1)^2}{4 \sinh(1)} + \frac{e+1}{2} \right]^p ||g||_{L^p[0,1]}^p.$$

Therefore, $f \in H^{1,p}[0,1]$ and consequently F is onto and $(H^{1,q}[0,1])^*$ is isomorphic to $H^{1,p}[0,1]$. Now if q>2, then p<2 and $(H^{1,p}[0,1])^*$ is isomorphic to $H^{1,q}[0,1]$. Hence, $((H^{1,p}[0,1])^*)^*$ is isomorphic to $(H^{1,q}[0,1])^*$. Therefore, $H^{1,p}[0,1]$ is isomorphic to $(H^{1,q}[0,1])^*$. The proof of the theorem is now complete. \square

The above argument can be generalized to show that $(H^{m,p}[0,1])^*$ is isomorphic to $H^{m,q}[0,1]$, where m is a nonnegative positive integer.

3. Gradients. In this section, we first present some facts from [11] where the Beurling-Deny theorem was used in the Hilbert space

setting to establish a relationship between the ordinary gradient and the Sobolev gradient. Then we show how that theorem can be extended to find a function from $H^{1,p}[0,1]$ to $L_p[0,1]$, p>2 using Theorem 1.

Theorem 2 [11]. Suppose that each of H and J is a Hilbert space so that the points of J form a dense subset of H. Suppose also that $\|x\|_J \geq \|x\|_H$ for all $x \in J$. Then there is an $M \in L(H,J)$, the set of all continuous linear operators from H to J, so that

- (i) R(M) is a dense subset of J, where R(M) is the range of M.
- (ii) $|M|_{L(H,J)} \leq 1$.
- (iii) M^{-1} exists.

A proof of that theorem can be found in [11]. It may be useful to note how the function M is constructed.

Suppose $x \in H$. Let f be an element of H^* (the dual space of H) so that $f(z) = \langle z, x \rangle_H$, for all $z \in H$. Let g be the restriction of f to J. If $z \in J$,

$$|g(z)| = |f(z)| = |\langle z, x \rangle_H| \le ||z||_H ||x||_H \le ||z||_J ||x||_H.$$

Hence $g \in J^*$. So there is a unique y in J so that $g(z) = \langle z, y \rangle_J$ for all $z \in J$. Denote y by Mx. M is clearly a linear function from H to J. M^{-1} is called the Laplacian for the pair H, J.

Now we recall some facts concerning use of the function M to establish a relationship between the ordinary and the Sobolev gradients in the Hilbert space setting.

For the discrete case, we consider the two Hilbert spaces $H = \mathbb{R}^{n+1}$ with the Euclidean norm and $J = \mathbb{R}^{n+1}$ with the p-norm (1), where p = 2.

For every $z \in J$, $\langle z, x \rangle_H = \langle z, Mx \rangle_J = \langle Dz, DMx \rangle_{R^{2n}} = \langle z, D^t DMx \rangle_H$, see [12, page 24], where D is the function defined in the introduction. Therefore, $x = D^t DMx$ and $M^{-1} = D^t D$.

If φ is a real-valued C^1 function on J, then

$$\varphi'(y)h = \langle h, (\nabla_2 \varphi)(y) \rangle_J = \langle Dh, D(\nabla_2 \varphi)(y) \rangle_{R^{2n}}$$
$$= \langle h, (D^t D)(\nabla_2 \varphi)(y) \rangle_H.$$

 $\nabla_2 \varphi$ is the Sobolev gradient as we mentioned in the introduction. Hence the ordinary gradient $(\nabla \varphi)(y) = (D^t D)\nabla_2 \varphi(y)$. So we have the following relationship between the ordinary and the Sobolev gradients using the function M.

(4)
$$(\nabla \varphi)(x) = M^{-1}(\nabla \varphi_2)(x)$$
, for all $x \in \mathbb{R}^{n+1}$.

For the continuous case where $H=L_2[0,1]$ and $J=H^{1,2}[0,1]$, the following argument shows that we get the same results. Let z be an element of J. Then $\langle z, x \rangle_H = \langle z, Mx \rangle_J$. Let Mx=y. Hence,

$$\int_0^1 zy + z'y' = \int_0^1 zx, \quad \text{for all} \quad z \in J.$$

So

$$\int_0^1 zy + \int_0^1 z'y' = \int_0^1 zx.$$

This implies that

$$\int_0^1 zy + [y'z]_0^1 - \int_0^1 zy'' = \int_0^1 zx.$$

Thus,

$$\int_0^1 z(y - y'' - x) = y'(0)z(0) - y'(1)z(1).$$

Hence,

$$\int_0^1 z(y - y'' - x) = 0, \quad \text{for all} \quad z \in J \ni z(0) = z(1) = 0.$$

We claim that y-y''-x=0. Suppose not. Then, without loss of generality, take a subinterval of [0,1] over which the function y-y''-x is positive, and then define a function z which is positive over the subinterval and vanishes outside the subinterval. Thus, $\int_0^1 z(y-y''-x)$ would be positive which is a contradiction. Therefore, y-y''-x=0 and consequently $\int_0^1 z(y-y''-x)=0$, for all $z\in J$. Hence, y'(0)z(0)-y'(1)z(1)=0, for all $z\in J$. So if we choose a function z so that z(0)=0 and z(1)=1, we get y'(1)=0. Next we choose a

function z so that z(0) = 1 and z(1) = 0, and we get y'(0) = 0. So finally the initial value problem y - y'' = x, y'(0) = 0 = y'(1) has a unique solution y = Mx. This implies that $(I - \Delta)Mx = x$, where I is the identity function, and $I - \Delta = M^{-1}$.

Now consider the linear transformation $D_1\colon H^{1,2}[0,1]\to L_2[0,1]$ such that

$$D_1 f = f'$$
, for all $f \in H^{1,2}[0,1]$.

 D_1 is a closed densely defined operator. Then

$$D_1^t f = -f'$$
 for all $f \in H^{1,2}[0,1] \ni f(0) = 0 = f(1)$,

where D_1^t is the adjoint of D_1 . Consider also the linear transformation

$$D: H^{1,2}[0,1] \longrightarrow L_2[0,1] \times L_2[0,1]$$

such that

$$D(f) = \begin{pmatrix} f \\ f' \end{pmatrix} = \begin{pmatrix} If \\ D_1f \end{pmatrix}, \text{ for all } f \in H^{1,2}[0,1].$$

D is a closed densely defined operator. Then

$$D^t \begin{pmatrix} u \\ v \end{pmatrix} = u + D_1^t v,$$
 for all $u \in L_2[0,1], v \in H^{1,2}[0,1] \ni v(0) = 0 = v(1),$

where D^t is the adjoint of D. Hence,

$$D^t D f = f + D_1^t f' = f - f'',$$
 for all $f \in H^{2,2}[0,1] \ni f'(0) = 0 = f'(1).$

Therefore, $D^tD = I - \Delta$ and consequently $D^tD = M^{-1}$.

Suppose φ is a C^1 function on $H^{1,2}[0,1]$.

$$\varphi'(x)(y) = \langle y, (\nabla_2 \varphi)(x) \rangle_{H^{1,2}[0,1]} = \langle Dy, D(\nabla_2 \varphi)(x) \rangle_{L_2[0,1] \times L_2[0,1]}.$$

If the $L_2[0,1]$ gradient $(\nabla \varphi)(x)$ exists, then

$$\varphi'(x)(y) = \langle y, (\nabla \varphi)(x) \rangle_{L_2[0,1]}.$$

Therefore,

$$\langle Dy, D(\nabla_2 \varphi)(x) \rangle_{L_2[0,1] \times L_2[0,1]} = \langle y, (\nabla \varphi)(x) \rangle_{L_2[0,1]}.$$

Hence, $D(\nabla_2\varphi)(x)$ is in the domain of D^t and $D^tD(\nabla_2\varphi)(x) = (\nabla\varphi)(x)$. Therefore, $(\nabla_2\varphi)(x) = (D^tD)^{-1}(\nabla\varphi)(x)$ or $(\nabla_2\varphi)(x) = M(\nabla\varphi)(x)$, for all $x \in H^{1,2}[0,1]$.

When we look for critical points of the C^1 function

$$\varphi(x) = \frac{1}{2} \int_0^1 (x' - x)^2, \quad x \in H^{1,2}[0, 1]$$

by solving $(\nabla_2 \varphi)(x) = 0$ or $M(\nabla \varphi)(x) = 0$, see [11, page 80], we look at

$$\varphi'(x)h = \int_0^1 (x' - x)(h' - h)$$

$$= \int_0^1 (x' - x)h' - \int_0^1 (x' - x)h)$$

$$= [(x' - x)h]_0^1 - \int_0^1 (x'' - x')h + (x' - x)h$$

$$= \int_0^1 (x - x'')h = 0,$$

with the boundary conditions x'(0) = x(0) and x'(1) = x(1). This implies that $(\nabla \varphi)(x) = x - x'' = 0$ which requires that $x \in H^{2,2}[0,1]$. Since $\nabla_2 \varphi$ is continuous, $M(\nabla \varphi)$ is continuous and hence we can extend it to the whole space $H^{1,2}[0,1]$.

Definition 3 [7, page 155]. Suppose X is a Banach space and X^* is the dual space of X. Given sets $S \subset X$ and $S^* \subset X^*$, the sets

$$S^{\perp} = \{ f^* \in X^* : \langle f, f^* \rangle = 0, \text{ for all } f \in S \}$$

$$S^{*\perp} = \{ f \in X : \langle f, f^* \rangle = 0, \text{ for all } f^* \in S^* \}$$

are known as the orthogonal complements of S and S^* , respectively, where the coupling $\langle f, f^* \rangle = f^*(f)$.

Definition 4 [7, page 161]. Suppose X and Y are two Banach spaces and T is a bounded linear operator from X to Y. The adjoint of T, denoted by T^* , is the mapping from Y^* to X^* defined by

$$T^*(f^*)j = f^*(T(j)), \quad f^* \in Y^*, \quad j \in X.$$

Theorem 5 [7, page 164]. Let X and Y be two Banach spaces, and suppose that T is a linear operator from X to Y. Then $\overline{R(T)} = N(T^*)^{\perp}$, where R(T) is the range of T and $N(T^*) = \{f^* \in Y^*: T^*(f^*) = 0\}$.

The following theorem shows that the Beurling-Deny theorem can be extended to the two uniformly convex spaces $H = L_p[0,1]$ and $J = H^{1,p}[0,1], p > 2$.

Theorem 6. There is an M in $L(L_p[0,1], H^{1,p}[0,1]), 2 , such that$

- (i) R(M) is dense in $H^{1,p}[0,1]$.
- (ii) M^{-1} exists.

Proof. Suppose that $f \in L_p[0,1]$. Then there is a bounded linear function α on $L_q[0,1]$, 1/p+1/q=1, such that $\alpha(g)=\int_0^1 fg$, for all $g \in L_q[0,1]$. Let $\beta=\alpha_{|H^{1,q}[0,1]}$ be the restriction of α to $H^{1,q}[0,1]$. For every $h \in H^{1,q}[0,1]$, we have

$$|eta(h)| = \left| \int_0^1 hf \right| \leq \int_0^1 |hf| \leq \|h\|_{L_q[0,1]} \, \|f\|_{L_p[0,1]} \, .$$

Hence, $|\beta| \leq \|f\|_{L_p[0,1]}$. Therefore, β is a member of $(H^{1,q}[0,1])^*$. Since $(H^{1,q}[0,1])^*$ is ismorphic to $H^{1,p}[0,1]$, there is a unique k in $H^{1,p}[0,1]$ such that

$$\beta(h) = \int_0^1 kh + k'h', \quad \text{for all} \quad h \in H^{1,q}[0,1].$$

Define $M: L_p[0,1] \to H^{1,p}[0,1]$ so that Mf = k. M is clearly linear. We intend to show that M is continuous and $\overline{R(M)} = H^{1,p}[0,1]$. Since

 $\beta(h) = \alpha(h)$, for all $h \in H^{1,q}[0,1]$,

$$\int_{0}^{1} kh + k'h' = \int_{0}^{1} fh.$$

But k = Mf, so

$$\int_0^1 (Mf)h + (Mf)'h' = \int_0^1 fh$$

which implies that

$$\int_0^1 (Mf - f)h + (Mf)'h' = 0, \quad \text{for all} \quad h \in H^{1,q}[0,1].$$

Let $u(t) = \int_0^t (Mf - f)$. Then

$$\int_0^1 u'h + (Mf)'h' = 0.$$

So

$$[hu]_0^1 - \int_0^1 uh' + \int_0^1 (Mf)'h' = 0.$$

Therefore,

$$h(1)u(1) - h(0)u(0) + \int_0^1 ((Mf)' - u) h' = 0, \text{ for all } h \in H^{1,q}[0,1],$$

which yields u(1) = 0. Thus,

$$\int_0^1 ((Mf)' - u) h' = 0, \quad \text{for all} \quad h \in H^{1,q}[0,1].$$

Hence (Mf)'-u=0. So (Mf)''=u' and (Mf)''=Mf-f. Therefore, we have the following differential equation (Mf)''-Mf=-f with (Mf)'(0)=0=(Mf)'(1) whose solution is given by

$$(Mf)(t) = \cosh(t)(Mf)(0) - \int_0^t \sinh(t-s)f(s) ds,$$

and

$$(Mf)'(t) = \sinh(t)(Mf)(0) - \int_0^t \cosh(t-s)f(s) \, ds, \quad 0 \le t \le 1.$$

Hence,

$$0 = (Mf)'(1) = \sinh(1)(Mf)(0) - \int_0^1 \cosh(1-s)f(s) \, ds.$$

This implies that

$$(Mf)(0) = \frac{\int_0^1 \cosh(1-s)f(s) \, ds}{\sinh(1)}.$$

Hence,

$$(Mf)(t) = \frac{\cosh(t)}{\sinh(1)} \int_0^1 \cosh(1-s) f(s) \, ds - \int_0^t \sinh(t-s) f(s) \, ds.$$

So

$$\begin{split} |(Mf)(t)| &\leq \frac{(e+1)^2}{4\sinh(1)} \int_0^1 |f| + \frac{e+1}{2} \int_0^1 |f| \\ &= \left[\frac{(e+1)^2}{4\sinh(1)} + \frac{e+1}{2} \right] \int_0^1 |f| \\ &\leq \left[\frac{(e+1)^2}{4\sinh(1)} + \frac{e+1}{2} \right] ||f||_{L_p[0,1]} \,. \end{split}$$

Then

$$|(Mf)(t)|^p \le \left[\frac{(e+1)^2}{4\sinh(1)} + \frac{e+1}{2}\right]^p ||f||_{L_p[0,1]}^p.$$

Hence,

$$\int_0^1 \left| Mf \right|^p \leq \left[\frac{(e+1)^2}{4 \sinh(1)} + \frac{e+1}{2} \right]^p \|f\|_{L_p[0,1]}^p \, .$$

Similarly, we get

$$\int_0^1 \left| (Mf)' \right|^p \leq \left[\frac{(e+1)^2}{4 \sinh(1)} + \frac{e+1}{2} \right]^p \|f\|_{L_p[0,1]}^p \,.$$

Therefore,

$$||Mf||_{H^{1,p}}^p \le 2\left[\frac{(e+1)^2}{4\sinh(1)} + \frac{e+1}{2}\right]^p ||f||_{L_p[0,1]}^p.$$

So

$$||Mf||_{H^{1,p}} \le 2^{1/p} \left[\frac{(e+1)^2}{4\sinh(1)} + \frac{e+1}{2} \right] ||f||_{L_p[0,1]}.$$

Hence, M is continuous.

Suppose $M^*: (H^{1,p}[0,1])^* \to L_p[0,1]^*$ is the adjoint of the function M. Let $N(M^*) = \{g* \in (H^{1,p}[0,1])^* : M^*(g^*) = 0\}$. Suppose g^* is a member of $N(M^*)$. For every h in $L_p[0,1]$, we have $(M^*(g^*))h = g^*(Mh)$. Therefore $g^*(Mh) = 0$.

Now by Theorem 1, there is an m in $H^{1,q}[0,1]$ so that $g^*(k) = \int_0^1 mk + m'k'$, for all $k \in H^{1,p}[0,1]$. Hence,

$$0 = g^*(Mh) = \int_0^1 m(Mh) + m'(Mh)' = \int_0^1 mh, \quad \text{for all} \quad h \in L_p[0,1].$$

 $\underline{\text{So }m}=0$ and $g^*=0.$ Therefore, $N(M^*)=\{0\}$ and consequently $\overline{R(M)}=N(M^*)^\perp=H^{1,p}[0,1].$

Now to show (ii), we let $h \in L_p[0,1]$ so that Mh = 0. Hence,

$$\int_0^1 m(Mh) + m'(Mh)' = 0, \quad ext{for all} \quad m \in H^{1,q}[0,1].$$

Therefore, $\int_0^1 mh = 0$, for all $m \in H^{1,q}[0,1]$. So h = 0 and consequently M^{-1} exists. The proof of the theorem is now complete. \square

Unlike the case when p = 2, we cannot use the function M^{-1} instead of $D^tQ(D(.))$ in (3) to establish a relationship between the ordinary and the p-gradient as we did in (4) simply because the function M^{-1} is linear but $D^tQ(D(.))$ is not.

For the discrete case, if we consider $H=R^{n+1}$ with the Euclidean norm and $J=R^{n+1}$ with the p-norm (1), for $r\in H$ there exists a linear function f_r on J so that $f_r(s)=\langle r,s\rangle_H$ for every $s\in J$. Hence, there exists a unique $h\in J$ such that $f_r(h)$ is maximum subject

to $|f_r|_{J^*} = ||h||_J$. So we have a function T from H to J so that h = Tr. Let $\beta(h) = ||h||^p - |f_r|^p$. Using Lagrange multipliers, we get $\nabla f_r(h) = \nabla \beta(h)$ but $\nabla \beta(h) = D^t Q(D(h))$, see [16, page 1542]. Therefore, $r = D^t Q(D(Tr))$ and $T^{-1} = D^t Q(D(.))$. The relationship (3) between the two gradients implies then $(\nabla \varphi)(x) = T^{-1}(\nabla_p \varphi)(x)$, where φ is a C^1 function on R^{n+1} .

Note that the two functions T and M are equal if p=2.

REFERENCES

- 1. R. Adams, Sobolev spaces, Second edition, Academic Press, New York, 2003.
- ${\bf 2.}$ M.S. Berger, Nonlinearity and functional analysis, Academic Press, New York, 1977.
 - 3. A. Beurling, Collected works, Vol. 2, Birkhauser, Berlin, 1989.
- A. Beurling and J. Deny, Dirichlet spaces, Proc. Natural Acad. Sci. 45 (1959), 208–215.
- 5. J. Diestel, Sequences and series in Banach spaces, Springer-Verlag, New York, 1992.
- **6.** O. Hanner, On the uniform convexity of L^p and l^p , Arkiv. for Matematic **3** (1956), 239–244.
- 7. V. Huston and J.S. Pym, Application of functional analysis and operator theory, Academic Press, New York, 1980.
- 8. R.C. James, Weak convergence and reflexivity, Trans. Amer. Math. Soc. 113 (1964), 129–140.
- $\bf 9.~J.~Neuberger,~Steepest~descent~and~differential~equations,~J.~Math.~Soc.~Japan <math display="inline">\bf 37~(1985),~187–195.$
- 10. ——, Construction variational methods for differential equations, Nonlinear Anal. Theoret. Meth. Appl. 13 (1988), 413–428.
- 11. ——, Sobolev gradients and differential equations, Springer-Verlag, New York, 1997.
- 12. ——, Calculation of sharp shocks using Sobolev gradients, Contemp. Math. 108 (1990), 111–118.
 - 13. F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1955.
- 14. P. Rosenblum, *The method of steepest descent*, Proc. Symp. Appl. Math. 6, Amer. Math. Soc., Philadelphia, 1961.
 - 15. H.L. Royden, Real analysis, The Macmillan Company, New York, 1966.
- 16. M. Zahran, Steepest descent on a uniformly convex space, Rocky Mountain J. Math. 33 (2003), 1539–1555.

HARIRI CANADIAN UNIVERSITY, SCHOOL OF SCIENCE AND INFORMATION SYSTEMS, P.O. BOX 10, DAMOUR, CHOUF 2010, LEBANON

 ${\bf Email~address:~zahranmm@hcu.edu.lb}$