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SOBOLEV GRADIENTS IN
UNIFORMLY CONVEX SPACES

MOHAMAD M. ZAHRAN

1. Introduction. The main idea of this paper is to show how
the Beurling-Deny theorem presented in [11] can be extended to find
a function from the uniformly convex Sobolev space H'?[0,1] to the
space L,[0,1], p > 2. We also look at the possibility of using that
function to establish a relationship between the ordinary gradient V¢
associated with the Euclidean norm in R"*! and the p-gradient V,¢ of
a C! function ¢ defined on the uniformly convex Banach space R™+!

with the p-norm
P> > 1/p

(S (e

2

il

(2

h = (ho,h1,... ,h,) € R"T', 6=

S|

which is a finite-dimensional emulation of the Sobolev norm

1 1/p
@) ||f||=</0 |f|”+f”’> . feHo,1,

in the Sobolev space H'?[0, 1].

In a previous work [16, page 4], we had

(3) (Vo) (z) = D'Q(D(Vype) (),

where Dy, D; are functions from R™t! to R™ such that

hy + ho/2 hy — ho /6

ho + hi/2 hy — hy /8
Dogh = . , Dih= .

hn+hn71/2 hn_hnfl/g
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D is a function from R™! to R™ x R™ such that

_ Dyh n+1
Dh_<D1h>’ forall he R"™.

D! is the adjoint of D as defined in [13], and

Q(t) = diag (pt1 |t1|pf2 , Pt2 |t2\p72 ye -+ 3 Dlan |t2n|p72)7
for all t = (t1,to,...,tsn) € R*".

The relationship (3) between the two gradients generalizes the fol-
lowing one found in [12, page 24]:

(Vo) (z) = (D'D) (Vap) (z), forall ze€ R,

where p = 2 and R""! is then a Hilbert space. (Vap)(z) is called the
Sobolev gradient of ¢ at x.

The paper also shows with a detailed proof that the dual space
HY00,1]* of the space HY9[0,1], ¢ # 2, is isomorphic to the space
HY?[0,1], where 1/p+1/q = 1.

2. Duals of Sobolev spaces. In this section, we present a useful
characterization of the dual space of the space H'?[0,1] with the
Sobolev norm (2). Some other characterizations can be found in [1].

Since the dual space of the Hilbert space H'2[0,1] is the dual of the
space H2[0, 1] itself, we will be interested in working with the space
H'?[0,1], p # 2. The fact that the space L,[0,1] is isomorphic to the
dual space of L,[0, 1], where 1/p+1/q = 1 has given us some motivation
to show that the space H?[0,1] is isomorphic to the dual space of the
space H9[0,1] with 1/p+1/¢ = 1.

Theorem 1. The dual space (HV]0,1])* of the space HY1[0,1],
q # 2, is isomorphic to the space HV?[0,1], where 1/p + 1/q = 1.

Proof. Suppose ¢ < 2. Define the function F:H?[0,1] —
(HY9[0,1])* as follows: for every f in H"?[0,1],

1
F(f)(g):/0 fg+ f'g’, for all gEHl’q[O,l],
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and denote F(f) by Fy. F is clearly linear. We intend to show that F’
is a well defined, one-to-one, and onto function.

1 1

/ fg‘ + / f'd
0 0

< Hf”LP[O,l] . ||9||Lq[0,1] + ||fl||LP[0,1] . ||9’||Lq{0,1]

1/p
< (U1 s oy + 115 01027) (Nl agorny + 119 Mg, )

= Hf”Hle[oJ] ||g||H11‘1[0,1] :

<

1
1y (g)| = / fo+ 1

1/q

Hence,

|Ff| < ||f||H1,p[0,1] :
Therefore,

Fy e (H"7[0,1])"
and consequently F' is well defined.

Now to show that F' is one-to-one we need to show that if Fy = 0,
then f = 0. Suppose f € H'?[0,1] so that Ff =0

1
)| _ o St g
||m||H1,q[0,1} Hm”Hl,q[o,l]
for all m € H"[0,1],m # 0.

0=|Fy| >

Hence,

1
/fm+f'm':0 for all m e H“7[0,1].
0

Let g = |f|P/9(sgn f). We intend to show that g is a member of the
space H19[0,1]. f € HY?[0,1] implies that

1 1
[1slr= [ 177 <.
0 0

J = ‘gf FIP/D72 (sgn f) f

p —
— _|f|(P/¢I) lf’.
q

Now
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Recall that if o and g are two nonnegative real numbers and 0 < A < 1,
then a*B!=* < Aa+ (1 — \)B, see [15, page 112].

Suppose ¢ < 2. Let A = ¢q/p, o = |f'|P, and 8 = |f|P. Since ¢ < 2,
then A < 1 and

a/pppyi=(a/p) L yerp P4 pp
(£ () Sl A

Hence,

g4 P—4q
PP < DT

1 q 1
19 __ 19 pP—q
/0|g—( /Olfllfl
q 1
P p
g( ‘A<|H |f>
q
( nmx<€,3—ﬁ>‘/ PP+ P
0

q
q p—4q
( max (p ) T

< 0.

Therefore, g € H?]0, 1]. Now

1 1 1
_ ’r_ p P p/9-1 pr2 p
o= [tawrd = [ (a0 2) 2 [

Hence, fol \fIP < 0. Therefore, || f||Lro,;) =0 and f = 0.

Now to show that F is onto let us suppose that ¢ is in (H?]0,1])*.
We need to find f € H'?[0, 1] such that ¢ = Fy.

Let 8 be the extension of ¢ to Ly[0,1]. Then there is a g € L,[0, 1]
such that (v fo gv for all v € Ly[0,1]. Now for all v € H“?0, 1],
we have

A

keIt ik QI

N—— N N~

Q

1
o(v) = Fy(v) = / fot fof

and
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Hence,
1 1
/fv+fllz/gv for all v e HY?[0,1].
0 0

This implies that

/Ol(fg)er/Olf’v’:O-

Define the function h(t) = fot(f —g), so that

1 1
/ h'v +/ flv' =0.
0 0

If we integrate by parts, we get
1 1
w(1)h(1) — v(0)A(0) —/ ho! +/ o =0,
0 0
but h(0) = 0. So
1
w(1)h(1) +/ o (f —h) =0, forall veH0,1]
0

If we choose v to be a nonzero constant function, we get v(1)h(1) = 0,
and hence h(1) = 0. Therefore,

1
/ (ff —h)w' =0, forall ve H“0,1].
0
Thus, f' — h = 0. So we have the following system of equations

(1)=( o) () (%)

with the boundary condition

(0 0) (i) (0 1) () = ()
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whose solution <£> is given by

em= (Gt i) (70)
(e f =) (8 o

Since h(0) = 0,
f(t) = cosh(t

smh t—s)g S,

) = sinh(¢ cosh(t — s)g s, 0<t<1.

c\n%

Since h(1) =

1
sinh(1)f(0) — / cosh(1l — s)g(s)ds = 0.
0
This implies that

_ fol cosh(1 — s)g(s) ds
sinh(1)

£(0)

f(t) = sinh(1) /0 cosh(1 — s)g(s) ds — /0 sinh(¢ — $)g(s) ds,

o1 (5amts ) (50) [ 1o

and

n e+1 /1 9]
D) g
T /
- [451 g
(e + 1)2 e+1
< .
< [4Smh(1) + < alaopon
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This gives
0 < [{eh + < ol
Hence, )
[ < [ S ol
Also
h(t) = s.inh(t) /1 cosh(1 — )g(s) ds — /t cosh(t — s)g(s) ds,
sinh(1) /, 0
and
[h(®)] < 4651:h1 / 9]+ €+1/ o
[(e+1)2  e+1]
- | 4sinh(1) - 2] /0 4
< iZi:hl()lz) = —; L ||9||Lp[0,1] .
This gives i 5 1p
)P < |5l + S| ol
Hence,

2 1
[ = [ e < [ S ol

Therefore, f € H?[0,1] and consequently F is onto and (H'4[0,1])*
is isomorphic to H'?[0,1]. Now if ¢ > 2, then p < 2 and (H"?[0, 1])*
is isomorphic to H%?[0,1]. Hence, ((H'?[0,1])*)* is isomorphic to
(HY]0,1])*. Therefore, H'?[0,1] is isomorphic to (H%7[0,1])*. The
proof of the theorem is now complete. u]

The above argument can be generalized to show that (H™?[0,1])* is
isomorphic to H™1?]0, 1], where m is a nonnegative positive integer.

3. Gradients. In this section, we first present some facts from
[11] where the Beurling-Deny theorem was used in the Hilbert space
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setting to establish a relationship between the ordinary gradient and
the Sobolev gradient. Then we show how that theorem can be extended
to find a function from H"?[0,1] to L,[0,1], p > 2 using Theorem 1.

Theorem 2 [11]. Suppose that each of H and J is a Hilbert space
so that the points of J form a dense subset of H. Suppose also that
lzl|ls > ||zllg for all z € J. Then there is an M € L(H,J), the set of
all continuous linear operators from H to J, so that

(i) R(M) is a dense subset of J, where R(M) is the range of M.
(ii) |M|La,g) <1
(iii) M~ exists.

A proof of that theorem can be found in [11]. It may be useful to
note how the function M is constructed.

Suppose © € H. Let f be an element of H* (the dual space of H) so
that f(z) = (z,2)u, for all z € H. Let g be the restriction of f to J. If
z€J,

() = £ ()| = [(z2) | < W2l N2l < N2y Nl -

Hence g € J*. So there is a unique y in J so that g(z) = (z,y)s for all
z € J. Denote y by Mz. M is clearly a linear function from H to J.
M1 is called the Laplacian for the pair H,J.

Now we recall some facts concerning use of the function M to establish
a relationship between the ordinary and the Sobolev gradients in the
Hilbert space setting.

For the discrete case, we consider the two Hilbert spaces H = R"+1
with the Euclidean norm and J = R"*! with the p-norm (1), where
p=2.

For every z € J, (z,x)g = (z,Mx); = (Dz,DMx)g2n = (2,
D'DMz)y, see [12, page 24], where D is the function defined in the
introduction. Therefore, x = D!DMx and M—! = D!D.

If ¢ is a real-valued C* function on J, then

¢'(y)h = (h, (V29)(y)); = (Dh, D(V290)(y)) gen
= (h, (D'D)(Va9)(y)); -
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Vap is the Sobolev gradient as we mentioned in the introduction.
Hence the ordinary gradient (Vy)(y) = (D*D)Va¢(y). So we have the
following relationship between the ordinary and the Sobolev gradients
using the function M.

(4) (Vo) (z) = M~ (Viy) (z), forall ze€ R"L

For the continuous case where H = L5[0,1] and J = H%2[0, 1], the
following argument shows that we get the same results. Let z be an
element of J. Then (z,x)g = (2, Mz);. Let Mz = y. Hence,

1 1
/ 2y +2'y = / zx, forall z¢€J.
0 0

1 1 1
/ zy+/ 2"y :/ 2.
0 0 0
1 1 1
/ zy—{—[y'z]é—/ zy”:/ 2.
0 0 0

/0 2y — 3" — 2) =5 (0)2(0) — o' (1)=(1).

This implies that

Thus,

Hence,
1
/ 2(y—y"' —x)=0, forall z€J>2(0)==z1)=0.
0

We claim that y — y”” — x = 0. Suppose not. Then, without loss of
generality, take a subinterval of [0, 1] over which the function y —y"” — z
is positive, and then define a function z which is positive over the
subinterval and vanishes outside the subinterval. Thus, fol 2(y—y" —x)
would be positive which is a contradiction. Therefore, y —y”" — 2 =10
and consequently fol 2y —y" —x) = 0, for all z € J. Hence,
¥’ (0)z(0) — ¢'(1)2(1) = 0, for all z € J. So if we choose a function
z so that z(0) = 0 and 2(1) = 1, we get y’(1) = 0. Next we choose a
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function z so that z(0) = 1 and z(1) = 0, and we get y'(0) = 0. So
finally the initial value problem y — " = z, ¢'(0) = 0 = /(1) has a
unique solution y = Mx. This implies that (I — A)Mxz = x, where [ is
the identity function, and I — A = M1,

Now consider the linear transformation Dq: H12[0,1] — L0, 1] such
that
D f=f', forall fe H"“?0,1].

Dy is a closed densely defined operator. Then
Dif =—f foral fec H"Y20,1]> f(0)=0= f(1),
where D! is the adjoint of D;. Consider also the linear transformation
D: HY2[0,1] — L[0,1] x L3[0,1]

such that
D(f) = <]’:,> - <Dflff> forall f e H"2[0,1].

D is a closed densely defined operator. Then
DY) =u + Div,
v
for all w € Ly[0,1], ve H“?[0,1] 3 v(0) =0 = v(1),
where D! is the adjoint of D. Hence,

D'Df=f+Dif =f—f"
forall fe H*?[0,1]> f'(0)=0= f'(1).

Therefore, D!D = I — A and consequently D*D = M1,
Suppose ¢ is a C! function on H2[0,1].

¢'(2)(y) = (y, (VQSD)(J:))HLZ[O,I] = <DyaD(V2‘P)(m)>L2{0,1]xLz[o,l] :
If the L1[0, 1] gradient (V¢)(x) exists, then

¢'(@)(y) = (¥, (V) (@) 10,1 -
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Therefore,
<DyaD(VZ‘P)(f”»LZ[o,l]><L2[0,1] = (v, (VW)($)>L2[0,1} .

Hence, D(Vap)(x) is in the domain of D' and D'D(Vap)(z) =
(V) (x). Therefore, (Vap)(z) = (D'D)~H(Vy)(z) or (Vap)(z) =
M(V)(z), for all z € HY2[0,1].

When we look for critical points of the C! function

o(z) = 5/0 (@ —2)?, e H2[0,1]

by solving (Vap)(z) =0 or M(Vy)(z) =0, see [11, page 80], we look
at

with the boundary conditions z'(0) = z(0) and 2'(1) = =(1). This
implies that (Vy)(z) = z — 2" = 0 which requires that z € H*2[0,1].
Since V¢ is continuous, M (V) is continuous and hence we can extend
it to the whole space H2[0,1].

Definition 3 [7, page 155]. Suppose X is a Banach space and X* is
the dual space of X. Given sets § C X and §* C X*, the sets

St={f*eX*:(f,f"Y=0, forall fecS}
St ={feX:(f,f)=0, forall f*ecS*}

are known as the orthogonal complements of S and S*, respectively,
where the coupling (f, f*) = f*(f).
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Definition 4 [7, page 161]. Suppose X and Y are two Banach spaces
and T is a bounded linear operator from X to Y. The adjoint of T,
denoted by T, is the mapping from Y™ to X* defined by

()i = 7(T@), ey’ jeX

Theorem 5 [7, page 164]. Let X and Y be two Banach spaces,
and suppose that T is a linear operator from X toY. Then R(T) =
N(T*)t, where R(T) is the range of T and N(T*) = {f* € Y*:T*(f*)
= 0}.

The following theorem shows that the Beurling-Deny theorem can
be extended to the two uniformly convex spaces H = L,[0,1] and
J=H"[0,1], p > 2.

Theorem 6. There is an M in L(L,[0,1], H'?[0,1]), 2 < p < oo,
such that

(i) R(M) is dense in HYP[0,1].
(ii) M~ emists.

Proof. Suppose that f € L,[0,1]. Then there is a bounded linear
function a on L4[0,1], 1/p+ 1/q = 1, such that a(g) = f?l fg, for all
g € L,[0,1]. Let 5 = Q| gr1.qp9,1) D€ the restriction of o to H 1[0, 1]. For
every h € H9[0,1], we have

1 1
1B(h)| = / hf‘ < / 111 < 1l oy 12 0.1

Hence, |8] < [|fllz,[0,1- Therefore, 3 is a member of (H0, 1])* Since
(H%4[0,1])" is ismorphic to H"P[0,1], there is a unique k in H%?[0, 1]
such that

1
B(h) :/ kh + k'R, forall he H“0,1].
0

Define M: L,[0,1] — H"?[0,1] so that M f = k. M is clearly linear.

We intend to show that M is continuous and R(M) = H'?|0, 1]. Since
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B(h) = a(h), for all he H(0, 1],

1 1
/kh+k’h’:/ fh.
0 0

But k= Mf, so
1 1
[ apns oapyw = [
0 0
which implies that
1
/ (Mf = f)h+ (Mf)H =0, forall he H[0,1].
0
Let u(t) = [ (Mf — f). Then
1
/ W+ (MF)H =0,
0

So
1 1
hulf — ' M) =o0.
s = [+ [rpyn <o

Therefore,
1
h(1)u(1) — h(0)u(0) +/ (Mf)Y —u)h' =0, forall he H“0,1],
0
which yields u(1) = 0. Thus,
1
/ (Mf) —u)h' =0, forall he H“0,1].
0

Hence (M f)'—u=0. So (M f)" =« and (M f)" = M f— f. Therefore,
we have the following differential equation (M f)” — M f = —f with
(Mf)(0)=0=(Mf) (1) whose solution is given by

(MF)(t) = cosh(t) (M £)(0) - / sinh(t — 5)f(s) ds,
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and

(MF)'(£) = sinh(t)(Mf)(0) — /0 cosh(t — $)f(s)ds, 0<t<1.

Hence,

0= (Mf)' (1) =sinh(1)(Mf)(0) — /0 cosh(1 — s)f(s)ds.

This implies that

fol cosh(1 — s)f(s) ds.

(M£)(0) = sinh(1)
Hence
1 t
(MF)(t) = ;’I‘ﬁg; /0 cosh(1 — s)f(s) ds — /0 sinh(t — s)£(s) ds.
So
1
o)< S8 i< [in
C[e+1)?  e+1]
| 4sinh(1) * 2 / /]
e+ 1)?  e+1]
< _4S1Hh(1) + 9 ] ||f||Lp[0,1]'
Then et 1)? P
p e+ e+ p
(M f)EB)F < dsb(1) T 2 | IF11Z, 0,1 -
Hence,

[nse < [eE S g

Similarly, we get

(MfyP LY YT
/ [4smh<> }
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Therefore,

(e+1)2 e+1]"
1M1 < 2| S5 SR .

So
(e+1)2 e+1

4sinh(1) T ]”f”%[(%”'

1M fllgr < Wp[

Hence, M is continuous.

Suppose M*: (H'?[0,1])* — L,[0,1]" is the adjoint of the function
M. Let N(M*) = {gx € (H'?[0,1])" : M*(¢g*) = 0}. Suppose g* is
a member of N(M*). For every h in L,[0,1], we have (M*(g*))h =
g*(Mh). Therefore g*(Mh) = 0.

Now by Theorem 1, there is an m in HY9[0,1] so that g*(k)
fol mk +m'K', for all k € H?[0,1]. Hence,

1 1
0 = g*(Mh) = / m(MR)+m! (M) = / mh, forall he L0, 1].
0 0

So m = 0 and ¢g* = 0. Therefore, N(M*) = {0} and consequently
R(M) = N(M*)*+ = H'?[0,1].

Now to show (ii), we let h € L,[0, 1] so that Mh = 0. Hence,
1
/ m(Mh) +m'(Mh) =0, forall m e H"0,1].
0

Therefore, fol mh = 0, for all m € H%9]0,1]. So h = 0 and consequently
M ™! exists. The proof of the theorem is now complete. o

Unlike the case when p = 2, we cannot use the function M ! instead
of D'Q(D(.)) in (3) to establish a relationship between the ordinary
and the p-gradient as we did in (4) simply because the function M1
is linear but D*Q(D(.)) is not.

For the discrete case, if we consider H = R"*! with the Euclidean
norm and J = R"*! with the p-norm (1), for r € H there exists
a linear function f. on J so that f.(s) = (r,s)y for every s € J.
Hence, there exists a unique h € J such that f,.(h) is maximum subject
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to |frlg= = ||h|ls- So we have a function T from H to J so that
h = Tr. Let B(h) = ||h||P — |f+|P. Using Lagrange multipliers, we
get Vf.(h) = VB(h) but VB(h) = D'Q(D(h)), see [16, page 1542].
Therefore, r = D!'Q(D(Tr)) and T~! = D!Q(D(.)). The relationship
(3) between the two gradients implies then (Vo)(z) = T~ (V,e)(z),
where ¢ is a C! function on R"*!.

Note that the two functions 7" and M are equal if p = 2.
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